TWIST AND SH ${ }_{O}^{\prime}{ }^{F} T$

Massimo BIANCHI
CERN Theory Division
Università di Roma "Tor Vergata" - INFN Talk at CERN

March 26, 2008

Foreword

- The combined effect of twists and shifts has not been systematically explored in the context of unoriented strings
[Vafa, Witten; Angelantonj, Antoniadis, D'Appollonio, Dudas, Sagnotti; ... Camara, Maillard, Pradisi,
Dudas; ... Blumenhagen, Schmidt-Sommerfeld]
- Various approaches: Left-Right symmetric asymmetric orbifolds [Narain, Sarmadi, Vafa; ... M.B., Morales, Pradisi], free fermions [Antoniadis, Bachas, Kounnas; Kawai, Lewellen, Tye; ... MB, Sagnotti], covariant lattices [Lerche, Lusst, Schellekens, Warner; ...], ...
- Another twist another shift: (N)MHV amplitudes in $\mathcal{N}=4$ SYM, BDS and BES conjectures and finiteness of $\mathcal{N}=8$ supergravity [see e.g. Dixon 0803.2475]
- Spinor shifts, recursion relations, generating functions, helicity sums, cut constructability, ...

Plan

- Part I, with Anastasopoulos, Morales, Pradisi (w.i.p.)
- T-folds with few T's: combining CDMP and DJK models
- Other means of moduli stabilization e.g. (non-)anomalous $U(1)$'s, non-perturbative effects, exotic modular invariants,
- Magic supergravities [MB, Ferrara; Kounnas, Dolivet, Julia]
- Part II, with Elvang and Freedman (w.i.p.)
- MHV amplitudes in $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ supergravity
- Operator map, (super)symmetries, generating functions
- Next-to-MHV amplitudes at tree level
- Beyond the trees: helicity sums
- Outlook for two

Part I: unoriented twists and shifts

- T-folds with few T's: combining CDMP and DJK models
- Other means of moduli stabilization e.g. (non-)anomalous $U(1)$'s, non-perturbative effects, exotic modular invariants, ...
- Magic supergravities [MB, Ferrara; Kounnas, Dolivet, Julia]

T-folds with few or no T's

CDMP model [Camara, Dudas, Maillard, Pradisi]: standard geometric freely acting orbifold $T^{6} / Z_{2} \times Z_{2}$, Type I / Heterotic dual pairs All twisted moduli are massive. Only untwisted moduli T_{I}, U_{I}, $I=1,2,3$ (after unoriented projection)
Combine with gaugino condensate(s) in open string sector and/or 3-form fluxes to stabilize dilaton and other moduli.
DJK 'minimal' model [Dolivet, Julia, Kounnas]: non-magic hyper-free model, fermionic construction $G=\psi^{\mu} \partial X_{\mu}+\chi^{i} y^{i} w^{i}$. Fermionic sets:
$F, S, \bar{S}, \bar{b}_{1}, b_{1}=\left\{\psi^{\mu}, \chi^{1,2} ; y^{3,4,5,6}, y^{1} w^{1} \mid \bar{y}^{5} \bar{w}^{5}\right\}$,
$\bar{b}_{2}=\left\{y^{6} w^{6} \mid \bar{\psi}^{\mu}, \bar{\chi}^{3,4} ; \bar{y}^{1,2}, \bar{w}^{5,6} \bar{y}^{3} \bar{w}^{3}\right\}$,
$\bar{b}_{3}=\left\{y^{6} w^{6} \mid \bar{\psi}^{\mu}, \bar{\chi}^{5,6} ; \bar{w}^{1,2,3,4} \bar{y}^{6} \bar{w}^{6}\right\}$
Only dilaton vector-multiplet survives. $\mathcal{N}_{R}=0,(-)^{F_{R}} \sigma$ asymmetric freely acting orbifold of $T_{S O(12)}^{6}, y^{i} w^{i} \approx$ shifts.

