Standard Model Statistics for Intersecting Branes on Z6'

JHEP 0709 (2007) 128, arXiv:0708.2285 [hep-th] \& work in progress by Florian Gmeiner \& G.H.

Gabriele Honecker
Gabriele.Honecker@cern.ch

CERN

Standard Model Building Approaches

- Heterotic $E_{8} \times E_{8}$ string
see talks by Gray, Lukas, Manno, Ratz, Trapletti, Zanzi
- Gepner models see talk by Tsulaia
- Free fermionic constructions see talks by Kounnas, Schellekens
- Type II with D-branes at singularities see talk by Verlinde (?)

F-theory GUTs with branes at singularities

- Magnetised D-branes $\stackrel{\text { T-dual }}{\Leftrightarrow}$ Intersecting D-branes
see talks by Antoniadis, Bianchi, Haack, Hebecker, Plauschinn, Quevedo, Schmidt-Sommerfeld —Bailin, Cvetic, Gmeiner, Timirgaziu, Weigand
... and lots of people whose name is not on this transparency
Geometry of orbifolds well understood $\Leftrightarrow C Y_{3}$ spaces?
CFT methods provide powerful computational tools

Intersecting D6-Branes

Orientifold of IIA string theory with anti-holomorphic involution \mathcal{R} on the Calabi-Yau 3 -fold

- Invariant 3-cycles $\Pi_{O 6}$ are wrapped by 06 -planes
- D6 a_{a} branes wrap 3-cycles Π_{a}
- \mathcal{R} images $\mathrm{D}_{a}{ }^{\prime}$ of $\mathrm{D} 6_{a}$ branes wrap Π_{a}^{\prime}

Topological constraints:
\Rightarrow RR tadpole cancellation: $\sum_{a} N_{a}\left(\Pi_{a}+\Pi_{a}^{\prime}\right)=4 \Pi_{O 6}$
\Rightarrow K-theory: $\sum_{a} N_{a} \Pi_{a} \circ \Pi_{S p(2)}=0 \bmod 2$

Massless Spectrum

Massless spectrum consists of

- Closed strings: $\mathcal{N}=1$ SUGRA, axion-dilaton mult., $h_{1,1}^{-}$ complexified Kähler \& $h_{2,1}$ complex structure moduli mults., $h_{1,1}^{+}$vector mults. ($h_{1,1}^{ \pm}$: (anti) invariant cycles under R)
- Open strings: $\prod_{a} U\left(N_{a}\right)$ gauge groups, sometimes also $S O(2 N)$ or $S p(2 N) \quad \&$ charged matter
The chiral spectrum is computed from intersection numbers $\Pi_{a} \circ \Pi_{b}$ of 3-cycles

representation	net chirality
$\left(\mathbf{A n t i}_{a}\right)$	$\frac{1}{2}\left(\Pi_{a} \circ \Pi_{a}^{\prime}+\Pi_{a} \circ \Pi_{O 6}\right)$
$\left(\mathbf{S y m}_{a}\right)$	$\frac{1}{2}\left(\Pi_{a} \circ \Pi_{a}^{\prime}-\Pi_{a} \circ \Pi_{O 6}\right)$
$\left(\mathbf{N}_{a}, \overline{\mathbf{N}}_{b}\right)$	$\Pi_{a} \circ \Pi_{b}$
$\left(\mathbf{N}_{a}, \mathbf{N}_{b}\right)$	$\Pi_{a} \circ \Pi_{b}^{\prime}$

Fractional Cycles

Fractional cycles on $T^{6} / \mathbb{Z}_{2 N}$ stuck at \mathbb{Z}_{2} fixed points on T^{4} \Rightarrow continuous displacement \& Wilson line on T^{2} encoded in chiral adjoint

+ additional adjoints from orbifold image cycles

$$
\Pi^{\text {frac }}=\frac{1}{2}\left(\Pi^{\text {torus }}+\Pi^{\text {ex }}\right) \quad \text { or } \quad \Pi^{\text {rigid }}=\frac{1}{4}\left(\Pi^{\text {torus }}+\sum_{i=1}^{3} \Pi^{\mathrm{ex},(i)}\right)
$$

