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Motivations
Before we found the “Higgs” boson...

If a new form of strong dynamics at TeV scale is responsible for the electroweak 
symmetry breaking... 

Is technicolor a viable option? Can we produce a small S parameter, an enhanced 
chiral condensate, a large enough anomalous dimension? 

Can we really see the “walking” behavior? And where is it in the Nf-Nc plane?

Now that a Higgs-like particle has been observed...

LHC: new particle mass ~ 126 GeV

Can we produce a light composite scalar boson? 
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Outline

Part I: Viability Tests

Condensate Enhancement

Reduced S Parameter

Large anomalous dimension

Part II: Light Scalar

Can technicolor produce light scalars? 
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Lattice Strong Dynamics Collaboration

Formed in 2007. Now has more than 20 members from 10 
institutes. 

Goal: perform non-perturbative studies of strongly interacting 
gauge theories.

To provide input for BSM DEWSB model building: S parameter reduction, 
condensate enhancement, etc.

To study possible signatures that may be observed at LHC: hadron spectrum, ...

Started with 2 and 6 flavors with SU(3) fundamental fermions. 
Now have computed 8 and 10 flavors. SU(2) in progress. 
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Ls

Left−handed

Residual Mass

Right−handed 4D4D

Lattice Details

Fermion Action: Domain Wall 
Fermions, with Ls=16. 

Gauge Action: Iwasaki.

Lattice Volume: 32^3x64. 

SU(3) fundamental, with 2, 6, 8 and 
10 flavors. 

Domain Wall Fermion
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QCD and Beyond on the Lattice

Lattice as a Tool to Probe Conformality

Lattice QCD

Chiral Symmetry Breaking with Domain Wall Fermions
Finite Ls would allow mixing between chiral states , which leads to small residual
chiral symmetry breaking.

Measured by a residual mass, mres. Plus higher dimension chiral symmetry
breaking operators.

Leff =  (/D + m) + mres  + csw �µ⌫ Fµ⌫

mres can be calculated on the lattice
very precisely.

mres decreases rapidly as Ls
increases.

Total “effective” quark mass
m! m + mres.
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Chiral symmetry plays an important role



Part I: Viability Tests
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Reminder
Probing Conformality on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

SU(N) beta function
The scale dependence of the gauge coupling g is determined by
the � function:

�(g) =
@g

@ log(µ)
.

Perturbative 2-loop � function for SU(Nc) gauge theories:
Banks & Zaks 1981

�(g) = �b0g3 + b1g5 + O(g7),

with

b0 =
1

48⇡2 (11Nc � 2Nf ),

b1 = � 1
(16⇡2)2
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To be taken with a grain of salt, as g can be large and
perturbation theory is not reliable any more.

Perturbative 2-loop beta function

Probing Conformality on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

SU(3) Case
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We have
a trivial fixed point at g = 0 (Gaussian fixed point).
an infrared fixed point (IRFP) at g > 0 with large enough Nf .

Probing Conformality on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

The Conformal Window
Changing Nf may lead to different “phases” of the SU(N) gauge theories:

Nf < 11N/2(⌘ NAF
f ) asymptotically free

0  Nf < Nc
f confinement and spontaneous chiral symmetry breaking (S�SB)

Nc
f  Nf < NAF

f conformal
Nf > NAF

f asymptotic freedom lost

Nc
f : the conformal window – not known accurately because of the non-perturbative

nature. ) need LGT.
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QCD

Two Questions:
- Where is conformal window? 

- Do we see walking behaviors as 
we approach it from below? 



Motivation
Lattice Calculations

Prospects and Challenges

Why do we care?
Technicolor in a Nutshell

Walking Technicolor

There exists a region ⇤IR < µ < ⇤UV where the running coupling ↵(µ)
evolves very slowly.

I Assume �(µ) ⇠ �, then Techni-quark condensate gets enhanced:

hQQiETC ⇠ hQQiTC

✓
⇤UV

⇤IR

◆�

Could be large enough to generate quark masses.

I Could result in a small S parameter.

Such theories could exist with a large number of massless fermions.