Combining CDMP with DJK

Replace \bar{b}_{3} with b_{2}, get a L-R symmetric asymmetric orbifold. Geometric (freely acting) projections associated to $b_{1} \bar{b}_{1}$ and $b_{2} \bar{b}_{2}$. Non geometric (freely acting) projections associated to $b_{1}, b_{2}, \ldots b_{1} \bar{b}_{2}$.
All untwisted moduli except dilaton hypermultiplet are projected out $\left(\mathcal{N}_{L}=\mathcal{N}_{R}=1, \mathcal{N}_{\text {tot }}=2\right)$.
Massless multiplets only from $b_{1} b_{2}$ and $\bar{b}_{1} \bar{b}_{2}$ twisted sectors: 2 hypers and 2 vectors.
Unoriented projection produces $1+2+2$ chiral multiplets, or $1+2$ chiral and 2 vector multiplets.
Combine with (non) anomalous $U(1)$'s and / or other (non)perturbative effects (gaugino condensation, ADS-like superpotentials, ...)

More twist, more shift

Start from Type I / Heterotic on T^{4} / Z_{2}. No neutral twisted moduli, only untwisted ones. Compactify on T^{2} and project by a freely acting Z_{2}. Project some of the untwisted moduli, no extra twisted moduli. Another dual pair with $\mathcal{N}=1$, laboratory for (non)perturbative effects, (non)anomalous $U(1)$'s, ...
In general, consider abstract SCFT with one-loop characters $\mathcal{X}_{0} \approx V_{2}-S_{2}-C_{2}$ (identity), $\mathcal{X}_{i} \approx O_{2}-S_{2}$ (massless chiral), $\mathcal{X}_{i}^{c} \approx O_{2}-C_{2}$ (massless anti-chiral), \mathcal{X}_{I} (massive $h_{I}>1 / 2$).
Look for 'exotic' modular invariants of the form

$$
\left|\mathcal{X}_{0}\right|^{2}+\sum_{i}\left[\mathcal{X}_{i} \overline{\mathcal{X}}_{l(i)}+\ldots\right]+\ldots
$$

where $I(i)$ labels massive characters with $h_{I(i)}=1 / 2+n_{I}$ (if present). All moduli except the dilaton (multiplet) are 'stabilized'.
Cannot do any better for perturbative strings in Minkowski space.

Magic $\mathcal{N}=2$ supergravities

Related to magic square of Freudenthal, Rozenfeld and Tits of the division algebras R, C, H, O [Gunaydin, Sierra, Townsend]
Only octonionic model is not a truncation of $\mathcal{N}=8 \mathrm{SG}: 27$ vector-plets $\mathcal{M}_{V}=E_{7(-25)} / E_{6} \times U(1)$ AND 28 hypers $\mathcal{M}_{H}=E_{8(-24)} / E_{7} \times S U(2)$
Type I description ${ }^{1}$: start from $D=6$ on T^{4} / Z_{2} with $n_{T}=1+8$ with 16 D9 OR $16 D 5$ (twist and shift!) and reduce to $D=4$ on $T^{2}{ }_{\text {[MB, Ferrara] }}$
Doubly magic $n_{H}=n_{v}$, no quantum corrections to geometry (two-derivative effective action)
Potential corrections to higher derivative F-terms (for FHSV: Type II - Heterotic - Type I - Type II' tetrality), black hole entropy ... Other magic hyper-free supergravities [Dolivet, Julia, Kounnas]
${ }^{1}$ Closely related to Type I FHSV-like model without open strings

Part II: another twist, another shift

- MHV amplitudes in $\mathcal{N}=4$ SYM and $\mathcal{N}=8$ supergravity
- Operator map, (super)symmetry, generating functions
- Next-to-MHV amplitudes at tree level
- Beyond the trees: helicity sums