Rigid cycles possible on $T^{6} / \mathbb{Z}_{2 N} \times \mathbb{Z}_{2 M}$
\Rightarrow only discrete Wilson lines, no adjoint matter
\Rightarrow D-instantons see talks by Bianchi, Cvetic, Schmidt-Sommerfeld, Weigand

Full spectrum on orbifolds

Florian Gmeiner, G.H. 0708.2285
Rewrite intersection number on T^{6} / \mathbb{Z}_{M} in terms of sectors $\Pi_{a}^{\text {torus }} \circ \Pi_{b}^{\text {torus }}=-\sum_{k} I_{a\left(\theta^{k} b\right)}\left(I_{a b}=\prod_{i=1}^{3}\left(n_{a}^{i} m_{b}^{i}-m_{a}^{i} n_{b}^{i}\right)\right)$, for $M=2 N$ include \mathbb{Z}_{2} invariant intersections
$\Pi_{a}^{\mathrm{ex}} \circ \Pi_{b}^{\mathrm{ex}}=-\sum_{k} I_{a\left(\theta^{k} b\right)}^{\mathbb{Z}_{2}}$ with relative signs (\mathbb{Z}_{2} e.v. + Wilson lines)
Chiral + non-chiral massless matter on $T^{6} /\left(\mathbb{Z}_{2 N} \times \Omega \mathcal{R}\right.$

with some modifications for vanishing angles, e.g. $I_{a\left(\theta^{k} b\right)}^{0} \rightarrow 2$
This can be generalised from fractional to rigid cycles

SUSY and Anomalies

Supersymmetry \& stability are not topological, but moduli dependent: D6-branes have to wrap special Lagrangian 3-cycles - not classified for generic $C Y_{3}$
On $\left(T^{2}\right)^{3}: \sum_{i=1}^{3} \phi_{i}=0+\mathbb{Z}_{2}$ fixed points hit by torus cycle

Green Schwarz mechanism via Chern-Simons couplings of RR fields, $\int_{\mathbb{R}^{1,3} \times \Pi_{a}} C_{5} \operatorname{tr} F_{a}(\Rightarrow U(1)$ masses $)$ and $\int_{\mathbb{R}^{1,3} \times \Pi_{a}} C_{3} \operatorname{tr}\left(F_{a} \wedge F_{a}\right)$

$C_{3}=b_{k}^{(0)} \omega_{k}+$ complex structures form complex scalars \Rightarrow SUSY: \# massive U(1)s = \# frozen complex structures

The \mathbb{Z}_{6}^{\prime} orbifold

Set-up: Bailin, Love '06,

RR.tcc.Solutions \& Statistics: F. Gmeiner, G.H. 0708.2285 + work in progress

- Orbifold action $\theta: z^{i} \rightarrow e^{2 \pi i v_{i}} z^{i}$ with $\vec{v}=1 / 6 \cdot(1,2,-3)$
- Anti-holomorphic involution \mathcal{R} admits two kinds of shapes of tori

- Kähler moduli $\left(h_{1,1}\right): 3$ untwisted (volume of each T^{2}), 12 at θ-fixed points, 12 on θ^{2}-fixed tori, 8 on θ^{3}-fixed tori
- Complex structures ($h_{2,1}$): 1 untwisted (shape of T_{3}), 6 from θ^{2} fixed points on $T_{1} \times T_{2}$ times 1-cycle on $T_{3}, 4$ at θ^{3}-fixed points on $T_{1} \times T_{3}$ times 1-cycle on T_{2}

$T^{6} / \mathbb{Z}_{6}^{\prime}$ - 3-cycles

\# 3-cycles $\equiv b_{3}=2+2 h_{2,1}=24$
$\Rightarrow 4$ untwisted 3 -cycles ρ_{i} plus $4+43$-cycles from \mathbb{Z}_{2} sectors $\delta_{j}, \tilde{\delta}_{j}$ form 12 dimensional sublattice

