Standard Model Statistics for Intersecting Branes on Z6'

JHEP 0709 (2007) 128, arXiv:0708.2285 [hep-th] & work in progress

by Florian Gmeiner & G.H.

Gabriele Honecker

Gabriele.Honecker@cern.ch

CERN

Liverpool, 29 March 2008 - p.1/27

Standard Model Building Approaches

• Heterotic $E_8 \times E_8$ string

see talks by Gray, Lukas, Manno, Ratz, Trapletti, Zanzi

- Gepner models see talk by Tsulaia
- Free fermionic constructions see talks by Kounnas, Schellekens
- Type II with D-branes at singularities see talk by Verlinde (?) F-theory GUTs with branes at singularities
- Magnetised D-branes $\overset{T-dual}{\Leftrightarrow}$ Intersecting D-branes see talks by Antoniadis, Bianchi, Haack, Hebecker, Plauschinn, Quevedo, Schmidt-Sommerfeld — Bailin, Cvetic, Gmeiner, Timirgaziu, Weigand

... and lots of people whose name is not on this transparency

Geometry of orbifolds well understood $\Leftrightarrow CY_3$ spaces?

CFT methods provide powerful computational tools

Intersecting D6-Branes

Orientifold of IIA string theory with anti-holomorphic involution \mathcal{R} on the Calabi-Yau 3-fold

- Invariant 3-cycles Π_{O6} are wrapped by O6-planes
- $D6_a$ branes wrap 3-cycles Π_a
- \mathcal{R} images $\mathsf{D6}_a$ ' of $\mathsf{D6}_a$ branes wrap Π'_a

Topological constraints:

 $\Rightarrow \mathsf{RR} \text{ tadpole cancellation: } \sum_{a} N_a (\Pi_a + \Pi'_a) = 4 \Pi_{O6}$ $\Rightarrow \mathsf{K}\text{-theory: } \sum_{a} N_a \Pi_a \circ \Pi_{Sp(2)} = 0 \text{ mod } 2$

Massless Spectrum

Massless spectrum consists of

- Closed strings: $\mathcal{N} = 1$ SUGRA, axion-dilaton mult., $h_{1,1}^$ complexified Kähler & $h_{2,1}$ complex structure moduli mults., $h_{1,1}^+$ vector mults. ($h_{1,1}^{\pm}$: (anti) invariant cycles under \mathcal{R})
- Open strings: $\prod_a U(N_a)$ gauge groups, sometimes also SO(2N) or Sp(2N) & charged matter

The chiral spectrum is computed from intersection numbers $\Pi_a \circ \Pi_b$ of 3-cycles

representation	net chirality
$(Anti_a)$	$\frac{1}{2}\left(\Pi_a \circ \Pi'_a + \Pi_a \circ \Pi_{O6}\right)$
(\mathbf{Sym}_a)	$\frac{1}{2}\left(\Pi_a \circ \Pi_a' - \Pi_a \circ \Pi_{O6}\right)$
$(\mathbf{N}_a, \overline{\mathbf{N}}_b)$	$\Pi_a \circ \Pi_b$
$(\mathbf{N}_a,\mathbf{N}_b)$	$\Pi_a \circ \Pi_b'$

Fractional Cycles

Fractional cycles on T^6/\mathbb{Z}_{2N} stuck at \mathbb{Z}_2 fixed points on $T^4 \Rightarrow$ continuous displacement & Wilson line on T^2 encoded in chiral adjoint

+ additional adjoints from orbifold image cycles

$$\Pi^{\text{frac}} = \frac{1}{2} \left(\Pi^{\text{torus}} + \Pi^{\text{ex}} \right) \quad \text{or} \quad \Pi^{\text{rigid}} = \frac{1}{4} \left(\Pi^{\text{torus}} + \sum_{i=1}^{3} \Pi^{\text{ex},(i)} \right)$$

Rigid cycles possible on $T^6/\mathbb{Z}_{2N} \times \mathbb{Z}_{2M}$ \Rightarrow only discrete Wilson lines, no adjoint matter \Rightarrow D-instantons see talks by Bianchi, Cvetic, Schmidt-Sommerfeld, Weigand

