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Standard Model Building Approaches

Heterotic Es X Eg string

see talks by Gray, Lukas, Manno, Ratz, Trapletti, Zanzi

Gepner models sce talk by Tsulaia

Free fermionic constructions see talks by Kounnas, Schellekens
Type |l with D-branes at singularities see talk by Verlinde (7)

F-theory GUTs with branes at singularities

: T—dual :
Magnetised D-branes = < Intersecting D-branes
see talks by Antoniadis, Bianchi, Haack, Hebecker, Plauschinn, Quevedo,

Schmidt-Sommerfeld —Bazilin, Cvetic, Gmeiner, Timirgaziu, Weigand

.. and lots of people whose name is not on this transparency

Geometry of orbifolds well understood < cvs spaces?

CFT methods provide powerful computational tools
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Intersecting D6-Branes

Orientifold of IIA string theory with anti-holomorphic

involution 72 on the Calabi-Yau 3-fold
5 R N

CY 4 D6 D6’

06
D6
O—

* |nvariant 3-cycles I1g are wrapped by O6-planes

* D6, branes wrap 3-cycles 11,

e R images D6, of D6, branes wrap 11/,

Topological constraints:
= RR tadpole cancellation: > N, (Il +II},) = 4I1pg

= K-theory: > NIl o [Tgp(2) = 0 mod 2
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Massless Spectrum

Massless spectrum consists of

* Closed strings: N/ =1 SUGRA, axion-dilaton mult., k7,
complexified Kahler & hg 1 complex structure moduli
mults., hi_l vector mults. (hli’l: (anti) invariant cycles under 77)

* Open strings: |, U(N,) gauge groups, sometimes also

SO(2N) or Sp(2N)

& charged m

atter

The chiral spectrum is computed from intersection numbers

I1, o 11 of 3-cycles

representation net chirality
(Antia) % (Ha O H/a + 11, o HOG)
(Sym,,) % (I, o IT,, — I, o I1pg)
(N, Np) [T, o ITy
(Naa Nb) 11, o Hé
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Fractional Cycles

Fractional cycles on T°/Zyn stuck at Zs fixed points on T
= continuous displacement & Wilson line on T"? encoded in

chiral adjoint
+ additional adjoints from orbifold image cycles

3
(Htorus 4+ Z Hex,(i))

1=1

o]

(Htorus + Hex) or Hrigid _

DO | —

Hfrac _

Rigid cycles possible on T /Zon x Zonys
=-only discrete Wilson lines, no adjoint matter
:>D—instantons see talks by Bianchi, Cvetic, Schmidt-Sommerfeld, Weigand

Toroidal cycle

®
o

\
&

- - TFractional cycle

-7 ©72

Liverpool, 29 March 2008 — p.5/27



Full spectrum on orbifolds

Rewrite intersection number on T%/Zyr in terms of sectors

torus torus .
11 e Hb

a(6%D) (Iab—Hz L (ntmi —mint)), for
M = 2N include Zs invariant intersections

HZX O ng — Zk ]ZQ with relative signs (Z2 e.v. + Wilson lines)
Chiral 4+ non—chiral massless matter on 7°/(Zon x QR
: N-1
(Adj,) 1+ iz ora) + Lolpray
Zo

(Nav Nb) 2 Z 9’%’) + 17 a(0FY)

Ant; LSl ]Z [OROT 4 [OROTETY

( n la) 4Zk:0 a(0%a’) T a(6*a’) T a + a

N—1 7o —k —k+N

(Sym,) | 13 k20 Hara) T Lyjpay — Lo — I

with some modifications for vanishing angles, e.g. I9

— 2

a(0%b)

This can be generalised from fractional to rigid cycles
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SUSY and Anomalies

Supersymmetry & stability are not topological, but moduli
dependent: D6-branes have to wrap special Lagrangian
3—cyc|es — not classified for generic C'Y3

On (T2)3: 377 ¢; = 0 + Zj fixed points hit by torus cycle

> v v
- \
-~
PPk \ \
- \ \
-
* e3

D6
D6 ¢ S
0, N2 D6

O 106
Green Schwarz mechanism via Chern-Simons couplings of RR
fields, Jriaxm, CstrFa (=U(1) masses) and [p15, 1 Cstr (Fa A Fa)