$$
\begin{aligned}
& \rho_{1}=\sum_{k=0}^{5} \theta^{k}\left(\pi_{135}\right), \rho_{2}=\sum_{k=0}^{5} \theta^{k}\left(\pi_{235}\right), \rho_{3}=\sum_{k=0}^{5} \theta^{k}\left(\pi_{136}\right), \rho_{4}=\sum_{k=0}^{5} \theta^{k}\left(\pi_{236}\right) \\
& \quad \Rightarrow \Pi^{\text {torus }}=\sum_{k=0}^{5} \theta^{k}\left[\otimes_{i=1}^{3}\left(n_{i} \pi_{2 i-1}+m_{i} \pi_{2 i}\right)\right]= \\
& P \rho_{1}+Q \rho_{2}+U \rho_{3}+V \rho_{4} \text { with } P=X n_{3}, Q=Y n_{3}, U=X m_{3}, Y=Y m_{3} \\
& \text { and } X=n_{1} n_{2}-m_{1} m_{2}, Y=n_{1} m_{2}+m_{1} n_{2}+m_{1} m_{2}
\end{aligned}
$$

$$
\delta_{j}=\sum_{k=0}^{2} \theta^{k}\left(e_{4 j} \otimes \pi_{3}\right), \quad \tilde{\delta}_{j}=\sum_{k=0}^{2} \theta^{k}\left(e_{4 j} \otimes \pi_{4}\right), \quad j=1 \ldots 4
$$

$$
\Rightarrow \Pi^{\mathrm{ex}}=\sum_{j=1}^{4}\left(d_{j} \delta_{j}+e_{i} \tilde{\delta}_{j}\right) \quad \text { with e.g. } d_{j}=-n_{2}-m_{2}, e_{j}=n_{2}
$$

$T^{6} / \mathbb{Z}_{6}^{\prime}$ - $\mathbf{R R}$ tadpoles

- Evoid double counting of models by imposing $n_{1}, n_{3}, m_{3}+b n_{3} \geq 0$ and $\left(n_{1}, m_{1}\right)=($ odd, odd $)$
- Fractional cycles have separate RR tadpole \& SUSY conditions for torus + exceptional cycles:
bulk RR tadpole cancellation depends on orientation for ABa:

$$
\sum_{a} N_{a}\left(P_{a}+Q_{a}\right)=8, \quad \sum_{a} N_{a}\left(U_{a}-V_{a}\right)=24
$$

Each SUSY brane contributes positively (or zero) to each sum \Rightarrow naive maximal rank 32
$R R$ tadpoles from \mathbb{Z}_{2} : no O6-plane contribution
$\sum_{a} N_{a}\left(d_{i}^{a}-e_{i}^{a}\right)=0$ for the ABa orientation

$T^{6} / \mathbb{Z}_{6}^{\prime}$: K-theory

- K-theory constraint: $\Omega \mathcal{R}$-invariant branes are classified, but not clear which give $S O(2)$ or $S p(2)$ - take a (maybe too strong) constraint with all as probes, however: net-intersection with model always even, for example on ABa: $\Pi_{\text {probe }}=\frac{1}{2}\left(\rho_{1}+\rho_{2}\right) \pm \frac{3}{2}\left(\delta_{1}-\tilde{\delta}_{1}\right) \pm \frac{3}{2}\left(\delta_{3}-\tilde{\delta}_{3}\right)$ leads to the constraint

$$
\begin{array}{r}
\frac{3}{2} \sum_{a} N_{a}\left(U_{a}+V_{a} \pm\left(d_{1}^{a}+e_{1}^{a}\right) \pm\left(d_{2}^{a}+e_{2}^{a}\right)\right) \\
\stackrel{\text { RR-tad. }}{=} 3 \sum_{a} N_{a}\left(V_{a}+d_{1}^{a}+d_{2}^{a}\right)+36 \stackrel{!}{=} 0 \bmod 2
\end{array}
$$

and subsequent combinatorics of $\left\{V_{a}, d_{i}^{a}\right\}$ odd or even depending on (n_{i}, m_{i}) odd/even show that no new constraint arises - independent of bulk SUSY

$T^{6} / \mathbb{Z}_{6}^{\prime}:$ SUSY

- SUSY for branes on ABa: toroidal per brane R_{1}, R_{2} : radii on T_{3}

$$
\frac{R_{1}}{\sqrt{3} R_{2}}(P-Q)-(U+V)=0 \quad(P+Q)-\frac{R_{2}}{\sqrt{3} R_{1}}(V-U)>0
$$