MHV amplitudes in (supersymmetric) gauge theories

Helicity basis $A_{\mu} \rightarrow A^{ \pm}$

$$
\left\langle A^{+} A^{+} \ldots A^{+}\right\rangle=0 \quad, \quad\left\langle A^{-} A^{+} \ldots A^{+}\right\rangle=0
$$

to all orders in susy theories, at tree level if non-susy Parke-Taylor formula (tree level)

$$
\left\langle A^{+}(1) \ldots A^{-}(i) \ldots A^{-}(j) \ldots A^{+}(n)\right\rangle=\frac{\langle i, j\rangle^{4}}{\prod_{k=1}^{n}\langle k, k+1\rangle}
$$

where

$$
\begin{aligned}
& \langle i, j\rangle=u^{\alpha}\left(p_{i}\right) u_{\alpha}\left(p_{j}\right)=-\langle j, i\rangle \quad, \quad[i, j]=\bar{u}_{\dot{\alpha}}\left(p_{i}\right) \bar{u}^{\dot{\beta}}\left(p_{j}\right)=-[j, i] \\
& \text { and } p_{\alpha \dot{\alpha}}=u_{\alpha}(p) \bar{u}_{\dot{\alpha}}(p) \text { so that } p^{2}=0=p_{\alpha \dot{\alpha}} \bar{u}^{\dot{\alpha}}(p)=p^{\dot{\alpha} \alpha} u_{\alpha}(p)
\end{aligned}
$$ Basic properties: holomorphy (no [..]'s), no multi-particle poles! MHV 'vertices' [Chacazo, Surcek, Witten]

MHV amplitudes in $\mathcal{N}=4$ SYM

Up to color-ordering (non-cyclic permutations) 15 kinds of (susy related) MHV amplitudes [Georgiou, Glover, Khoze]

$$
\begin{gathered}
\left\langle A^{-} A^{-} A^{+} \ldots A^{+}\right\rangle, \\
\left\langle\phi \phi \phi \phi A^{+} \ldots A^{+}\right\rangle, \\
\left\langle\lambda^{+} A^{-} A^{+} \ldots A^{+}\right\rangle, \quad \ldots\left\langle\lambda_{1}^{+} \ldots \lambda_{8}^{+} A^{+} \ldots A^{+}\right\rangle
\end{gathered}
$$

where 15 counts partitions of $8=\sum_{i=1}^{n} \nu_{i}$ with $\nu_{i} \leq 4$
Generating function [Nair]

$$
\mathcal{F}_{M H V, n}^{\text {tree }, \mathcal{N}=4}\left(\eta_{A}^{i}\right)=\frac{\mathcal{A}_{M H V, n}^{\text {tree,gauge }}\left(i^{-}, j^{-}\right)}{\langle i, j\rangle^{4}} \delta^{8}\left(\sum_{i} u^{\alpha}\left(p_{i}\right) \eta_{A}^{i}\right)
$$

prefactor from 2-D fermion contractions ($J^{a}=\psi t^{a} \psi$) on $S_{\vec{p} / E}^{2}$ (?) $\delta^{8}\left(\sum_{i} u^{\alpha}\left(p_{i}\right) \eta_{A}^{i}\right)=\int d^{8} \theta e^{\theta_{\alpha}^{A} \sum_{i} u^{\alpha}\left(p_{i}\right) \eta_{A}^{i}, 1 / 2-B P S ~(?) ~}$

Further developments

- Perturbative $\mathcal{N}=4$ SYM \approx topological strings on super-twistor space $C P^{3 / 4}$ [Witten]
- Recursion relations from 2-spinor shift:

$$
|1\rangle \rightarrow|1\rangle+z|2\rangle, 2\rangle \rightarrow|2\rangle, \mid 1] \rightarrow \mid 1], \mid 2] \rightarrow \mid 2]-z \mid 1]
$$

$\mathcal{A}_{n}^{\text {tree }}(z)$ rational function of z with simple poles only If $A_{n}^{\text {tree }}(z) \rightarrow 0$ as $z \rightarrow \infty$, use Cauchy's theorem: residues \approx splits into MHV [Britto, Cachazo, Feng, Witten; ...]

