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Why anti-de Sitter spaces?

Natural ingredients of string compactifications

I Preserve (all or part of) the supersymmetries
I Are supported by antisymmetric-tensor vev’s
I Are accompanied by (partial) moduli stabilization
I Appear as NHGs of brane distributions

Provide a tool for probing various facets of string vacua and dynamics

I AdS/CFT (AdS5 × S5 and D3-branes)
I Microscopic black-hole entropy and attractor mechanism,

originally in N = 2 setups with AdS2 × S2 NHGs
I . . .



Here: AdS4 backgrounds

We focus on type IIA/B theories and search for negative-energy 4-D
vacua with unbroken supersymmetry and stabilized main moduli

I Provide AdS4 vacua using 4-D supergravity tools
I switch on the appropriate perturbative superpotential
I translate the solution in the language of fluxes

I Identify the corresponding sources in the full 10-D space:
D2/D4/D6/D8/NS5/KK or D3/D5/D7/NS5/KK

I not localized (as for AdS2) but smeared in transverse space
I not point-like in 3-D space but domain walls interpolating

between AdS4 and flat spacetime

Make contact among the two items: the NHG of the brane
background is AdS4 × T 6 and all background fields faithfully
reproduce the (super)potential and the moduli at its minimum
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Scalar potential, superpotential and fluxes

Minima in N = 1 supergravities with W (φ) – no D-terms

I Scalar potential: V = eK
(
|DiW |2 − 3|W |2

)
I Auxiliary fields: Fi = eK/2DiW = eK/2

(
∂φiW +W ∂φiK

)
I Supersymmetric extrema with V (φmin) < 0

I Fi (φmin) = 0 ∀i
I W (φmin) 6= 0

Potential flat directions



Superpotential: main-moduli perturbative dependence and fluxes

I F[n], H[3] and ω[3] vev’s on internal cycles create fluxes and
generate W (S ,T ,U) [rich literature]

I Typical contributions – assuming toroidal prepotential:

I WIIA =

H[3]︷ ︸︸ ︷
i ã0S + i c̃`U`

ω[3]︷ ︸︸ ︷
−ãiSTi − d̃i`TiU`

+i m̃0T1T2T3︸ ︷︷ ︸
F[0]

−m̃iTjTk︸ ︷︷ ︸
F[2]

+i ẽ`T`︸ ︷︷ ︸
F[4]

+ẽ0︸︷︷︸
F[6]

I WIIB =

H[3]︷ ︸︸ ︷
iS(a0 + ia`U` + ib0U1U2U3 + biUjUk )

ω[3]︷ ︸︸ ︷
−ic`T`

+e0 + ie`U` + im0U1U2U3 +miUjUk︸ ︷︷ ︸
F[3]

(not exhaustive)



Important remarks

I IIA/B mirror symmetry (U ↔ T ) relates the various terms
I Stabilization of all moduli requires to go beyond CY

I NS or R-flux back reaction in IIA
I Kähler-moduli dependence in IIB requires geometric fluxes

(ω[3]) whereas WIIB - CY =
∫

Ω ∧
(
F[3] + SH[3]

)
⇒ no T s

I The flux numbers are not arbitrary
I they satisfy Jacobi identities (gauged-supergravity language) or

Bianchi identities (internal-flux language)
I they require branes (wrapping cycles) and orientifold planes

(further breaking N = 2→ N = 1) to cancel the RR tadpoles



Supersymmetric AdS4 vacua in IIA
First examples [Behrndt, Cvetič, ’04; Derendinger, Kounnas, Petropoulos,
Zwirner, ’04; Lüst, Tsimpis, ’04]

Z2 ×Z2 plane-symmetric T 6 reduction with a Z2 orientifold in
truncated 4-D N = 4 gauged supergravity with
WIIA ∝ i

[
2S + 2(U1 + U2 + U3) + 3T1T2T3 − 3(T1 + T2 + T3)

]
+2S(T1 + T2 + T3) + 6(T1U1 + T2U2 + T3U3)
−(T1T2 + T2T3 + T3T1)− 15

I Minimum at S = Ti = Ui =
√

5/3 with Vmin < 0
I All fluxes present: H[3],F[0],F[4] and ω[3],F[2],F[6] – necessary

to satisfy Jacobi/Bianchi – plus O6/D6 identities

Further extensions [Villadoro, Zwirner, ’05; Cámara, Font, Ibañez, ’05]
Beyond N = 1 truncation of 4-D N = 4 gauged supergravity

I Identical stabilization with WIIA ∝ first line above
I Only H[3],F[0],F[4] (massive IIA) – Bianchi/tadpole conditions

satisfied with various localized/smeared sources ⊃ O6/D6
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The emergence of fluxes

Antisymmetric tensors are generated by extended sources
Our aim: characterize the source distributions that create the
appropriate fluxes for 4-D vacua with Vmin < 0

Typical sources for AdS4 ×M6

The required branes (see next chapter) have 2 common spatial
directions in the non-compact spacetime and wrap some internal
cycles in M6

I F[n] through Σn ↔ D(8− n)-branes around Σ̃6−n

I H[3] through Σ3 ↔ NS5-branes around Σ̃3

I ω[3] ↔ Kaluza–Klein monopoles
(last items are T-dual)



Supersymmetric backgrounds created by branes

I Setup: intersecting supersymmetric smeared branes
I Method: careful use of the “harmonic superposition rule” (due

to the smearing the Hs are not necessarily harmonic)
I Solution: backgrounds satisfying Bianchi identities and form

equations with calibrated (i.e. supersymmetric) sources also
solve dilaton and Einstein equations [. . . ; Koerber, Tsimpis, ’07]