SUSY of \mathbb{Z}_{2} sector: only exceptional cycles through which the toroidal cycle passes occur. There are three signs: \mathbb{Z}_{2} eigenvalue \& two Wilson lines on $T_{1} \times T_{3}$

$$
\Pi^{\mathrm{ex}}=(-1)^{\tau_{0}} \times
$$

$$
\times\left(e_{11}+(-1)^{\tau_{1}} e_{61}+(-1)^{\tau_{3}} e_{12}+(-1)^{\tau_{1}+\tau_{3}} e_{62}\right) \otimes\left(n_{2} \pi_{3}+m_{2} \pi_{4}\right)
$$

$$
+ \text { two } \theta \text { - images }
$$

Results: SUSY \& RR tadpoles

Intersection pattern of 12 dim. sublattice: $I^{\text {bulk }}=\left(\begin{array}{cc}0 & 2 A \\ 2 A & 0\end{array}\right)$ and $I^{z_{2}}=\operatorname{diag}(2 \varepsilon, \ldots, 2 \varepsilon)$ with $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$ and $\varepsilon=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ rich enough to allow for 3-generation models Large number of SUSY solutions $\mathcal{O}\left(10^{4}\right)$ for the toroidal RR tadpoles depends on geometry: $\mathrm{ABa} \simeq \mathrm{BBa}$ preferred

Taking into account the \mathbb{Z}_{2} part leads to $\mathcal{O}\left(10^{23}\right)$ SUSY RR tadpole solutions, with 3×10^{22} on ABa and 10^{23} on BBa

Results: Probabilities

Scaling behaviour of solutions of toroidal (left) and complete (right) solutions: The set of SUSY solutions is complete! (a) total rank

(b) Probability \mathcal{N} to find a single gauge factor of rank N

For toroidal/fractional part $\hat{N}(N) \approx \sum_{k=1}^{T+1-N} \frac{T^{4}}{N^{2}}\left(n_{e}\right)^{k}=$ $=\frac{T^{4}}{N^{2}} f_{N, T}$ with $f_{N, T}=(T+1-N)$ or $\left(n_{e}\right)^{T+1-N}$ with the effective O6-plane charge T in RR tadpoles fits with Douglas, Liaylporool, ${ }^{2} 9$ March 2008-p.14/27

Standard Models I

Ansatz: $U(3)_{a} \times U(2)_{b} \times U(1)_{c} \times U(1)_{d}$ with three different choices of hyper charge (two with u_{R} in $\mathbf{A n t i} \mathbf{i}_{a}$), or $U(3)_{a} \times S p(2)_{b} \times U(1)_{c} \times U(1)_{d}$

On $T^{6} / \mathbb{Z}_{6}^{\prime}$: only one type with n SUSY generations and RR tadpoles canceled, for $n=3$ only on ABa and BBa

$U(3)_{a} \times U(2)_{b} \times U(1)_{c} \times U(1)_{d}$	
particle	n
Q_{L}	$\chi^{a b}+\chi^{a b^{\prime}}$
u_{R}	$\chi^{a^{\prime} c}+\chi^{a^{\prime} d}$
d_{R}	$\chi^{a^{c^{\prime}}}+\chi^{a^{\prime} d^{\prime}}+\chi^{\mathbf{A n t i}_{a}}$
L	$\chi^{b c}+\chi^{b d}+\chi^{b^{b^{c} c}}+\chi^{b^{\prime} d}$
e_{R}	$\chi^{c d^{\prime}}+\chi^{\mathbf{S y m}_{c}}+\chi^{\mathbf{S y m}_{d}}$
$Q_{Y}=\frac{1}{6} Q_{a}+\frac{1}{2} Q_{c}+\frac{1}{2} Q_{d} d_{\text {Liverp }}$	

Standard Models II

$S U(3) \times S U(2) \times U(1)_{Y}: 3$ generation models without chiral exotics possible: $\mathcal{O}\left(10^{15}\right)$ models with massless hyper charge ($\mathcal{O}\left(10^{16}\right)$ with massive $\left.U(1)_{Y}\right)$

