Domain walls and anti-de Sitter vacua in four dimensions

Marios Petropoulos

CPHT - Ecole Polytechnique - CNRS

String phenomenology and dynamical vacuum selection Liverpool, March 2008

based on works with C. Kounnas, D. Lüst & D. Tsimpis

Motivations and summary

Emergence of AdS₄ vacua from flux compactifications

Sources and supersymmetric configurations

A concrete example

Why anti-de Sitter spaces?

Natural ingredients of string compactifications

- Preserve (all or part of) the supersymmetries
- Are supported by antisymmetric-tensor vev's
- Are accompanied by (partial) moduli stabilization
- Appear as NHGs of brane distributions

Provide a tool for probing various facets of string vacua and dynamics

- AdS/CFT (AdS₅ \times S⁵ and D3-branes)
- Microscopic black-hole entropy and attractor mechanism, originally in N = 2 setups with AdS₂ × S² NHGs

► ...

Here: AdS₄ backgrounds

We focus on type IIA/B theories and search for negative-energy 4-D vacua with unbroken supersymmetry and stabilized main moduli

- ▶ Provide AdS₄ vacua using 4-D supergravity tools
 - switch on the appropriate perturbative superpotential
 - translate the solution in the language of fluxes
- Identify the corresponding sources in the full 10-D space: D2/D4/D6/D8/NS5/KK or D3/D5/D7/NS5/KK
 - not localized (as for AdS₂) but *smeared* in transverse space
 - not point-like in 3-D space but *domain walls* interpolating between AdS₄ and flat spacetime

Make contact among the two items: the NHG of the brane background is $AdS_4 \times T^6$ and all background fields faithfully reproduce the (super)potential and the moduli at its minimum

Motivations and summary

Emergence of AdS₄ vacua from flux compactifications

Sources and supersymmetric configurations

A concrete example

Scalar potential, superpotential and fluxes

Minima in N = 1 *supergravities with* $W(\phi)$ – *no D*-*terms*

► Scalar potential: $V = e^{K} (|D_{i}W|^{2} - 3|W|^{2})$

• Auxiliary fields: $F_i = e^{\kappa/2} D_i W = e^{\kappa/2} \left(\partial_{\phi_i} W + W \partial_{\phi_i} \kappa \right)$

- Supersymmetric extrema with $V(\phi_{\min}) < 0$
 - $F_i(\phi_{\min}) = 0 \ \forall i$
 - $W(\phi_{\min}) \neq 0$

Potential flat directions

Superpotential: main-moduli perturbative dependence and fluxes

- ► F_[n], H_[3] and ω_[3] vev's on internal cycles create fluxes and generate W(S, T, U) [rich literature]
- Typical contributions assuming toroidal prepotential:

Important remarks

- ▶ IIA/B mirror symmetry ($U \leftrightarrow T$) relates the various terms
- Stabilization of all moduli requires to go beyond CY
 - NS or R-flux back reaction in IIA
 - ► Kähler-moduli dependence in IIB requires geometric fluxes ($\omega_{[3]}$) whereas $W_{\text{IIB} - \text{CY}} = \int \Omega \wedge (F_{[3]} + SH_{[3]}) \Rightarrow$ no Ts
- The flux numbers are not arbitrary
 - they satisfy Jacobi identities (gauged-supergravity language) or Bianchi identities (internal-flux language)
 - ▶ they require branes (wrapping cycles) and orientifold planes (further breaking $N = 2 \rightarrow N = 1$) to cancel the RR tadpoles

Supersymmetric AdS₄ *vacua in* IIA

First examples [Behrndt, Cvetič, '04; Derendinger, Kounnas, Petropoulos, Zwirner, '04; Lüst, Tsimpis, '04]

$$\begin{split} \mathbb{Z}_2 \times \mathbb{Z}_2 \text{ plane-symmetric } T^6 \text{ reduction with a } \mathbb{Z}_2 \text{ orientifold in} \\ \text{truncated 4-D } N &= 4 \text{ gauged supergravity with} \\ \mathbb{W}_{\text{IIA}} \propto i \Big[2S + 2(U_1 + U_2 + U_3) + 3T_1T_2T_3 - 3(T_1 + T_2 + T_3) \Big] \\ &+ 2S(T_1 + T_2 + T_3) + 6(T_1U_1 + T_2U_2 + T_3U_3) \\ &- (T_1T_2 + T_2T_3 + T_3T_1) - 15 \end{split}$$