- MHV vertices from 'canonical' (super)field re-definition and (non)MHV (loop) amplitudes [Chacazo, Svrcek, Witten; Mansfield; Gorsky, Rosly;
Bedford, Brandhuber, Spence, Travaglini; ...]
- Gravity from (gauge) ${ }^{2}$ [Kawai, Lewellen, Tye; Berends, Giele, Kuijf; Elvang, Freedman] unexpected cancellations and finiteness of $\mathcal{N}=8$ [Bern, Dixon, Roiban, Bjerrum-Bohr, Dunbar, Kosower, Howe, Stelle] 'No-triangle' hypothesis

Gravity $=(\text { gauge })^{2} ?$

$[\mathcal{N}=4 S Y M]_{L} \otimes[\mathcal{N}=4 S Y M]_{R} \rightarrow[\mathcal{N}=8 S G] 16$ distinct particle states in each $\mathcal{N}=4$ SYM factor and 256 states in $\mathcal{N}=8$ SG
$S U(4)_{L} \otimes S U(4)_{R}$ R-symmetry promoted to $S U(8)$ of $\mathcal{N}=8$ Supersymmetry Ward identities $a(p) \leftrightarrow A(p) \otimes \tilde{A}(p)$

$$
\left[Q^{a}, a\right] \leftrightarrow\left[Q^{a}, A \otimes \tilde{A}\right] \equiv\left[Q^{a}, A\right] \otimes \tilde{A} \quad\left[Q^{r}, a\right] \leftrightarrow\left[Q^{r}, A \otimes \tilde{A}\right] \equiv A \otimes\left[Q^{r}, \tilde{A}\right]
$$

Generating functions $\mathcal{G}_{\mathcal{M} \mathcal{N}=8} \approx \mathcal{F}_{M H V}^{\mathcal{N}=4, L} \mathcal{F}_{M H V}^{\mathcal{N}=4, R}$
Complicated $\mathcal{N}=8 \mathrm{SG}$ trees from simpler tree amplitudes of $\mathcal{N}=4$ (generalize quadratic KLT relations)

Operator map

b_{+}	$=B_{+} \tilde{B}_{+}$	$b^{-}=B^{-} \tilde{B}^{-}$
$f_{+}^{a}=F_{+}^{a} \tilde{B}_{+}$	$f_{a}^{-}=F_{a}^{-} \tilde{B}^{-}$	
$f_{+}^{r}=B_{+} \tilde{F}_{+}^{r}$	$f_{r}^{-}=B^{-} \tilde{F}_{r}^{-}$	
$b_{+}^{a b}=B_{+}^{a b} \tilde{B}_{+}$	$b_{a b}^{-}=B_{a b}^{-} \tilde{B}^{-}$	
$b_{+}^{a r}=$	$F_{+}^{a} \tilde{F}_{+}^{r}$	$b_{a r}^{-}=-F_{a}^{-} \tilde{F}_{r}^{-}$
$b_{+}^{r s}=B_{+} \tilde{B}_{+}^{r s}$	$b_{r s}^{-}=B^{-} \tilde{B}_{r s}^{-}$	
$f_{+}^{a b c}=\alpha_{4} \epsilon^{a b c d} F_{d}^{-} \tilde{B}_{+}$	$f_{a b c}^{-}=-\alpha_{4} \epsilon_{a b c d} F_{+}^{d} \tilde{B}^{-}$	
$f_{+}^{a b r}=B_{+}^{a b} \tilde{F}_{+}^{r}$	$f_{a b r}^{-}=B_{a b}^{-} \tilde{F}_{r}^{-}$	
$f_{+}^{a r s}=F_{+}^{a} \tilde{B}_{+}^{r s}$	$f_{a r s}^{-a}=F_{a}^{-} \tilde{B}_{r s}^{-}$	
$f_{+}^{r s t}=\tilde{\alpha}_{4} \epsilon^{r s t u} B_{+} \tilde{F}_{u}^{-}$	$f_{r s t}^{-}=-\tilde{\alpha}_{4} \epsilon_{r s t u} B^{-} \tilde{F}_{+}^{u}$	