Mean number of chiral exotics is computed from
v : visible sector - h : hidden

$$
\zeta \equiv \sum_{v, h}\left|\chi^{v h}-\chi^{v^{\prime} h}\right|
$$

\Rightarrow there can still be an excess of Higgs candidates

Complex structures for SM

Complex structure values ϱ on ABa for n generations:

n	ϱ	\#models	n	ϱ	\#models	n	ϱ	\#models
1	$1 / 2$	$8.7 \cdot 10^{18}$	2	$1 / 5$	$2.5 \cdot 10^{11}$	3	$1 / 2$	$9.7 \cdot 10^{9}$
	$5 / 2$	$3.4 \cdot 10^{13}$					$1 / 4$	$9.6 \cdot 10^{6}$
	$7 / 4$	$2.7 \cdot 10^{6}$					$1 / 6$	$1.2 \cdot 10^{14}$
							$3 / 2$	$4.9 \cdot 10^{14}$
							$9 / 4$	$4.9 \cdot 10^{7}$

On BBa: frequencies by $\mathcal{O}(10)$ larger with $\varrho \rightarrow 3 /(4 \varrho)$

Bailin \& Love's possible solution with $\left(\chi^{a b}, \chi^{a b^{\prime}}\right)=(\underline{(2,1)}): 1 / 4$ on ABa (3 on $\mathbf{B B a}$) - the one with the smallest fequency

SUSY SM Example

Example with SM sector with complex structure $\varrho=1 / 2$ and $S U(3) \times S U(2) \times U(1)_{Y\left(\times U(1)_{\text {massless }}^{2} \times U(1)_{\text {massive }}^{2}\right)\left(\chi^{a b}, \chi^{a b^{\prime}}\right)=(0,3): ~}^{\text {. }}$

- Chiral spectrum contains abundance of Higgs candidates

$$
\begin{aligned}
3 \times & {\left[(\mathbf{3}, \mathbf{2})_{1 / 6}+(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}+(\overline{\mathbf{3}}, \mathbf{1})_{-2 / 3}+5 \times(\mathbf{1}, \mathbf{2})_{-1 / 2}\right.} \\
& \left.+4 \times(\mathbf{1}, \mathbf{2})_{1 / 2}+(\mathbf{1}, \mathbf{1})_{1}+(\mathbf{1}, \mathbf{1})_{0}\right]
\end{aligned}
$$

- Adjoints: $2 \times(\mathbf{8}, \mathbf{1})_{0}+10 \times(\mathbf{1}, \mathbf{3})_{0}+36 \times(\mathbf{1}, \mathbf{1})_{0}$
- Non-chiral matter:

$$
\begin{aligned}
& {\left[(\mathbf{3}, \mathbf{2})_{1 / 6}+6 \times(\mathbf{3}, \mathbf{1})_{-1 / 3}+3 \times(\mathbf{3}, \mathbf{1})_{2 / 3}+4 \times(\mathbf{1}, \mathbf{2})_{-1 / 2}\right.} \\
& +8 \times(\mathbf{1}, \mathbf{2})_{0}+4 \times\left(\mathbf{1}, \mathbf{1}_{2}\right)_{0}+6 \times\left(\mathbf{1}, \mathbf{3}_{2}\right)_{0}+4 \times(\mathbf{1}, \mathbf{1})_{0} \\
& \left.+6 \times(\mathbf{1}, \mathbf{1})_{1 / 2}+4 \times(\mathbf{1}, \mathbf{1})_{1}+\text { c.c. }\right]
\end{aligned}
$$

Standard Models III

Suppression factors w.r.t. the total $\#$ of solutions on $T^{6} / \mathbb{Z}_{6}^{\prime}$:

- 0.4 from $U(1)_{Y}$ massless
- 7.3×10^{-4} for $U(3) \times U(2) / S p(2) \times U(1)$ and n generations
- 2.6×10^{-8} for $n=3$ generations
\Rightarrow very similar to $T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2} \sim 10^{-9}$
Gmeiner, Blumenhagen, Honecker, Lüst, Weigand '05
\Rightarrow different from $T^{6} / \mathbb{Z}_{6} \sim 10^{-22}{ }_{\text {Gmeiner, Lüst, Stein }}{ }^{\prime} 07$

Standard Models IV

Gauge couplings

$$
\frac{1}{\alpha_{a, \text { string-tree }}}=\frac{4 \pi}{g_{a, \text { string-tree }}^{2}} \sim \frac{M_{\mathrm{Planck}}}{M_{\text {string }}} \cdot \operatorname{Vol}\left(D 6_{a}\right)
$$