Meifeng Lin (Yale) Lattice Exploration of the Conformal Window and TeV Physics

Condensate Enhancement
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Motivation
Lattice Calculations

Prospects and Challenges

Why do we care?
Technicolor in a Nutshell

Extended Technicolor
Dimopoulos & Susskind 1979, Eichten & Lane 1979

I Provides a mechanism for the quarks and leptons to acquire
mass through the technicolor quark condensate:

mq,l '
hQQiETC

⇤2
ETC

I Introduce new gauge interactions at the extended technicolor
scale ⇤ETC.

I ⇤ETC has to be large to suppress flavor-changing neutral currents
(FCNC):

FCNC : / ↵ij(qq)i(qq)j

⇤2
ETC

! ⇤ETC ⇠ 103 TeV.

I Need enhanced hQQiETC to generate realistic quark masses.

Meifeng Lin (Yale) Lattice Exploration of the Conformal Window and TeV Physics
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ETC --> Quark Mass

Lambda_{ETC} needs to 
be large to suppress FCNC

Need a large anomalous dimension 
& a large chiral condensate

LSD Collaboration, PRL104, 071601(2010)
Chiral Condensate Enhancement
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As we go to the chiral limit, the ratio of 
the chiral condensate of 6f to 2f seems 

to be increasing. 
Need chiral fits to find the value at the 

chiral limit. 
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Chiral Condensate Enhancement

PRELIMINARY

RXY,em ⌘ R(Nf )

R(Nf =2) [1 + em (↵XY,10 + ↵11 log em)]

Chiral Condensate Enhancement

I An enhanced chiral condensate is needed in order to
generate large enough quark masses in Technicolor
theories.

h  i / exp

 

�
Z ↵(⇤UV)

↵(⇤IR)

�(↵)
⇡�(↵

)d↵

!

I Chiral condensate from three GMOR ratios (in the chiral
limit)

R =
h  i

F3
⇡

=
M3

⇡
q

(2m)3h  i
=

M2
⇡

2mF⇡
, m = mf + mres

I Define enhancement ratios

RXY,em ⌘ R(Nf )

R(Nf =2)

CF CM FM
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How about more flavors? 

Condensate enhancement only makes sense if we are in the 
chirally broken phase. 

As we increase the number of flavors, the likelihood that we 
are in the conformal phase increases. 

chiral condensate vanishes.



S Parameter
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Motivation
Lattice Calculations

Prospects and Challenges

Lattice search for the conformal window
Work by the LSD Collaboration

The S Parameter
I Parametrizes vacuum polarization (oblique) corrections. Peskin and Takeuchi 1992

I Used to contrain new physics beyond the Standard Model.
I Definition

S = �4⇡
ˆ
⇧0VV(0)�⇧0AA(0)

˜
��SSM , ⇧0(0) =

d⇧(q2)

dq2 |q2!0

where

⇧µ⌫
VV (q) =

X

x
eiq·xhVµ(x)V⌫(0)i, ⇧µ⌫

AA (q) =
X

x
eiq·xhAµ(x)A⌫(0)i

I �SSM – Standard Model Higgs contributions

�SSM =
1
4

Z 1

0

ds
s

"
1 �

„
1 �

m2
H
s

«3

✓(s � m2
H)

#

mH – reference Higgs mass.
I Electroweak precision experiments find S ⇡ 0.

Scaled-up QCD with Nf = 2 gives S ⇡ 0.3.

Meifeng Lin (Yale) Lattice Exploration of the Conformal Window and TeV Physics
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13

The S Parameter 3
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FIG. 3: S parameter for Nf = 2 (red triangles) and Nf = 6
(blue circles). For each of the solid points, MP L > 4. The bands
correspond to fits explained in the text.

m is strongly Nf -dependent. The value of MV 0, to be dis-
cussed later, is roughly 0.2 in lattice units for both Nf = 2
and 6. For each of the solid points, MP L > 4. As an-
ticipated from the data in Fig. 1, ⇧0

V �A(0) at Nf = 6
drops below ⇧0

V �A(0) at Nf = 2 for the smaller M2
P

values, suggesting a suppression of S at Nf = 6. This
interpretation requires care, however, since the extrapola-
tion M2

P / m ! 0 is dominated by chiral logs for both
Nf = 2 and 6.