I obtained by adding an appropriate Ssource to Sbulk
I e.g. dF +H ∧ F = −Q j

I RR tadpole cancellation conditions (integrated Bianchi): extra
spacetime filling branes

I orientifold planes/D-branes
I jO/D = H ∧ F
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The setup

We want type IIA with H[3], F[0], F[4]

WIIA = i ã0S + i c̃`U` + i m̃0T1T2T3 + i ẽ`T`

We need NS5, D8, D4 (plus O6/D6: 2NO6 −ND6 = ã0m̃0)

ξ0 ξ1 ξ2 y x1 x2 x3 x4 x5 x6

D4
⊗ ⊗ ⊗ ⊗ ⊗

D4′
⊗ ⊗ ⊗ ⊗ ⊗

D4′′
⊗ ⊗ ⊗ ⊗ ⊗

NS5
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

NS5′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

NS5′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

NS5′′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗

D8
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗



The background fields

H[3], F[0], F[4] – living inside M6 – and φ: y -dependent

e2φ =

(
4

∏
α=1

HNS5
α

)(
3

∏
`=1

HD4
`

)− 1
2 (

HD8
)− 5

2

Hx2x4x6 = −∂yHNS5
1

(
HD8

)−1
Hx2x3x5 = −∂yHNS5

2

(
HD8

)−1

Hx1x3x6 = −∂yHNS5
3

(
HD8

)−1
Hx1x4x5 = −∂yHNS5

4

(
HD8

)−1

Fx3x4x5x6 = ∂yHD4
1 Fx1x2x5x6 = ∂yHD4

2

Fx1x2x3x4 = ∂yHD4
3 F = −∂yHD8

(
4

∏
α=1

HNS5
α

)−1



ds2
10(y)

ds2
10 =

{
HD8

(
3

∏
`=1

HD4
`

)}− 1
2

ηµνdξµdξν

+

(
4

∏
α=1

HNS5
α

){
HD8

(
3

∏
`=1

HD4
`

)} 1
2

dy2

+

√
HD4

2 HD4
3

HD4
1 HD8

{
HNS5

3 HNS5
4 (dx1)2 +HNS5

1 HNS5
2 (dx2)2

}
+

√
HD4

1 HD4
3

HD4
2 HD8

{
HNS5

2 HNS5
3 (dx3)2 +HNS5

1 HNS5
4 (dx4)2

}
+

√
HD4

1 HD4
2

HD4
3 HD8

{
HNS5

2 HNS5
4 (dx5)2 +HNS5

1 HNS5
3 (dx6)2

}



Equations, conditions and remarks

I Two supercharges survive the calibration constraints
I H ]

] (y) are not harmonic functions: the branes are smeared in y

Eqs. for Hα
[3],F[0],F

`
[4]

{
∂yF = j(y)
Q =

∫
dy j

I Freedom: family of solutions [j(y)]
I Requirements for AdS4 × T 6 ↔ R1,3 × T 6

I dilaton −→
y→0

constant (avoid runaway, set leading order)

I finiteness of total charges Qα
NS5, QD8, Q`

D4
I H]

] (y) constant at large y (asymptotic flatness)



Tadpole cancellation: 4 stacks of spacetime filling O6/D6s
Density: jα

O6/D6 = Hα
[3]F[0]

A continuous solution for H ]
] with a harmonic piece (linear in y ) and

with continuous ∂yH
]
] vanishing at y ≥ y0

HNS
α =

 cNS
α y

{
1+ 3

2

(
y
y0

)− 5
3
}

y < y0

5
2c

NS
α y0, y ≥ y0

HD8 =

 cD8y
{
1+ 3

5

(
y
y0

)− 8
3
}

y < y0

8
5c

D8y0 y ≥ y0

HD4
` =

{
cD4
` y

{
1− 1

2

(
y
y0

)}
y < y0

1
2c

D4
` y0 y ≥ y0



Near-horizon properties

I NHG (y → 0): AdS4 × T 6

I constant dilaton
I constant Hα

[3], F[0], F
`
[4] equal to the charges Qα

NS5, QD8, Q`
D4

I constant Qα
O6/D6 = VΣα

3
Qα

NS5QD8 (tadpole condition)
I supersymmetry is enhanced to 4 real supercharges (N = 1)

I In the NHG: the constant metric of the T 6 plus the dilaton
allow to compute the moduli Ti ,Ui of the torus and S

Back to the superpotential
The NH fields Hα

[3], F[0], F `
[4] can be identified with the flux (or

gauging) parameters of the superpotential ã0, c`, m̃0, ẽ`

I the above S ,Ti ,Ui ensure DWIIA = 0
I the tadpole cancellation translates into 2NO6 −ND6 = ã0m̃0
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The outcome Last slide
Summary: AdS4 supergravity vacua with “all” stabilized moduli

I Exhibited using pure 4-D gauged-supergravity techniques
I Reproduced as the NH data of 10-D brane distributions

The branes are visible in spacetime as membranes creating a thick
wall – due to the smearing in a non-compact direction

I These features are common to numerous examples in IIA or IIB
I Introduction of KK monopoles is often necessary
I Appearance of nilM6 for IIB

Further investigation: dynamics of the branes / of the wall

I Microscopic entropy of the AdS4 vacua
I Generalized attractor mechanism
I Contact with AdS4 bubble nucleation and transitions



Appendix

The orientifold planes in the NS5/D8/D4 system

ξ0 ξ1 ξ2 y x1 x2 x3 x4 x5 x6

O6
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

O6′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

O6′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

O6′′′
⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

Tadpole density

jα
O6/D6 = Hα

[3]F[0] =
∂yHD8∂yHNS5

α

HD8 ∏4
β=1 HNS5

β
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