Example / test of the map

Two scalar MHV amplitude : three distinct decompositions of the $S U(8)$ indices
First all $S U(8)$ indices in one $S U(4), b_{a b c d} \leftrightarrow \epsilon_{a b c d} B^{-} \otimes \tilde{B}_{+}$, $\left\langle b^{-} b_{a b c d}^{-} b_{+}^{e f g h} b_{+} \ldots b_{+}\right\rangle \rightarrow$

$$
\begin{aligned}
& \alpha_{4}^{2} \epsilon_{a b c d} \epsilon^{e f g h}\left\langle B^{-} B^{+} B^{-} B_{+} \ldots B_{+}\right\rangle\left\langle\tilde{B}^{-} \tilde{B}^{-} \tilde{B}_{+} \tilde{B}_{+} \ldots \tilde{B}_{+}\right\rangle \\
= & 4!\delta_{\text {abcd }}^{e f f h}\langle 13\rangle^{4}\left\langle B^{-} B^{-} B_{+} B_{+} \ldots B_{+}\right\rangle\left\langle\tilde{B}^{-} \tilde{B}^{-} \tilde{B}_{+} \tilde{B}_{+} \ldots \tilde{B}_{+}\right\rangle
\end{aligned}
$$

Next split $S U(8)$ indices, $\left\langle b^{-} b_{a b c r} b^{e f g s} b_{+} \ldots b_{+}\right\rangle \rightarrow$

$$
\begin{gathered}
(-1) \alpha_{4}^{2} \epsilon_{a b c d} \epsilon^{e f g h}\left\langle B^{-} F_{+}^{d} F_{h}^{-} B_{+} \ldots B_{+}\right\rangle\left\langle\tilde{B}^{-} \tilde{F}_{r}^{-} \tilde{F}_{+}^{s} \tilde{B}_{+} \ldots \tilde{B}_{+}\right\rangle \\
=(-)^{2} \epsilon_{a b c d} \epsilon^{e f g h} \delta_{d}^{h} \frac{\langle 12\rangle}{\langle 13\rangle}\left\langle B^{-} B_{+} B^{-} B_{+} \ldots B_{+}\right\rangle \delta_{r}^{s} \frac{\langle 13\rangle}{\langle 12\rangle}\left\langle\tilde{B}^{-} \tilde{B}^{-} \tilde{B}_{+} \tilde{B}_{+} \ldots \tilde{B}_{+}\right\rangle \\
=3!\delta_{r}^{s} \delta_{a b c}^{e f g} \frac{\langle 13\rangle^{4}}{\langle 12\rangle^{4}}\left\langle B^{-} B^{-} B_{+} B_{+} \ldots B_{+}\right\rangle\left\langle\tilde{B}^{-} \tilde{B}^{-} \tilde{B}_{+} \tilde{B}_{+} \ldots \tilde{B}_{+}\right\rangle .
\end{gathered}
$$

The third distinct split of the scalar $S U(8)$ indices OK

Generating function for $\mathcal{N}=8$ SG MHV amplitudes

$$
\mathcal{G}_{M H V, n}^{\mathcal{N}=8}\left(\eta_{i A}\right)=\frac{\mathcal{M}_{M H V, n}^{\mathrm{grav}}\left(1^{-}, 2^{-}, \ldots\right)}{\langle 12\rangle^{8}} \mathcal{F}_{M H V, n}^{\mathcal{N}=4, L}\left(\eta_{i a}\right) \times \mathcal{F}_{M H V, n}^{\mathcal{N}=4, R}\left(\eta_{i r}\right)
$$