S-Parameter Results The S parameter (Eq. 1) is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the �SSM integral in
Eq. 1 with an infrared cutoff at s = 4M2

P , and taking
mH = MV 0. For the case 2MP < MV 0,

�SSM(MP ) =
1

12⇡



11
6

+ log
✓

M2
V 0

4M2
P

◆�

. (3)

We use values for MP and MV 0 determined in Ref. [1].
The choice mH = MV 0 corresponds roughly to a 1 TeV
value for the reference Higgs mass.

In Fig. 3, we plot S ⌘ 4⇡(Nf/2)⇧0
V �A(0) � �SSM .

For Nf = 2, the results are consistent with previous lattice
simulations [12, 13]. The SM subtraction at Nf = 2 is
small, reaching a value ⇠ 0.04 for the lowest solid mass
point, corresponding to mf = 0.010. A smooth extrap-
olation to M2

P = 0 is expected since the LO chiral logs
eventually appearing in ⇧0

V �A(0) are canceled by the SM
subtraction, Eq. 3. Given the linearity of the solid data
points, we include a linear fit to the three solid points with
M2

P /M2
V 0 < 1. In this range, where chiral perturbation

theory should begin to be applicable, there can also be an
NLO term of the form M2

P logM2
P , but it is not visible in

our data so we disregard it. The fit, with error band, is
shown in Fig. 3, giving Sm=0 = 0.32(5), consistent with
the value obtained using scaled-up QCD data [10].

The Nf = 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small. For the higher mass
points, S is consistent with a value obtained by simply scal-
ing up the Nf = 2 points by a factor of 3. The value of S

at the lower mass points, where M2
P /M2

V 0 < 1, begins to
drop well below its value at the higher mass points. This
trend has appeared at Nf = 6 even though 6 ⌧ N c

f . As
M2

P is decreased further at Nf = 6, S as computed here
will eventually turn up since the SM subtraction leaves the
chiral-log contribution (1/12⇡)[N2

f /4 � 1] log M�2
P . To

estimate where this turn-up sets in, we include a simple fit
of the form S = A + BM2

P + (2/3⇡) log(M2
V 0/M

2
P )

to the three points with M2
P /M2

V 0 < 1, disregarding a
possible M2

P logM2
P term. This fit, with error band, is

also shown in Fig. 3. In a realistic context, of course, the
PNGBs receive mass even in the limit m ! 0 from SM
and other interactions not included here, and these masses
provide the infrared cutoff in the logs.

Resonance Spectrum A question of general interest
for an SU(N) gauge theory is the form of the resonance
spectrum as Nf is increased toward N c

f . A trend toward
parity doubling, for example, would provide a striking con-
trast with a QCD-like theory. If the gauge theory plays
a role in electroweak symmetry breaking, then this trend
could be associated with a diminished S parameter.

We have so far computed the masses, MV and MA, and
decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ra-
tio in Fig. 4. Since the solid data points (MP L > 4) are
quite linear with a small slope for each case except MA at
Nf = 6, and since in each case, the NLO term in chiral
perturbation theory is linear in M2

P / m, we include a
linear fit to all the solid points. The error bars on the ex-
trapolations are also shown. For Nf = 2, MV extrapolates
to 0.215(3) and for Nf = 6 it extrapolates to 0.209(3). As
noted above, the equality within errors of these two masses
in lattice units was arranged by the choice of the lattice
coupling in each case.

For Nf = 2, the extrapolated value of MA/MV =
1.476(40) is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf = 6 data points for MA

do not yet allow a simple fit and extrapolation, However,
they do indicate a substantial decrease in MA/MV for
M2

P /M2
V 0 < 1, the same range for which the S parameter

begins to drop for Nf = 6, indicating that the decrease in
S is indeed associated with a trend toward parity doubling.