• Minimum at $S = T_i = U_i = \sqrt{5/3}$ with $V_{\min} < 0$

► All fluxes present: H_[3], F_[0], F_[4] and ω_[3], F_[2], F_[6] – necessary to satisfy Jacobi/Bianchi – plus O6/D6 identities

Further extensions [*Villadoro, Zwirner, '05; Cámara, Font, Ibañez, '05*] Beyond N = 1 truncation of 4-D N = 4 gauged supergravity

- Identical stabilization with W_{IIA} \propto first line above
- Only H_[3], F_[0], F_[4] (massive IIA) Bianchi/tadpole conditions satisfied with various localized/smeared sources ⊃ O6/D6

Motivations and summary

Emergence of AdS₄ vacua from flux compactifications

Sources and supersymmetric configurations

A concrete example

The emergence of fluxes

Antisymmetric tensors are generated by extended sources

Our aim: characterize the source distributions that create the appropriate fluxes for 4-D vacua with $V_{\rm min} < 0$

Typical sources for $AdS_4 \times M_6$

The required branes (see next chapter) have 2 common spatial directions in the non-compact spacetime and wrap some internal cycles in M_6

- $F_{[n]}$ through $\Sigma_n \leftrightarrow \mathsf{D}(8-n)$ -branes around $\tilde{\Sigma}_{6-n}$
- $H_{[3]}$ through $\Sigma_3 \leftrightarrow \mathsf{NS5}$ -branes around $\tilde{\Sigma}_3$
- $\omega_{[3]} \leftrightarrow \text{Kaluza-Klein monopoles}$

(last items are T-dual)

Supersymmetric backgrounds created by branes

- Setup: intersecting supersymmetric smeared branes
- Method: careful use of the "harmonic superposition rule" (due to the smearing the Hs are not necessarily harmonic)
- Solution: backgrounds satisfying Bianchi identities and form equations with calibrated (i.e. supersymmetric) sources also solve dilaton and Einstein equations [...; Koerber, Tsimpis, '07]
 - obtained by adding an appropriate S_{source} to S_{bulk}
 - e.g. $dF + H \wedge F = -Qj$
- RR tadpole cancellation conditions (integrated Bianchi): extra spacetime filling branes
 - orientifold planes/D-branes
 - $j_{O/D} = H \wedge F$

Motivations and summary

Emergence of AdS₄ vacua from flux compactifications

Sources and supersymmetric configurations

A concrete example

The setup

We want type IIA with $H_{[3]}$, $F_{[0]}$, $F_{[4]}$

 $W_{\rm IIA} = i\tilde{a}_0 S + i\tilde{c}_\ell U_\ell + i\tilde{m}_0 T_1 T_2 T_3 + i\tilde{e}_\ell T_\ell$

We need NS5, D8, D4 (plus O6/D6: $2N_{O6} - N_{D6} = \tilde{a}_0 \tilde{m}_0$)

	ξ^0	$\tilde{\zeta}^1$	$\tilde{\xi}^2$	y	x ¹	x^2	<i>x</i> ³	<i>x</i> ⁴	x ⁵	<i>x</i> ⁶
D4	\otimes	\otimes	\otimes		\otimes	\otimes				
D4′	\otimes	\otimes	\otimes				\otimes	\otimes		
D4″	\otimes	\otimes	\otimes						\otimes	\otimes
NS5	\otimes	\otimes	\otimes		\otimes		\otimes		\otimes	
NS5′	\otimes	\otimes	\otimes		\otimes			\otimes		\otimes
NS5″	\otimes	\otimes	\otimes			\otimes		\otimes	\otimes	
NS5‴	\otimes	\otimes	\otimes			\otimes	\otimes			\otimes
D8	\otimes	\otimes	\otimes		\otimes	\otimes	\otimes	\otimes	\otimes	\otimes