SU(N)
b(2), M

u(L) : D
SU(N)

O3 = b,({O) wp + complex structures form complex scalars

=SUSY: # massive U(1)s = # frozen complex structures
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The Z; orbifold

Orbifold action 6 : z* — e?™iz! with ¥ = 1/6- (1,2, —3)

Anti-holomorphic involution 77 admits two kinds of

shapes of tori
o /2 Tlg
/ e 73 { a
‘//VD A I /R

Kahler moduli (h11): 3 untwisted (volume of each T%),
12 at #-fixed points, 12 on §*-fixed tori, 8 on §3-fixed tori

Complex structures (h21): 1 untwisted (shape of T3), 6

from 62 fixed points on T} x T5 times 1-cycle on T3, 4 at
3-fixed points on T} x T3 times 1-cycle on T
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T°/Z; - 3-cycles

+# 3-cycles =b3 =2 + 2h2,1 = 24
=4 untwisted 3-cycles p; plus 4+4 3-cycles from Zy sectors
0;, 0; form 12 dimensional sublattice

5 5 5 5
=) 0%(miss), p2 = > _ 60(mass), ps = > _ 0"(m136), pa = Y _ 6" (mase)
k=0 k=0 k=0 k=0

— Jtorus — ZZ:O ok [®§:1(nﬂ27;—1 + mﬂ@i)} =
Ppi1+ Qpa + Ups + Vpg with P= Xn3,Q =Yns,U=Xms,Y =Yms

and X = nino —mimeo,Y = nimo + ming + mims

2 2
:Z €4J®7T3 :Z 64;®7T4 J
k=0

|
—
N

4 ~
iHeX — ijl (d]5] -+ 6253) with e.g. d; = —nga —m2, e; = n2
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T°/Z; - RR tadpoles

* Evoid double counting of models by imposing
ni,n3, ms+bns >0 and (ny,m1) = (odd, odd)

* Fractional cycles have separate RR tadpole & SUSY

conditions for torus + exceptional cycles:
bulk RR tadpole cancellation depends on orientation —

for ABa:
Y Na(Pa+Qa)=8, Y No(Ug—Vy)=24

Each SUSY brane contributes positively (or zero) to
each sum =-naive maximal rank 32

RR tadpoles from Zs: no O6-plane contribution

> o No (d} —ef) = 0 for the ABa orientation
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0 / .
1°/7Z: K-theory
* K-theory constraint: ()R-invariant branes are classified,
but not clear which give SO(2) or Sp(2) - take a (maybe

too strong) constraint with all as probes, however:
net-intersection with model always even, for example on

ABa: 1_[plrobe — %(101 T /02) + %(51 _ 51) == %(53 B 53)
leads to the constraint

3 a a a a
izNa(Ua+Vai( 1—|_€1>Z|Z( 2"‘62))

and subsequent combinatorics of {V,,d?} odd or even

depending on (n;, m;) odd/even show that no new
constraint arises - independent of bulk SUSY
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T°/Z;: SUSY
* SUSY for branes on ABa: toroidal per brane
R1, Ro: radii on T3

R1 R2
V3R, V3R,

SUSY of Zs sector: only exceptional cycles through
which the toroidal cycle passes occur. There are three
signs: Zo eigenvalue & two Wilson lines on T x T3

S

[ = (=1)"x
x (11 + (=1)"ep1 + (=1)7era + (=1)" " Pegz) ® (n2ms + mama)

+ two 6 — images

(P-Q)—(U+V)=0 (P+Q)— (V=U) >0

Liverpool, 29 March 2008 — p.12/27



Results: SUSY & RR tadpoles

Intersection pattern of 12 dim. sublattice: rpulk = ( 2?4 2(;4 )

2 1 0o -1 -
and 1% = diag(2e,..., 2¢) with A = ( ) and € = ( ) rich
1 2 1 0

enough to allow for 3-generation models
Large number of SUSY solutions O(10*) for the toroidal RR
tadpoles depends on geometry: ABa ~ BBa preferred

o 10 E
[} =

1

AA AA

eeeeeeeeeeee ry

Taking into account the Zs wpart leads to O(10%%) SUSY RR

tadpole solutions, with 3 x 10?2 on ABa and 103 on BBa
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Results: Probabilities