Our simulation results for FV and FA, using the nor-
malization conventions of Ref. [10], will be presented in
a future paper. The dependence on M2

P /M2
V 0 is mild, and

for each case except the FA at Nf = 6, quite linear with
a small slope. Although there is known to be an NLO chi-
ral log for the decay constants, it is not visible in these
cases, so we have performed a linear fit to the data. We
simply report here that for Nf = 2 the linearly extrapo-
lated values, converted to physical units using the lattice
scale determined from MV 0, are FV = 141.8(3.8) MeV
and FA = 138.9(8.2) MeV, agreeing well with the mea-
sured QCD results [11, 15].

Discussion The relation between a diminished S pa-
rameter and the spectrum can be explored through the dis-

I Nf = 2, simple linear extrapolation for MP < MV0 gives S = 0.32(5),
consistent with the value obtained using scaled-up QCD data.

I For Nf = 6, at small mass, S drops below the value obtained by simply
multiplying the Nf = 2 result by a factor of 3.

I However, there can be chiral log contributions, which will eventually
make S turn up. Shown fit curve used form:

S = A + BM2
P +

2
3⇡

log
M2

V0

M2
P

LSD Collaboration, PRL106, 231601 (2011)
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Parity Doubling?
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Lattice simulations are carried out with a finite fermion
mass mf , requiring extrapolation to reach the chiral limit.
With Nf/2 electroweak doublets, since we do not include
SM and other interactions to give mass to the PNGBs, the
extrapolation for Nf �= 2 would lead to log mf terms in
S. For our simulations, mf is not yet small enough to see
clear evidence for these chiral logs.

Simulation Details Simulations are performed using
domain-wall fermions and the Iwasaki improved gauge ac-
tion [11]. The domain-wall formulation suppresses the chi-
ral symmetry breaking associated with fermion discretiza-
tion, and preserves flavor symmetry at finite lattice spac-
ing, both desirable properties for computation of the S-
parameter. Gauge configurations are generated as in Ref.
[1]. Dimensionful quantities are given in lattice units. The
lattice volume is set to 323�64, with the length of the fifth
dimension Ls = 16 and the domain-wall height m0 = 1.8.
With the choices � = 2.70 for Nf = 2 and � = 2.10 for
Nf = 6, the physical scales represented by the mass of
the lightest vector resonance, are the same within errors.
For the NGB decay constants, the chiral extrapolation for
Nf = 6 is not yet possible, so it remains open whether
they are the same in the chiral limit [1].

Simulations are performed for fermion masses mf =
0.005 to 0.03, although the Nf = 2 results for mf =
0.005 may suffer from finite-volume effects, and are not in-
cluded in the analysis. For other values of mf , MP L > 4,
so that finite-volume effects should be small. Other sys-
tematic effects, for example due to the finite lattice spac-
ing are also believed to be small. The error bars shown in
each figure are therefore statistical. At finite lattice spac-
ing, even with mf = 0, the chiral symmetry is not ex-
act, with the violation captured in a small residual mass
mres (= 2.63(2)� 10�5 for Nf = 2 and 8.26(3)� 10�4

for Nf = 6 ). The total fermion mass m is then m ⌘
mf + mres.

Current Correlators The lattice expression for the cur-
rent correlator of interest is

⇧µ⌫
V V (Q) = �µ⌫⇧V V (Q2)� (QµQ⌫/Q2)e⇧V V (Q2)

= Z
X

x

eiQ·(x+µ̂/2)hVµ(x)V ⌫(0)i (2)

and similarly for ⇧AA. Here Vµ is the conserved domain-
wall vector current, V ⌫ is the non-conserved local cur-
rent, and Z is a non-perturbative renormalization constant.
(x + µ̂/2) appears because Vµ(x) is point split on the
link (x, x + µ). The use of conserved currents ensures
that lattice artifacts cancel in the V � A current correlator
⇧V �A(Q2) ⌘ ⇧V V (Q2)�⇧AA(Q2) [12].