where $A=1, \ldots 8, a, b, \cdots=1,2,3,4, r, s, \cdots=5,6,7,8$ and n-graviton MHV amplitude [kLT; Berends, Giele, Kuif; Evang, Freedman]
$\mathcal{M}_{M H V}^{\text {graV }}=\sum_{\mathcal{P}\left(i_{i}, \ldots, i_{n}\right)} \frac{\langle 12\rangle\left\langle i_{3} i_{4}\right\rangle}{\left\langle 1 i_{3}\right\rangle\left\langle 2 i_{4}\right\rangle} s_{1 i_{n}}\left(\prod_{s=4}^{n-1} \beta_{s}\right) \mathcal{A}_{M H V}^{\text {gauge }}\left(1^{-}, 2^{-}, i_{3}^{+}, \ldots, i_{n}^{+}\right)^{2}$
with $\left.\left.\beta_{s}=-\frac{\left\langle i_{s} i_{s+1}\right\rangle}{\left\langle 2 i_{s+1}\right\rangle}\langle 2| i_{3}+i_{4}+\cdots+i_{s-1} \right\rvert\, i_{s}\right]$
Crucial fact $\mathcal{M}_{M H V, n}^{\text {graV }}\left(1^{-}, 2^{-}, \ldots\right) /\langle 12\rangle^{8}$ totally symmetric

Properties of MHV generating function

Neat connection between $\mathcal{N}=8$ and $\mathcal{N}=4$ amplitudes
Bookkeeping for spin and R-symmetry factors. Manifest $S U(8)$ symmetry
Practical tool for calculating MHV and next-to-MHV amplitudes.
Associate with each state a differential operator:
$h^{+} \rightarrow 1, \psi^{+A} \rightarrow D_{\eta}^{A}, \ldots h^{-} \rightarrow D_{\eta}^{8}$
Tantalizing analogy with zero-mode counting in instanton calculus and with light-cone superfield [Brink, Ramond, Kovacs, ...] $\mathcal{A}_{\mathcal{N}=4}=1 / \partial_{+} A^{-}+1 / \partial_{+} \lambda_{A}^{-} \hat{\theta}^{A}+\phi_{A B} \hat{\theta}^{A} \hat{\theta}^{B}+\lambda^{+A}\left(\hat{\theta}^{3}\right)_{A}+A^{+} \hat{\theta}^{4}$
To calculate amplitudes, apply differential operators to \mathcal{G}_{n}
Number of MHV amplitudes in $\mathcal{N}=8$ supergravity $=$ partitions of 16 with $n_{\max }=8$. That's 186
Susy Ward identities have unique solutions for MHV amplitudes, \mathcal{G}_{n} satisfies WI's hence \mathcal{G}_{n} is the correct, unique generating function

SUSY Ward identities for MHV amplitudes

Two kinds of operators [Grisaru, Pendeleton, Van Nieuwenhuizen]
$\left[Q^{a}, \alpha\right]=[p, \epsilon] \beta,\left[Q^{a}, \beta\right]=0,\left[\tilde{Q}_{a}, \beta\right]=\langle\epsilon p\rangle \alpha$, and $\left[\tilde{Q}_{a}, \alpha\right]=0$
Two-component spinors, two independent constraints on the amplitudes per each set $|\epsilon\rangle,[\epsilon \mid$.
In the generating function approach, introduce SUSY generators:
$Q^{A}=\sum_{i}\left[i \mid D_{\eta_{A}^{i}}\right.$ and $\tilde{Q}_{A}=\sum_{i}|i\rangle \eta_{A}^{i}$ so that $\left\{Q^{A}, \tilde{Q}_{A}\right\}=\delta_{B}^{A} P$ (with $P=\sum_{i}|i\rangle[i \mid$)
Obviously $Q^{A} \mathcal{G}=0(P=0)$ and $\tilde{Q}_{A} \mathcal{G}=0\left(\mathcal{G} \approx \delta\left(\tilde{Q}_{A}\right)\right.$
Concrete WI's $\tilde{\epsilon}^{A} \tilde{Q}_{A} \mathcal{D}^{(17)} \mathcal{G}=0$ and $\epsilon_{A} Q^{A} \mathcal{D}^{(15)} \mathcal{G}=0$
As in $\mathcal{N}=4$ SYM, susy generator produces correct algebra on differential operators and hence correct SUSY Ward identities