Scaling behaviour of solutions of toroidal (left) and complete
(right) solutions: The set of SUSY solutions is complete!
(a) total rank

££££££
[ 23
gggg

1

(b) Probability A to find a single gauge factor of rank N

- - A e STHI=N T
For toroidal /fractional part N'(N) ~ >, 117 L5 (n. )k =
4 _ B
— %fN,T with fN,T — (T + 1 — N) or (ne)T+1 N with the
effective O6-plane charge 7" in RR tadpoles fits with Douglas, 5ayl95, 108 naren 2008 - p.14/27



Standard Models |

Ansatz: U(3)y x U(2)p x U(1). x U(1)y4 with three different
choices of hyper charge (two with up in Anti,), OF
U(3)a x Sp(2)y x U(1)e x U(1)

On T°/Z: only one type with n SUSY generations and RR
tadpoles canceled, for n = 3 only on ABa and BBa

U3)a x U(2)p x U(L)e x U(1)q

particle n
Q; Xab n Xab’
UR Xa c 4 Xa d

dp Xa ¢ 4 Xa d’ 4 XAntia
epR Xcd’ 4+ XSymc 4+ XSymd
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Standard Models Il

SU(3) x SU(2) x U(1)y: 3 generation models without chiral

exotics possible: O(10'°) models with massless hyper charge -
(O(1016) with massive U(1)y)

1 2 3 4

gen.

Mean number of chiral exotics is computed from

v: visible sector — h: hidden

(= Z ‘th - Xv'h‘

—there can still be an excess of Higgs candidates
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Complex structures for SM

Complex structure values o on ABa for n generations:

n| o |#models||n| o |#models| n| o | #models
11/2]87-101%)2]1/5|25-101 |3 |1/2] 9.7-10°
5/2 | 3.4-1013 1/4 | 9.6 - 10°
7/4 | 2.7-10° 1/6|1.2-10%
3/214.9-10M

9/4 | 4.9-107

On BBa: frequencies by O(10) larger with o — 3/(40)

possible solution with (y®, y®') = (2,1): 1/4
on ABa (3on BBa) — the one with the smallest fequency
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SUSY SM Example

Example with SM sector with complex structure o = 1/2 and
SU(B) X SU(Q) X U(l)Y(XU(1)2 xU(1)2 ) (Xab,xab/) = (0, 3).

massless massive

* Chiral spectrum contains abundance of Higgs candidates

3X (37 2)1/6 + (gv 1)1/3 + (37 1)—2/3 + 95 X (17 2)—1/2

+4 X (17 2)1/2 T (17 ]-)1 T (17 ]-)O
* Adjoints: 2 x (8,1), 4+ 10 x (1,3), + 36 x (1,1),
* Non-chiral matter:
{(37 2)1/6 + 6 X (37 1)—1/3 + 3 X (37 1)2/3 +4 X (17 2)—1/2
+8 x (1,2)y+4 x (1,12)5+6 x (1,32), +4 x (1,1),

6% (1,1) 5+ 4 x (1,1), +ce |
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Standard Models Il

. . 6 .
Suppression factors w.r.t. the total # of solutions on T°/Zg:

* 0.4 from U(1)y massless

o 73 x107*for U(3) x U(2)/Sp(2) x U(1) and n
generations

* 2.6 x 107% for n = 3 generations

=very similar to 7°/Zy x Zo ~ 107

Gmeiner, Blumenhagen, Honecker, Liist, Weigand '05

@different from T6/ZG ~ 10_22 Gmeiner, List, Stein '07
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Standard Models IV

Gauge couplings

1 1 Mo
_ 7 N Planck . VOI(D6CL)

g, string—tree gg,string_tree Mstring
=ratios independent of scales: a./a., = Vol(D6y)/Vol(D6,,)

1, 2, generations

“LL“‘i“‘i“‘i“‘i“‘
2

1-loop running b, /(1672)In( Strmg/,u ) with pAda > 2 and

/ Ng — 2 nti N, —|—2 m
bsuva) = N (pA%e = 8) 437 28 (00 4 ot ) 4 02 phntia  Zo T2 Syme

=confinement (b < OT very unlikely
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Standard Model V

Massless U(1)s are linear combinations of U(1); C U(V;)