\Rightarrow ratios independent of scales: $\alpha_{c} / \alpha_{\ldots}=\operatorname{Vol}\left(D 6_{b}\right) / \operatorname{Vol}\left(D 6_{a}\right)$

1, 2, 3 generations

1-loop running $b_{a} /\left(16 \pi^{2}\right) \ln \left(M_{\text {string }}^{2} / \mu^{2}\right)$ with $\varphi^{\mathbf{A d j}_{a}} \geq 2$ and
$b_{S U\left(N_{a}\right)}=N_{a}\left(\varphi^{\mathrm{Adj}_{a}}-3\right)+\sum_{b \neq a} \frac{N_{b}}{2}\left(\varphi^{a b}+\varphi^{a b^{\prime}}\right)+\frac{N_{a}-2}{2} \varphi^{\mathrm{Anti}_{a}}+\frac{N_{a}+2}{2} \varphi^{\mathrm{Sym}_{a}}$
\Rightarrow confinement $(b<0)$ very unlikely

Standard Model V

Massless $U(1)$ s are linear combinations of $U(1)_{i} \subset U\left(N_{i}\right)$

$$
U(1)_{X}=\sum_{i} x_{i} U(1)_{i} \quad \Rightarrow \quad \frac{1}{\alpha_{X}}=\sum_{i} 2 N_{i} x_{i}^{2} \frac{1}{\alpha_{i}}
$$

with 1-loop beta function coefficient

$$
\begin{aligned}
b_{U(1)_{a}} & =N_{a}\left(\sum_{b \neq a} N_{b}\left(\varphi^{a b}+\varphi^{a b^{\prime}}\right)+2\left(N_{a}+1\right) \varphi^{\mathbf{S y m}_{a}}+2\left(N_{a}-1\right) \varphi^{\mathbf{A n t i}_{a}}\right) \geq 0 \\
b_{X} & =\sum_{i} x_{i}^{2} b_{i}+2 \sum_{i<j} N_{i} N_{j} x_{i} x_{j}\left(-\varphi^{i j}+\varphi^{i j^{\prime}}\right)
\end{aligned}
$$

Weak mixing angle $\sin ^{2} \theta_{w}=\alpha_{Y} /\left(\alpha_{Y}+\alpha_{w}\right)$

Standard Model VI

If one assumes an underlying Pati-Salam or $S U(5)$ GUT structure, there is a relation

$$
\frac{1}{\alpha_{Y}}=\frac{2}{3} \frac{1}{\alpha_{s}}+\frac{1}{\alpha_{w}} \quad \text { or } \quad \frac{1}{\alpha_{s}}=\frac{1}{\alpha_{w}}=\frac{3}{5} \frac{1}{\alpha_{Y}}
$$

represented by a line on the previous plot
$T^{6} / \mathbb{Z}_{6}^{\prime}$: no hint for such a relation
$T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}: 88 \%$ of models fit to Pati-Salam relation
T^{6} / \mathbb{Z}_{6} example: all bulk cycle have same length $\Rightarrow \alpha_{s}=\alpha_{w}$, if fifth stack of branes is included in $U(1)_{Y}$, the $S U(5)$ relation holds

$S U(5)$ and Pati-Salam

A systematic search gives:
$S U(5)$: only $n=2,4$ generations \& 1 or 2 chiral symmetrics:

$S U(4) \times S U(2)_{L} \times S U(2)_{R}: \mathcal{O}\left(10^{12}\right) \quad 3$ generation models but >10 chiral exotics, however, search incomplete!