Applications beyond tree level: Intermediate state sum

1-loop MHV amplitude in $\mathcal{N}=4$ SYM from tree level
For 2-particle cuts, dropping dynamical prefactors, compute
$D_{1}^{(4)} D_{2}^{(4)} \delta^{(8)}\left(I_{a}\right) \delta^{(8)}\left(J_{a}\right)$, where $D_{I}^{(4)}=\prod_{a=1}^{4} \partial / \partial \eta_{l a}, I=1,2$, and
$I_{a}=\left|-I_{1}\right\rangle \eta_{1 a}+\left|I_{2}\right\rangle \eta_{2 a}+|i\rangle \eta_{i a}+\sum_{m}|m\rangle \eta_{m a}$,
$J_{a}=\left|l_{1}\right\rangle \eta_{1 a}+\left|-I_{2}\right\rangle \eta_{2 a}+|j\rangle \eta_{j a}+\sum_{n}|n\rangle \eta_{\text {na }}$
$D_{1}^{(4)} D_{2}^{(4)}$ acts on $\eta_{1 a}$ and $\eta_{2 a}$ in both I_{a} and J_{a} arguments of δ-functions in generating functions for 'left' and 'right' amplitudes.
Each intermediate state comes from a particular split of the action of $D_{1}^{(4)} D_{2}^{(4)}$ on I_{a} and J_{a}. Opposite helicities the two ends. Use Schouten's identity $\left\langle i I_{1}\right\rangle\left\langle k l_{2}\right\rangle-\left\langle j l_{1}\right\rangle\left\langle i I_{2}\right\rangle=\langle i j\rangle\left\langle I_{1} I_{2}\right\rangle$ to simplify to $D_{1}^{(4)} D_{2}^{(4)}\left(D_{i} \delta^{(8)}\left(I_{a}\right) D_{j} \delta^{(8)}\left(J_{a}\right)\right)=\langle i j\rangle^{4}\left\langle I_{1} I_{2}\right\rangle^{4}$
3-particle cuts can be handled similarly

Beyond MHV: Next-to-MHV (NMHV) amplitudes

Genuine NMHV start at 6-pts e.g. $\left\langle A^{-} A^{-} A^{-} A^{+} A^{+} A^{+}\right\rangle$, while $\left\langle A^{-} A^{-} A^{-} A^{+} A^{+}\right\rangle$is anti-MHV.
Counting NMHV amplitudes
In $\mathcal{N}=4$ SYM number of NMHV amplitudes is number of partitions of 12 with $n_{\max }=4$. That's 34 .
In $\mathcal{N}=8$ SG number of NMHV amplitudes is number of partitions of 24 with $n_{\max }=8$. That's 919 !!
$1 / 4$ BPS ?
In $\mathcal{N}=4$ SYM, NMHV amplitudes can be calculated using the 'MHV vertex method' [Cachazo, Surcek, Witten; Georgiu, Glover, Khoze; ...]