Full spectrum on orbifolds

Florian Gmeiner, G.H. 0708.2285 Rewrite intersection number on T^6/\mathbb{Z}_M in terms of sectors $\Pi_a^{\text{torus}} \circ \Pi_b^{\text{torus}} = -\sum_k I_{a(\theta^k b)} \ (I_{ab} = \prod_{i=1}^3 (n_a^i m_b^i - m_a^i n_b^i)), \text{ for}$ M = 2N include \mathbb{Z}_2 invariant intersections $\Pi_a^{\text{ex}} \circ \Pi_b^{\text{ex}} = -\sum_k I_{a(\theta^k b)}^{\mathbb{Z}_2}$ with relative signs (\mathbb{Z}_2 e.v. + Wilson lines)

Chiral +	- non–chiral massless matter on $T^6/(\mathbb{Z}_{2N} imes \Omega \mathcal{R})$
(\mathbf{Adj}_a)	$1 + \frac{1}{4} \sum_{k=1}^{N-1} \left I_{a(\theta^k a)} + I_{a(\theta^k a)}^{\mathbb{Z}_2} \right $
$(\mathbf{N}_a,\mathbf{N}_b)$	$\frac{1}{2}\sum_{k=0}^{N-1} \left I_{a(\theta^k b')} + I_{a(\theta^k b')}^{\mathbb{Z}_2} \right $
(\mathbf{Anti}_a)	$\frac{1}{4}\sum_{k=0}^{N-1} \left I_{a(\theta^{k}a')} + I_{a(\theta^{k}a')}^{\mathbb{Z}_{2}} + I_{a}^{\Omega\mathcal{R}\theta^{-k}} + I_{a}^{\Omega\mathcal{R}\theta^{-k+N}} \right $
(\mathbf{Sym}_a)	$\frac{1}{4}\sum_{k=0}^{N-1} \left I_{a(\theta^k a')} + I_{a(\theta^k a')}^{\mathbb{Z}_2} - I_a^{\Omega \mathcal{R} \theta^{-k}} - I_a^{\Omega \mathcal{R} \theta^{-k+N}} \right $

with some modifications for vanishing angles, e.g. $I^0_{a(\theta^k b)} \rightarrow 2$ This can be generalised from fractional to rigid cycles

SUSY and Anomalies

Supersymmetry & stability are *not* topological, but moduli dependent: D6-branes have to wrap special Lagrangian 3-cycles – not classified for generic CY₃

On $(T^2)^3$: $\sum_{i=1}^{3} \phi_i = 0 + \mathbb{Z}_2$ fixed points hit by torus cycle

Green Schwarz mechanism via Chern-Simons couplings of RR fields, $\int_{\mathbb{R}^{1,3} \times \Pi_a} C_5 \operatorname{tr} F_a$ ($\Rightarrow U(1)$ masses) and $\int_{\mathbb{R}^{1,3} \times \Pi_a} C_3 \operatorname{tr} (F_a \wedge F_a)$

 $C_3 = b_k^{(0)} \omega_k + \text{complex structures form complex scalars}$ $\Rightarrow \text{SUSY}: \# \text{ massive U(1)s} = \# \text{ frozen complex structures}$

The \mathbb{Z}_6' orbifold

Set-up: Bailin, Love '06,

RR.tcc.Solutions & Statistics: F. Gmeiner, G.H. 0708.2285 + work in progress

- Orbifold action $\theta: z^i \to e^{2\pi i v_i} z^i$ with $\vec{v} = 1/6 \cdot (1, 2, -3)$
- Anti-holomorphic involution *R* admits two kinds of shapes of tori

- Kähler moduli $(h_{1,1})$: 3 untwisted (volume of each T^2), 12 at θ -fixed points, 12 on θ^2 -fixed tori, 8 on θ^3 -fixed tori
- Complex structures (h_{2,1}): 1 untwisted (shape of T₃), 6 from θ² fixed points on T₁ × T₂ times 1-cycle on T₃, 4 at θ³-fixed points on T₁ × T₃ times 1-cycle on T₂ Liverpool, 29 March 2008 - p.8/27