Trinification

Ansatz: $U(3)_{a} \times U(3)_{b} \times U(3)_{c}$ with n generations of

$$
\left(\overline{\mathbf{3}}_{a}, \mathbf{3}_{b}, \mathbf{1}\right)+\left(\mathbf{1}, \overline{\mathbf{3}}_{b}, \mathbf{3}_{c}\right)+\left(\mathbf{3}_{a}, \mathbf{1}, \overline{\mathbf{3}}_{c}\right)
$$

\Rightarrow no SUSY + RR tadpole solution without chiral exotics in $\left(\mathbf{S y m}_{a}, \mathbf{1}, \mathbf{1}\right),\left(\operatorname{Anti}_{a}, \mathbf{1}, \mathbf{1}\right)$ and $\left(\mathbf{3}_{a}, \mathbf{3}_{b}, \mathbf{1}\right) \ldots$
\Rightarrow only $n=2$ generations appear

Comparison with T^{6} / \mathbb{Z}_{6}
 Formulae G.H., Ott '04; Statistics Gmeiner, Lüst, Stein '07

T^{6} / \mathbb{Z}_{6} acts by $\vec{v}=1 / 6 \cdot(1,1,-2)$ with 6 inequivalent orientations of $S U(3)^{3}$ lattices under $\Omega \mathcal{R}$

- 2 untwisted 3-cycles, 10 twisted 3-cycles at \mathbb{Z}_{2} fixed points form 12 dim . unimodular basis. No 3-cycles from \mathbb{Z}_{3} subsector!
- SUSY selects one untwisted cycle, O6-plane untwisted $\Rightarrow \Pi_{a} \circ \Pi_{O 6}=0$ leads to $\#$ Anti $=\#$ Sym \Rightarrow constraints on model building: no $S U(5)$ GUTs possible, all quarks and leptons are bifundamentals
- Bulk RR tadpole cancellation gives naive maximal rank 8 for 5 geometries, 12 for 1 geometry
- $U(3) \times U(2) \times U(1)^{2}$ admits at most a 'hidden' $U(1)$ (or $S p(2)$ or $S O(2)$)
- 2 generation models have chiral exotics, 1 with/without exotics
- 3 generations with additional $U(1)$ (or $S p(2)$ or $S O(2)$) occurs 5.7×10^{6} times, three $\left(H_{u}, H_{d}\right)$ generations with non-standard Yukawa couplings, only for one geometry there is only one kind of SM like chiral spectrum!

	sector	$S U(3)_{a} \times S U(2)_{b}$	Q_{a}	Q_{b}	Q_{c}	Q_{d}	Q_{e}	Q_{B-L}	Q_{Y}
Q_{L}	$a b^{\prime}$	$3 \times(\overline{\mathbf{3}}, \mathbf{2})$	-1	-1	0	0	0	$\frac{1}{3}$	$\frac{1}{6}$
U_{R}	$a c$	$3 \times(\mathbf{3}, 1)$	1	0	-1	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
D_{R}	$a c^{\prime}$	$3 \times(\mathbf{3}, 1)$	1	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$
L	$b d^{\prime}$	$3 \times(1, \mathbf{2})$	0	1	0	1	0	-1	$-\frac{1}{2}$
E_{R}	$c d$	$3 \times(1,1)$	0	0	1	-1	0	1	1
N_{R}	$c d^{\prime}$	$3 \times(1,1)$	0	0	-1	-1	0	1	0
H_{d}	$b e$	$3 \times(1, \mathbf{2})$	0	1	0	0	-1	0	$-\frac{1}{2}$
H_{u}	$b e^{\prime}$	$3 \times(1, \mathbf{2})$	0	1	0	0	1	0	$\frac{1}{2}$

- Total \# SUSY models estimated 3.4×10^{28} - by $\sim 10^{5}$ larger than $T^{6} / \mathbb{Z}_{6}^{\prime}-\Rightarrow \mathrm{SM}$ probability with 1.7×10^{-22} much smaller than for $T^{6} / \mathbb{Z}_{6}^{\prime}, T^{6} / \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ - but distribution of bulk \mathcal{E} fractional solutions similar to $T^{6} / \mathbb{Z}_{6}^{\prime}$

Conclusions

- Geometric intuition for intersecting D6-branes
- Orbifold models: complete spectra computable
- $T^{6} / \mathbb{Z}_{6}^{\prime}$ particularly fertile for SM spectra: $\mathcal{O}\left(10^{15}\right)$
- 3 generations suppressed by $\sim 10^{-8}$
- SM without chiral exotics exist, PS not fully explored

Open questions

- SM examples without excess of Higgs candidates?
- Results beyond massless spectra: How are interactions for fractional brane computed in CFT?
- Realistic values of gauge couplings at low energy??
- SUSY breaking, cosmological constant ...?
- Other orbifolds even more fertile?