The background fields $H_{[3]}, F_{[0]}, F_{[4]}$ – living inside M_6 – and ϕ : y-dependent

$$e^{2\phi} = \left(\prod_{\alpha=1}^{4} H_{\alpha}^{NS5}\right) \left(\prod_{\ell=1}^{3} H_{\ell}^{D4}\right)^{-\frac{1}{2}} \left(H^{D8}\right)^{-\frac{5}{2}}$$
$$H_{x^{2}x^{4}x^{6}} = -\partial_{y}H_{1}^{NS5} \left(H^{D8}\right)^{-1} \quad H_{x^{2}x^{3}x^{5}} = -\partial_{y}H_{2}^{NS5} \left(H^{D8}\right)^{-1}$$
$$H_{x^{1}x^{3}x^{6}} = -\partial_{y}H_{3}^{NS5} \left(H^{D8}\right)^{-1} \quad H_{x^{1}x^{4}x^{5}} = -\partial_{y}H_{4}^{NS5} \left(H^{D8}\right)^{-1}$$
$$F_{x^{3}x^{4}x^{5}x^{6}} = \partial_{y}H_{1}^{D4} \quad F_{x^{1}x^{2}x^{5}x^{6}} = \partial_{y}H_{2}^{D4}$$
$$F_{x^{1}x^{2}x^{3}x^{4}} = \partial_{y}H_{3}^{D4} \quad F = -\partial_{y}H^{D8} \left(\prod_{\alpha=1}^{4} H_{\alpha}^{NS5}\right)^{-1}$$

$ds_{10}^2(y)$

$$\begin{split} \mathrm{d}s_{10}^{2} &= \left\{ H^{\mathrm{D8}} \left(\prod_{\ell=1}^{3} H_{\ell}^{\mathrm{D4}} \right) \right\}^{-\frac{1}{2}} \eta_{\mu\nu} \mathrm{d}\xi^{\mu} \mathrm{d}\xi^{\nu} \\ &+ \left(\prod_{\alpha=1}^{4} H_{\alpha}^{\mathrm{NS5}} \right) \left\{ H^{\mathrm{D8}} \left(\prod_{\ell=1}^{3} H_{\ell}^{\mathrm{D4}} \right) \right\}^{\frac{1}{2}} \mathrm{d}y^{2} \\ &+ \sqrt{\frac{H_{2}^{\mathrm{D4}} H_{3}^{\mathrm{D4}}}{H_{1}^{\mathrm{D4}} H^{\mathrm{D8}}}} \left\{ H_{3}^{\mathrm{NS5}} H_{4}^{\mathrm{NS5}} (\mathrm{d}x^{1})^{2} + H_{1}^{\mathrm{NS5}} H_{2}^{\mathrm{NS5}} (\mathrm{d}x^{2})^{2} \right\} \\ &+ \sqrt{\frac{H_{1}^{\mathrm{D4}} H_{3}^{\mathrm{D4}}}{H_{2}^{\mathrm{D4}} H^{\mathrm{D8}}}} \left\{ H_{2}^{\mathrm{NS5}} H_{3}^{\mathrm{NS5}} (\mathrm{d}x^{3})^{2} + H_{1}^{\mathrm{NS5}} H_{4}^{\mathrm{NS5}} (\mathrm{d}x^{4})^{2} \right\} \\ &+ \sqrt{\frac{H_{1}^{\mathrm{D4}} H_{2}^{\mathrm{D4}}}{H_{3}^{\mathrm{D4}} H^{\mathrm{D8}}}} \left\{ H_{2}^{\mathrm{NS5}} H_{4}^{\mathrm{NS5}} (\mathrm{d}x^{5})^{2} + H_{1}^{\mathrm{NS5}} H_{3}^{\mathrm{NS5}} (\mathrm{d}x^{6})^{2} \right\} \end{split}$$

Equations, conditions and remarks

- Two supercharges survive the calibration constraints
- $H^{\sharp}_{\sharp}(y)$ are *not* harmonic functions: the branes are *smeared in* y

Eqs. for
$$H^{lpha}_{[3]}$$
, $F_{[0]}$, $F^{\ell}_{[4]} \begin{cases} \partial_y F = j(y) \\ Q = \int dy j \end{cases}$

- Freedom: family of solutions [j(y)]
- Requirements for $AdS_4 \times T^6 \leftrightarrow \mathbb{R}^{1,3} \times T^6$
 - $\blacktriangleright \text{ dilaton } \underset{y \to 0}{\longrightarrow} \text{ constant (avoid runaway, set leading order)}$
 - finiteness of total charges Q_{NS5}^{α} , Q_{D8} , Q_{D4}^{ℓ}
 - $H^{\sharp}_{\sharp}(y)$ constant at large y (asymptotic flatness)

Tadpole cancellation: 4 stacks of spacetime filling O6/D6s Density: $j^{\alpha}_{O6/D6} = H^{\alpha}_{[3]}F_{[0]}$