 T^6/\mathbb{Z}_6' - 3-cycles

3-cycles $\equiv b_3 = 2 + 2h_{2,1} = 24$ \Rightarrow 4 untwisted 3-cycles ρ_i plus 4+4 3-cycles from \mathbb{Z}_2 sectors δ_j , $\tilde{\delta}_j$ form 12 dimensional sublattice

$$\rho_1 = \sum_{k=0}^5 \theta^k(\pi_{135}), \ \rho_2 = \sum_{k=0}^5 \theta^k(\pi_{235}), \ \rho_3 = \sum_{k=0}^5 \theta^k(\pi_{136}), \ \rho_4 = \sum_{k=0}^5 \theta^k(\pi_{236})$$

 $\Rightarrow \Pi^{\text{torus}} = \sum_{k=0}^{5} \theta^{k} \left[\bigotimes_{i=1}^{3} \left(n_{i} \pi_{2i-1} + m_{i} \pi_{2i} \right) \right] = P \rho_{1} + Q \rho_{2} + U \rho_{3} + V \rho_{4} \text{ with } P = X n_{3}, Q = Y n_{3}, U = X m_{3}, Y = Y m_{3}$ and $X = n_{1} n_{2} - m_{1} m_{2}, Y = n_{1} m_{2} + m_{1} n_{2} + m_{1} m_{2}$

$$\delta_j = \sum_{k=0}^2 \theta^k (e_{4j} \otimes \pi_3), \quad \tilde{\delta}_j = \sum_{k=0}^2 \theta^k (e_{4j} \otimes \pi_4), \qquad j = 1 \dots 4$$

 $\Rightarrow \Pi^{\text{ex}} = \sum_{j=1}^{4} \left(d_j \delta_j + e_i \tilde{\delta}_j \right) \text{ with e.g. } d_j = -n_2 - m_2, \ e_j = n_2$

Liverpool, 29 March 2008 – p.9/27

T^6/\mathbb{Z}_6' - RR tadpoles

- Evoid double counting of models by imposing $n_1, n_3, m_3 + bn_3 \ge 0$ and $(n_1, m_1) = (\text{odd}, \text{odd})$
- Fractional cycles have separate RR tadpole & SUSY conditions for torus + exceptional cycles: *bulk* RR tadpole cancellation depends on orientation - for ABa:

$$\sum_{a} N_a (P_a + Q_a) = 8, \qquad \sum_{a} N_a (U_a - V_a) = 24$$

Each SUSY brane contributes positively (or zero) to each sum \Rightarrow *naive* maximal rank 32 RR tadpoles from \mathbb{Z}_2 : no O6-plane contribution $\sum_a N_a (d_i^a - e_i^a) = 0$ for the ABa orientation

 T^6/\mathbb{Z}_6' : K-theory

K-theory constraint: Ω*R*-invariant branes are classified, but not clear which give SO(2) or Sp(2) - take a (maybe too strong) constraint with all as probes, however: net-intersection with model always even, for example on ABa: Π_{probe} = ¹/₂(ρ₁ + ρ₂) ± ³/₂(δ₁ - δ̃₁) ± ³/₂(δ₃ - δ̃₃) leads to the constraint

$$\frac{3}{2} \sum_{a} N_a \left(U_a + V_a \pm (d_1^a + e_1^a) \pm (d_2^a + e_2^a) \right)$$
RR_tad.
$$3 \sum_{a} N_a \left(V_a + d_1^a + d_2^a \right) + 36 \stackrel{!}{=} 0 \mod 2$$

and subsequent combinatorics of $\{V_a, d_i^a\}$ odd or even depending on (n_i, m_i) odd/even show that no new constraint arises - *independent of bulk SUSY*

 T^6/\mathbb{Z}_6 : SUSY

• SUSY for branes on ABa: toroidal per brane R_1, R_2 : radii on T_3

$$\frac{R_1}{\sqrt{3}R_2}(P-Q) - (U+V) = 0 \quad (P+Q) - \frac{R_2}{\sqrt{3}R_1}(V-U) > 0$$

SUSY of \mathbb{Z}_2 sector: only exceptional cycles through which the toroidal cycle passes occur. There are three signs: \mathbb{Z}_2 eigenvalue & two Wilson lines on $T_1 \times T_3$