U(I)X:ZZEiU(l)z‘ — L:Z2Nix%i

with 1-loop beta function coefficient

b (1), = Na (Z Ny (soab + soab/) +2(Ng + 1) @™™a 4+ 2(Ng — 1) soA““a) >0
b#a
bx = Zx? b, + 2 ZNiijixj (—goij + (pij/)
i i<j

Weak mixing angle sin®6,, = ay /(ay + ay)
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Standard Model VI

If one assumes an underlying Pati-Salam or SU(5) GUT
structure, there is a relation

1 2 1 1 1 1 3 1
—:———|—— or _— — = — —
ay Qs Oy Qs Oy DOy

represented by a line on the previous plot

T°/7Zf: no hint for such a relation

T/ 79 x Zso: 88% of models fit to Pati-Salam relation

T /76 example: all bulk cycle have same length =a, = ay,,
if fifth stack of branes is included in U(1)y, the SU(5)
relation holds
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SU(5) and Pati-Salam

A systematic search gives:
SU(5): only n = 2,4 generations & 1 or 2 chiral symmetrics:

o 10%E
[} =

SU(4) x SU(2) x SU(2)g: O(10'?) 3 generation models
but >10 chiral exotics, however, search incomplete!
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Trinification
Ansatz: U(3), x U(3)p x U(3). with n generations of

(§CL7 3[)7 ]-) =+ (17§b7 36) + (3a7 17§C)

—=no SUSY + RR tadpole solution without chiral exotics in
(Sym,,1,1), (Anti,,1,1) and (3,,3;,1) ...

=only n = 2 generations appear
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Comparison with T°/7;

Formulae G.H., Ott '04; Statistics G
TY/Z¢ acts by o = 1/6- (1,1, —2) with 6 inequivalent
orientations of SU(3)? lattices under QR

* 2 untwisted 3-cycles, 10 twisted 3-cycles at Zo fixed
points form 12 dim. unimodular basis.
No 3-cycles from Zs subsector!

e SUSY selects one untwisted cycle, O6-plane untwisted
=11, o Illpg = 0 leads to # Anti = # Sym
=-constraints on model building: no SU(5) GUTs
possible, all quarks and leptons are bifundamentals

* Bulk RR tadpole cancellation gives naive maximal rank
8 for 5 geometries, 12 for 1 geometry

° U(3) x U(2) x U(1)? admits at most a ‘hidden’ U(1)
(or Sp(2) or SO(2))

e 2 generation models have chiral exotics, 1 with/without

exotics Liverpool, 29 March 2008 — p.25/27



76 /7,

e 3 generations with additional U(1) (or 5p(2) or SO(2)) OCCUIS

5.7 x 10 times, three (H,, H;) generations with
non-standard Yukawa couplings, only for one geometry -

there is only one kind of SM like chiral spectrum!

sector | SU3)a X SU2)p || Qa | Qb | Qc | Qq | Qe | @_1 || Qv
QL ab’ 3 % (3,2) -1|-1[0 |0 | 0|3 L
Ur ac 3x(3,1) 1 0 |-1]0 ] 0 |-4% —2
Dpr ac’ 3x(3,1) 1 0 1 0 0 _% %
L bd’ 3 x (1,2) 0 1 0 1 0 | —1 ~1
Er cd 3 x (1,1) ol 0] 1 |-1|0]1 1
Ngr cd’ 3 x (1,1) 0| 0 |—-1]—-1|0 |1 0
Hq be 3 x (1,2) 0 1 0 0 |—-110 ~1
H, be’ 3 x (1,2) 0 1 0 0 1 |0 %

e Total # SUSY models estimated 3.4 x 10*® — by ~ 10°
larger than T /Z;, — = SM probability with 1.7 x 10_22 —
much smaller than for T6/Zg, T® /7o x Zo — but distribution of bulk &

fractional solutions similar to T® /7
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Conclusions

Geometric intuition for intersecting D6-branes

Orbifold models: complete spectra computable
T /7y particularly fertile for SM spectra: O(101°)

3 generations suppressed by ~ 107°

SM without chiral exotics exist, PS not fully explored

Open questions

SM examples without excess of Higgs candidates?

Results beyond massless spectra: How are interactions
for fractional brane computed in CFT?

Realistic values of gauge couplings at low energy??
SUSY breaking, cosmological constant ...7

Other orbifolds even more fertile?
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