We calculate ⇧V �A(Q2) for a range of positive (space-
like) Q2 values, and for each mf extrapolate to Q2 = 0 to
determine the slope 4⇡⇧0

V �A(0) entering the S parame-
ter. In Fig. 1, we show the simulation data for ⇧V �A(Q2),
along with statistical errors and fit curves. The data itself

FIG. 1: �V �A(Q2) data and fits for Nf = 2 and 6. Fits, over the
range Q2 < 0.40, are done separately for each mf .
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FIG. 2: V � A correlator slopes at Q2 = 0 for Nf = 2 (red
triangles) and Nf = 6 (blue circles). For each of the solid points,
MP L > 4.

indicates that for Nf = 2, ⇧0
V �A(0) increases as mf de-

creases, while for Nf = 6, it decreases, suggesting a rel-
ative decrease in S per electroweak doublet at Nf = 6.
We fit the ⇧V �A(Q2) data for Q2 < 0.4 using a four-
parameter, Pade(1,2) form (linear numerator, quadratic de-
nominator). These fits, behaving like 1/Q2 at large pos-
itive Q2, are shown with statistical error bands in Fig. 1.
Each has two poles at real, negative Q2, representing a
time-like structure with cuts and multiple poles. Each fit
leads to a value of ⇧0

V �A(0) stable as the number of Q2

points is varied.
The correlator slopes at Q2 = 0 are plotted in Fig. 2.

In this figure and others, we plot versus M2
P /M2

V 0 rather
than m, where MP is the NGB mass [1], and MV 0 is the
extrapolated mass of the lightest vector state. M2

P /M2
V 0 is

more directly physical, and the relation between M2
P and

I As the mass gets smaller,
For Nf = 2, the slope increases.
For Nf = 6, the slope decreases.

Spectral representation of S

S and Parity Doubling

I The correlations function, ⇧V�A ⌘ ⇧VV �⇧AA,can be
written in terms of the vector and axial-vector spectral
functions RV(s) and RA(s), Peskin and Takeuchi, PRD46, 381-409(1992)

⇧V�A(q2) = � q2

12⇡

Z 1

0

ds
⇡

RV(s)� RA(s)
s� q2 � F2

⇡

I S in such representation becomes

S =
1

3⇡

Z 1

0

ds
s

n

ND [RV(s)� RA(s)]

�1
4

"

1�
✓

1� m2
H

s

◆3

✓(s� m2
H)

#

o

I As spectrum becomes more parity-doubled, S may get
smaller. Single-pole dominance

Single-Pole Dominance

I The dispersive representation of ⇧V�A(q2) is given by

⇧V�A(q2) = � q2

12⇡

Z 1

0

ds
⇡

RV(s)� RA(s)
s� q2 � F2

⇡

I Assuming a single-pole dominance

RV(s) = 12⇡2F2
V�(s�M2

V)
RA(s) = 12⇡2F2

A�(s�M2
A)

I S (without SM subtraction) is given by

S = 4⇡



F2
V

M2
V
� F2

A
M2

A

�

As we approach the conformal 
window, chiral symmetry breaking 
effects may be smaller. Vector and 
axialvector mesons may become 
more degenerate, such that S 
parameter gets smaller. 
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So far we have only looked at 2f and 6f, and assume 6f is in 
the chirally broken phase. 

Which side are 8f and 10f on? 

We will first check if our 10f data are consistent with 
conformality. 8f analysis is on the way. 



QCD and Beyond on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Results

Nf = 10
Is the ten-flavor theory chirally broken, or conformal?

Hayakawa et al. observed evidence for the existence of an infrared fixed point
from Schrödinger functional running coupling studies. [PRD 83, 074509 (2011)]

Look for compatibility with the conformal mass dependence

MX ⇡ CXm1/(1+�⇤) + · · ·

If we fit the spectrum data to the above equation with different values of �⇤, the
�2 of the fits should have the minima at the same value of �⇤.

0.0 0.5 1.0 1.5 2.0

1
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10
20
50
100
200

g*

c2
HN do

f=
24
L

S
V

N
F

C
FV

total

Nf = 10

Not perfect, but within margin of
errors.

Best global fit has �⇤ = 1.10(17) with
�2/dof = 14/23.

Which side of the conformal window?
We don’t know yet.
Appelquist et al. (LSD Collaboration),
arXiv:1204.6000

Conformality Test for 10-flavor

In the conformal phase, there is no 
intrinsic scale (in the infinite volume 
and massless limit).