Results: SUSY & RR tadpoles

Intersection pattern of 12 dim. sublattice: $I^{\text{bulk}} = \begin{pmatrix} 0 & 2A \\ 2A & 0 \end{pmatrix}$ and $I^{\mathbb{Z}_2} = \text{diag}(2\varepsilon, \dots, 2\varepsilon)$ with $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ and $\varepsilon = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ rich

enough to allow for 3-generation models Large number of SUSY solutions $\mathcal{O}(10^4)$ for the toroidal RR tadpoles depends on geometry: ABa \simeq BBa preferred

Results: Probabilities

Scaling behaviour of solutions of toroidal *(left)* and complete *(right)* solutions: *The set of SUSY solutions is complete!* (a) total rank

(b) Probability \mathcal{N} to find a single gauge factor of rank N

Standard Models I

Ansatz: $U(3)_a \times U(2)_b \times U(1)_c \times U(1)_d$ with three different choices of hyper charge (two with u_R in Anti_a), or $U(3)_a \times Sp(2)_b \times U(1)_c \times U(1)_d$

On T^6/\mathbb{Z}'_6 : only one type with n SUSY generations and RR tadpoles canceled, for n = 3 only on ABa and BBa

Liverpool, 29 March 2008 - p.15/27

Standard Models II

 $SU(3) \times SU(2) \times U(1)_Y$: 3 generation models without chiral exotics possible: $\mathcal{O}(10^{15})$ models with massless hyper charge - $(\mathcal{O}(10^{16})$ with massive $U(1)_Y)$

Mean number of chiral exotics is computed from

v: visible sector — h: hidden

$$\zeta \equiv \sum_{v.h} \left| \chi^{vh} - \chi^{v'h} \right|$$

 \Rightarrow there can still be an *excess of Higgs* candidates

Complex structures for SM

Complex structure values ρ on ABa for n generations:

n	Q	#models	n	Q	#models	n	Q	#models	
1	1/2	$8.7 \cdot 10^{18}$	2	1/5	$2.5 \cdot 10^{11}$	3	1/2	$9.7 \cdot 10^{9}$	
	5/2	$3.4 \cdot 10^{13}$					1/4	$9.6\cdot 10^6$	
	7/4	$2.7\cdot 10^6$					1/6	$1.2 \cdot 10^{14}$	
							3/2	$4.9\cdot10^{14}$	
							9/4	$4.9\cdot 10^7$	

On **BBa**: frequencies by $\mathcal{O}(10)$ larger with $\rho \to 3/(4\rho)$

Bailin & Love's possible solution with $(\chi^{ab}, \chi^{ab'}) = (2, 1)$: 1/4 on ABa (3 on BBa) — the one with the smallest fequency Liverpool, 29 March 2008 – p.17/27

SUSY SM Example

Example with SM sector with complex structure $\varrho = 1/2$ and $SU(3) \times SU(2) \times U(1)_{Y(\times U(1)^2_{\text{massless}} \times U(1)^2_{\text{massless}})} (\chi^{ab}, \chi^{ab'}) = (0,3)$:

• Chiral spectrum contains abundance of Higgs candidates

$$3 \times \left[(\mathbf{3}, \mathbf{2})_{1/6} + (\mathbf{\bar{3}}, \mathbf{1})_{1/3} + (\mathbf{\bar{3}}, \mathbf{1})_{-2/3} + 5 \times (\mathbf{1}, \mathbf{2})_{-1/2} \right. \\ \left. + 4 \times (\mathbf{1}, \mathbf{2})_{1/2} + (\mathbf{1}, \mathbf{1})_1 + (\mathbf{1}, \mathbf{1})_0 \right]$$