A continuous solution for H^{\sharp}_{\sharp} with a harmonic piece (linear in y) and with continuous $\partial_{y}H^{\sharp}_{\sharp}$ vanishing at $y \ge y_{0}$

$$\begin{aligned} H_{\alpha}^{\text{NS}} &= \begin{cases} c_{\alpha}^{\text{NS}} y \left\{ 1 + \frac{3}{2} \left(\frac{y}{y_0} \right)^{-\frac{5}{3}} \right\} & y < y_0 \\ \frac{5}{2} c_{\alpha}^{\text{NS}} y_0, & y \ge y_0 \end{cases} \\ H^{\text{D8}} &= \begin{cases} c^{\text{D8}} y \left\{ 1 + \frac{3}{5} \left(\frac{y}{y_0} \right)^{-\frac{8}{3}} \right\} & y < y_0 \\ \frac{8}{5} c^{\text{D8}} y_0 & y \ge y_0 \end{cases} \\ H_{\ell}^{\text{D4}} &= \begin{cases} c_{\ell}^{\text{D4}} y \left\{ 1 - \frac{1}{2} \left(\frac{y}{y_0} \right) \right\} & y < y_0 \\ \frac{1}{2} c_{\ell}^{\text{D4}} y_0 & y \ge y_0 \end{cases} \end{aligned}$$

Near-horizon properties

• NHG (
$$y \rightarrow 0$$
): AdS₄ × T^6

- constant dilaton
- ► constant $H^{\alpha}_{[3]}$, $F_{[0]}$, $F^{\ell}_{[4]}$ equal to the charges Q^{α}_{NS5} , Q_{D8} , Q^{ℓ}_{D4}
- constant $Q_{O6/D6}^{\alpha} = V_{\Sigma_3^{\alpha}} Q_{NS5}^{\alpha} Q_{D8}$ (tadpole condition)
- supersymmetry is enhanced to 4 real supercharges (N = 1)
- ► In the NHG: the constant metric of the T⁶ plus the dilaton allow to compute the moduli T_i, U_i of the torus and S

Back to the superpotential

The NH fields $H^{\alpha}_{[3]}$, $F_{[0]}$, $F^{\ell}_{[4]}$ can be identified with the flux (or gauging) parameters of the superpotential \tilde{a}_0 , c_{ℓ} , \tilde{m}_0 , \tilde{e}_{ℓ}

- the above S, T_i , U_i ensure $DW_{IIA} = 0$
- ▶ the tadpole cancellation translates into $2N_{O6} N_{D6} = \tilde{a}_0 \tilde{m}_0$

Motivations and summary

Emergence of AdS₄ vacua from flux compactifications

Sources and supersymmetric configurations

A concrete example

The outcome

Last slide

Summary: AdS₄ supergravity vacua with "all" stabilized moduli

- Exhibited using pure 4-D gauged-supergravity techniques
- Reproduced as the NH data of 10-D brane distributions

The branes are visible in spacetime as membranes creating a thick wall – due to the smearing in a non-compact direction

- These features are common to numerous examples in IIA or IIB
- Introduction of KK monopoles is often necessary
- Appearance of nilM₆ for IIB

Further investigation: dynamics of the branes / of the wall

- Microscopic entropy of the AdS₄ vacua
- Generalized attractor mechanism
- Contact with AdS₄ bubble nucleation and transitions

Appendix

The orientifold planes in the NS5/D8/D4 system

	ξ^0	$\tilde{\zeta}^1$	ξ^2	У	<i>x</i> ¹	<i>x</i> ²	x ³	<i>x</i> ⁴	x ⁵	<i>x</i> ⁶
O6	\otimes	\otimes	\otimes	\otimes	\otimes		\otimes		\otimes	
O6′	\otimes	\otimes	\otimes	\otimes	\otimes			\otimes		\otimes
O6″	\otimes	\otimes	\otimes	\otimes		\otimes		\otimes	\otimes	
O6‴	\otimes	\otimes	\otimes	\otimes		\otimes	\otimes			\otimes

Tadpole density

$$j_{\text{O6/D6}}^{\alpha} = H_{[3]}^{\alpha} F_{[0]} = \frac{\partial_y H^{\text{D8}} \partial_y H_{\alpha}^{\text{NS5}}}{H^{\text{D8}} \prod_{\beta=1}^4 H_{\beta}^{\text{NS5}}}$$