With a finite mass, and assume 
volume is infinite, 
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QCD and Beyond on the Lattice

From Confinement to Conformality

The Phases of SU(N) Gauge Theories

Critical Behavior
With Nf massless Dirac fermions,

1 Nf < Nc
f : Confinement and S�SB, massless Goldstone bosons, and

other hadrons.

2 As Nf ! Nc
f , walking may occur [more later].

3 When Nc
f  Nf < NAF

f : conformal, no intrinsic scale, all the particles are
massless.

If we introduce a small fermion mass m,

1 quark mass dependence is governed by Chiral Perturbation Theory, e.g.,

M2
⇡ = 2B0m

„
1 + lr

3
32B0

f 2 m +
1

16⇡2f 2 2B0m log
2B0m
⇤2

�

«

2 ??

3 quark mass dependence is governed by the anomalous dimension �⇤ at
IRFP.

MX = CXm
1

1+�⇤

In a finite volume, there will be 
volume dependence to be 
considered. => finite size scaling. 

They are not exactly falling at the same 
point, but quite consistent within margin of 
errors. 

Global best fit: gamma* = 1.10(17)
Our method: Scanning over a range 
of gamma^* to see if the minima of 
chi^2 are consistent for different 
observables. LSD Collaboration, arXiv:1204.6000



10-flavor Mass Fits
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QCD and Beyond on the Lattice

Lattice as a Tool to Probe Conformality

Going Beyond QCD: Results

Nf = 10

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035
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Sample fit curves to MP, MV and MA with �⇤ = 1.
For MP, conformal fit and the leading-order ChPT fit are identical.
For MV and MA, linear fits and conformal fits are comparable.
! Even though the conformal fits are compatible with our data, we cannot
exclude the possibility of chiral symmetry breaking.

However, our data suggest if Nf = 10 is in the conformal phase, we are likely to
have a large �⇤ ⇡ 1.
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vector-meson mass 0.24  MV  0.34 for the range of
fermion masses m used in our analysis. This is similar to
our previous studies at Nf = 2 and Nf = 6 [1, 2]. Each
ensemble generated contains approximately 1200 gauge
configurations.

Input fermion masses mf = 0.01 to 0.03 are included
in the simulations. At finite lattice spacing, even with
mf = 0, the chiral symmetry is not exact, with the vio-
lation captured in a residual mass mres. The total fermion
mass m is then m ⌘ mf + mres. For our simulations,
mres ⇡ 0.0017, so that mres ⌧ mf for all values of mf .

To study the effects of thermalization and fixed topolog-
ical charge, we have generated gauge field configurations
from both disordered and ordered starts for most ensem-
bles. We note that an mf = 0.005 ensemble was also
generated, but did not show signs of adequate thermaliza-
tion over the number of configurations generated, and we
will not discuss those results further here.

Combination of ordered/disordered data The topo-
logical charge Q is observed to evolve very slowly on all
ensembles, so that disordered starts generally remain in
a sector with large net topological charge, while ordered
starts are essentially stuck in a sector with zero net topo-
logical charge. On the subset of our ensembles where ex-
trapolation of Q for disordered starts is possible, we find
that these effects are able to explain most of the observed
discrepancy between observable values on the two ensem-
bles. In a future study currently in progress, we will include
these topological-charge corrections explicitly by measur-
ing the topological susceptibility on all ensembles.

Since neither of our evolutions at a given mass point has
sufficient topological tunneling, we combine the results us-
ing the difference to estimate a systematic error. For an
observable O, determined on a pair of ensembles with the
same physical parameters but with different initial states
(ordered and disordered), we assume that the samples of
O are sufficiently large within a given ensemble that the
central limit theorem applies. Each distribution is then
Gaussian, with mean and standard error (µ1, �1), (µ2, �2).
There remains an unknown bias of the mean computed
within a given topological sector with respect to the true
mean µ̂, resulting from a properly-weighted distribution
over all sectors.