- Adjoints: $2 \times (\mathbf{8}, \mathbf{1})_0 + 10 \times (\mathbf{1}, \mathbf{3})_0 + 36 \times (\mathbf{1}, \mathbf{1})_0$
- Non-chiral matter:

$$\begin{bmatrix} (\mathbf{3}, \mathbf{2})_{1/6} + 6 \times (\mathbf{3}, \mathbf{1})_{-1/3} + 3 \times (\mathbf{3}, \mathbf{1})_{2/3} + 4 \times (\mathbf{1}, \mathbf{2})_{-1/2} \\ + 8 \times (\mathbf{1}, \mathbf{2})_0 + 4 \times (\mathbf{1}, \mathbf{1}_2)_0 + 6 \times (\mathbf{1}, \mathbf{3}_2)_0 + 4 \times (\mathbf{1}, \mathbf{1})_0 \\ + 6 \times (\mathbf{1}, \mathbf{1})_{1/2} + 4 \times (\mathbf{1}, \mathbf{1})_1 + c.c. \end{bmatrix}_{\text{Liverpool, 29 March 2008 - p.18/27}}$$

Standard Models III

Suppression factors w.r.t. the total # of solutions on T^6/\mathbb{Z}_6' :

- 0.4 from $U(1)_Y$ massless
- 7.3×10^{-4} for $U(3) \times U(2)/Sp(2) \times U(1)$ and n generations
- 2.6×10^{-8} for n = 3 generations

 \Rightarrow very similar to $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2 \sim 10^{-9}$

Gmeiner, Blumenhagen, Honecker, Lüst, Weigand '05

 \Rightarrow different from $T^6/\mathbb{Z}_6 \sim 10^{-22}$ Gmeiner, Lüst, Stein '07

$$b_{SU(N_a)} = N_a \left(\varphi^{\mathbf{Adj}_a} - 3 \right) + \sum_{b \neq a} \frac{N_b}{2} \left(\varphi^{ab} + \varphi^{ab'} \right) + \frac{N_a - 2}{2} \varphi^{\mathbf{Anti}_a} + \frac{N_a + 2}{2} \varphi^{\mathbf{Sym}_a}$$

$$\Rightarrow \text{confinement } \left(b < 0 \right) \text{ very unlikely}$$

Liverpool, 29 March 2008 - p.20/27

Standard Model V

Massless U(1)s are linear combinations of $U(1)_i \subset U(N_i)$ $U(1)_X = \sum_i x_i U(1)_i \implies \frac{1}{\alpha_X} = \sum_i 2N_i x_i^2 \frac{1}{\alpha_i}$ with 1-loop beta function coefficient

$$b_{U(1)_{a}} = N_{a} \left(\sum_{b \neq a} N_{b} \left(\varphi^{ab} + \varphi^{ab'} \right) + 2 \left(N_{a} + 1 \right) \varphi^{\mathbf{Sym}_{a}} + 2 \left(N_{a} - 1 \right) \varphi^{\mathbf{Anti}_{a}} \right) \ge 0$$

$$b_{X} = \sum_{i} x_{i}^{2} b_{i} + 2 \sum_{i < j} N_{i} N_{j} x_{i} x_{j} \left(-\varphi^{ij} + \varphi^{ij'} \right)$$
Weak mixing angle $\sin^{2} \theta_{w} = \alpha_{Y} / (\alpha_{Y} + \alpha_{w})$

Standard Model VI

If one assumes an underlying Pati-Salam or SU(5) GUT structure, there is a relation

$$\frac{1}{\alpha_Y} = \frac{2}{3}\frac{1}{\alpha_s} + \frac{1}{\alpha_w} \qquad \text{or} \qquad \frac{1}{\alpha_s} = \frac{1}{\alpha_w} = \frac{3}{5}\frac{1}{\alpha_Y}$$

represented by a line on the previous plot

$$T^6/\mathbb{Z}_6'$$
: no hint for such a relation

 $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$: 88% of models fit to Pati-Salam relation

 T^6/\mathbb{Z}_6 example: all bulk cycle have same length $\Rightarrow \alpha_s = \alpha_w$, if fifth stack of branes is included in $U(1)_Y$, the SU(5) relation holds

$SU(5)\ {\rm and}\ {\rm Pati-Salam}$

A systematic search gives:

SU(5): only n = 2, 4 generations & 1 or 2 chiral symmetrics:

 $SU(4) \times SU(2)_L \times SU(2)_R$: $\mathcal{O}(10^{12})$ 3 generation models but >10 chiral exotics, however, search incomplete!