NMHV generating functions in $\mathcal{N}=4$ SYM

Generating function for individual 'diagrams' e.g. for external lines $i+1$ and j adjacent to internal line I on the left and $j+1$ and i adjacent on the right

$$
\begin{aligned}
\mathcal{F}_{N M H V, n}^{(i+1, j \mid j+1, i)} & =\left(\prod_{i=1}^{n}\langle i(i+1)\rangle\right)^{-1} \delta^{(8)}\left(\sum_{i=1}^{n}|i\rangle \eta_{i a}\right) \prod_{a=1}^{4} \sum_{k \in I}\left\langle P_{I} k\right\rangle \eta_{k a} \frac{1}{D_{l}} \\
\frac{1}{D_{I}} & =\frac{1}{P_{I}^{2}} \frac{\langle j(j+1)\rangle\langle i(i+1)\rangle}{\left\langle j P_{I}\right\rangle\left\langle(j+1) P_{I}\right\rangle\left\langle i P_{I}\right\rangle\left\langle(i+1) P_{I}\right\rangle} .
\end{aligned}
$$

$1 / D_{l}$ correct off-shell continuation of Parke-Taylor vertex factors. SUSY WI's OK,
Derive $\mathcal{F}_{N M H V, n}^{(i+1, j \mid j+1, i)}$ via 3-line shift recursion relations: split into sum of 'MHV vertex diagrams' requires that $\mathcal{A}_{\text {NMHV }}(z) \rightarrow 0$ for $z \rightarrow \infty$ [Risager]
Not rigorously proven for full $\mathcal{N}=4$ SYM theory ... but no counter examoles.

NMHV generating functions in $\mathcal{N}=8$ SG

In $\mathcal{N}=8 \mathrm{SG}$, similar set-up BUT we have found counter examples
to $\mathcal{M}_{n, \mathcal{N} M H V}^{\mathcal{N}=8}(z) \rightarrow 0$ for $z \rightarrow \infty$.
Typically, for amplitudes involving scalars, $\mathcal{M}_{n, \text { NMHV }}(z) \rightarrow \mathcal{O}(1)$ for $z \rightarrow \infty$
Possible way out: summing all diagrams $\mathcal{M}_{n, N M H V}(z) \rightarrow 0$, needed for recursion relations to work in NMHV sector, and beyond. Low-energy theorems: 70 scalars of $\mathcal{N}=8$ SG non-linear sigma model on $E(7,7) / S U(8)$. Exact Goldstone bosons. Low-energy theorems à la Adler and Weinberg. Trivial one soft-pion limit in MHV sector ($q_{\phi}=4$) and NMHV sector (?). Interesting two soft pions limits.

Recent developments in the planar limit

- MHV amplitudes and light-like Wilson loops

$$
\frac{\mathcal{A}_{M H V, n}^{\text {full,SYM }}\left(p_{i}, h_{i}\right)}{\mathcal{A}_{M H V, n}^{\text {tree,SYM }}\left(p_{i}, h_{i}\right)}=\left.W\left(\lambda ; x_{i}\right)\right|_{x_{i}-x_{i+1}=p_{i}}
$$

independent of helicities / species, tested up to 6-pts at
2-loops [Brandhuber, Heslop, Travaglini; Drummond, Henn, Korchemsky, Sokactchev; BDKRSVV; ...]

- Exponentiation of 4-pt amplitudes, BDS conjecture [Bern, Dixon,

Smironov]

$$
\mathcal{A}_{4 p t}^{\text {finite }}(s, t)=C \exp \left\{\frac{1}{8} \gamma_{c u s p}(\lambda) \log ^{2}(s / t)\right\}
$$

strong coupling AdS/CFT test [Alday, Maldacena], integrability prediction for cusp anomalous dimension [Beisert, Eden, Staudacher]

- Dual conformal invariance of scalar boxes $x \leftrightarrow p$

Outlooks

Part I:
Twists and shifts can conveniently combine with other mechanisms, e.g. open and closed string fluxes, non-anomalous $U(1)$'s, instanton effects, ... of moduli stabilization. Explicit computations are feasible.
Model with only 2 twisted moduli.
Part II:
Generating functions techniques are instrumental to (dis)prove $(\mathcal{N}=8) \leftrightarrow(\mathcal{N}=4)_{L} \otimes(\mathcal{N}=4)_{R}$ at tree level in $(\mathrm{N}) \mathrm{MHV}$ sector and beyond
Need a better understanding of spinor shifts, ...