Trinification

Ansatz: $U(3)_a \times U(3)_b \times U(3)_c$ with *n* generations of

$$(\overline{\mathbf{3}}_a, \mathbf{3}_b, \mathbf{1}) + (\mathbf{1}, \overline{\mathbf{3}}_b, \mathbf{3}_c) + (\mathbf{3}_a, \mathbf{1}, \overline{\mathbf{3}}_c)$$

 \Rightarrow no SUSY + RR tadpole solution without chiral exotics in $(Sym_a, 1, 1)$, $(Anti_a, 1, 1)$ and $(3_a, 3_b, 1) \dots$

 \Rightarrow only n = 2 generations appear

Comparison with T^6/\mathbb{Z}_6 Formulae G.H., Ott '04; Statistics Gmeiner, Lüst, Stein '07

 T^6/\mathbb{Z}_6 acts by $\vec{v} = 1/6 \cdot (1, 1, -2)$ with 6 inequivalent orientations of $SU(3)^3$ lattices under $\Omega \mathcal{R}$

- 2 untwisted 3-cycles, 10 twisted 3-cycles at Z₂ fixed points form 12 dim. unimodular basis.
 No 3-cycles from Z₃ subsector!
- SUSY selects one untwisted cycle, O6-plane untwisted ⇒Π_a ∘ Π_{O6} = 0 leads to # Anti = # Sym ⇒constraints on model building: no SU(5) GUTs possible, all quarks and leptons are bifundamentals
- Bulk RR tadpole cancellation gives *naive* maximal rank
 8 for 5 geometries, 12 for 1 geometry
- $U(3) \times U(2) \times U(1)^2$ admits at most a *'hidden'* U(1)(or Sp(2) or SO(2))
- 2 generation models have chiral exotics, 1 with/without exotics Liverpool, 29 March 2008 - p.25/27

• 3 generations with additional U(1) (or Sp(2) or SO(2)) occurs 5.7×10^6 times, three (H_u, H_d) generations with non-standard Yukawa couplings, only for *one* geometry -

there is	only	one	kind	of SM	like	chiral	spectrum!	1
----------	------	-----	------	---------	------	--------	-----------	---

	sector	$SU(3)_a \times SU(2)_b$	Q_a	Q_b	Q_c	Q_d	Q_e	Q_{B-L}	Q_Y
Q_L	ab'	$3 imes (\overline{3}, 2)$	-1	-1	0	0	0	$\frac{1}{3}$	$\frac{1}{6}$
U_R	ac	3 imes (3 , 1)	1	0	-1	0	0	$-\frac{1}{3}$	$-\frac{2}{3}$
D_R	ac'	3 imes (3 , 1)	1	0	1	0	0	$-\frac{1}{3}$	$\frac{1}{3}$
L	bd'	3 imes (1, 2)	0	1	0	1	0	-1	$-\frac{1}{2}$
E_R	cd	3 imes (1,1)	0	0	1	-1	0	1	1
N_R	cd'	3 imes (1,1)	0	0	-1	-1	0	1	0
H_d	be	3 imes (1, 2)	0	1	0	0	-1	0	$-\frac{1}{2}$
H_u	be'	3 imes (1, 2)	0	1	0	0	1	0	$\frac{1}{2}$

• Total # SUSY models estimated 3.4×10^{28} — by ~ 10^5 larger than $T^6/\mathbb{Z}'_6 \longrightarrow SM$ probability with 1.7×10^{-22} much smaller than for T^6/\mathbb{Z}'_6 , $T^6/\mathbb{Z}_2 \times \mathbb{Z}_2$ — but distribution of bulk & fractional solutions similar to T^6/\mathbb{Z}'_6 — Liverpool, 29 March 2008 – p.26/27

Conclusions

- Geometric intuition for intersecting D6-branes
- Orbifold models: complete spectra computable
- T^6/\mathbb{Z}_6' particularly fertile for SM spectra: $\mathcal{O}(10^{15})$
- 3 generations suppressed by $\sim 10^{-8}$
- SM without chiral exotics exist, PS not fully explored

Open questions

- SM examples without excess of Higgs candidates?
- Results beyond massless spectra: How are interactions for *fractional* brane computed in CFT?
- Realistic values of gauge couplings at low energy??
- SUSY breaking, cosmological constant ...?
- Other orbifolds even more fertile?