We expect that the true mean lies somewhere between
µ1 and µ2. To obtain a conservative estimate of the true
distribution, we take a uniform distribution of width � and
center µ̄ = (µ1 + µ2)/2 to describe our knowledge of
the bias-corrected mean. Convolving this uniform distribu-
tion with the Gaussian sample distributions, the combined
mean is given by µc = µ̄, while the variance is equal to
�2

c = 1
2
(�2

1 + �2
2) + 1

3
�2. We determine the width � by

assuming that the width as a fraction of the mean is con-
stant for a given observable as a function of light fermion
mass, taking the maximum fractional difference over the
values observed as the best estimate. The resulting � val-
ues range from 5-15% for most observables, so that the �

5 6 7 8 9 10 11

12

14

16

18

20

22

MP êFP

M
N
êF P

m ! 0

Nf = 2

Nf = 6

Nf = 10

FIG. 1. Edinburgh-style plot comparing ratios of physical ob-
servables for simulations of the Nf = 2 (red), Nf = 6 (blue),
and Nf = 10 (green) theories. The points are joined together
in decreasing order in the fermion mass, with the heaviest and
lightest masses denoted by a triangle and box respectively. The
combinations of observables plotted are MN/FP vs. MP /FP ,
chosen to clearly illustrate finite-volume corrections which act
with opposite sign on bound-state masses and FP .

contribution to the variance �2
c is always significant.

Finite-volume effects Our simulations so far have used
a single lattice spatial volume, L/a = 32. Finite-volume
effects can in principle be incorporated through a con-
trolled expansion in some function of ML, with M the
relevant mass scale for a particular framework as in Ref.
[9]. Here we will discuss finite-volume effects qualita-
tively, and argue that such effects should be relatively small
on a subset of our results.

An estimate of the significance of finite-volume correc-
tions can be made by comparing ratios of physical observ-
ables. Edinburgh-style plots, which were used frequently
as a diagnostic tool in the early literature on lattice QCD
[24], can be particularly useful for theories other than QCD
[12]. In Fig. 1, we compare the ratios of observables
MN/FP and MP /FP . In order to better illustrate the ex-
pected behavior, we include our own spectrum measure-
ments for Nf = 2 and 6 [1, 2] for comparison.

The combinations MN/FP and MP /FP are chosen to
clearly show finite-volume corrections. Decreasing the
lattice volume tends to increase MN and MP while si-
multaneously decreasing FP relative to their values in the
infinite-volume limit, driving the points up and to the right
in the plot as m ! 0. On the other hand, the infinite-
volume scaling behavior for a chirally broken theory has
the points moving to the left as m ! 0, as the pion mass
scales to zero. For the Nf = 6 case, the latter trend
changes into the former around mf = 0.010.

For the Nf = 10 data combined using the method de-
scribed above, no movement is seen within errors for mf �
0.020, consistent with the possibility that Nf = 10 can be
described by a mass-deformed conformal expansion. In

Word of Caution

Be aware of the finite volume effects!

Finite volume effects drive the points 
up and to the right. 

May need to worry about light mass 
points. 

Need to reexamine the results with 
larger volumes. 
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Scalar Mesons in QCD

Lattice QCD study of the scalar mesons a0!1450" and !!600"
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We study the a0 and ! mesons with the overlap fermion in the chiral regime with the pion mass as low
as 182 MeV in the quenched approximation. After the "0# ghost states are separated, we find the a0 mass
with the q !q interpolation field to be almost independent of the quark mass in the region below the strange
quark mass. The chirally extrapolated results are consistent with a0!1450" being the u !d meson and
K#0!1430" being the u!s meson with calculated masses at 1:42$ 0:13 GeV and 1:41$ 0:12 GeV,
respectively. We also calculate the scalar mesonium with a tetraquark interpolation field. In addition to
the two-pion scattering states, we find a state at%550 MeV. Through the study of volume dependence, we
confirm that this state is a one-particle state, in contrast to the two-pion scattering states. This suggests that
the observed state is a tetraquark mesonium which is quite possibly the !!600" meson.

DOI: 10.1103/PhysRevD.76.114505 PACS numbers: 12.38.Gc, 11.15.Ha, 14.20.Gk

I. INTRODUCTION

Unlike pseudoscalar, vector, and tensor mesons, the
scalar mesons are not well known in terms of their SU!3"
classification, the particle content of their composition, or
their spectroscopy. Part of the problem is that there are too
many experimental candidates for the q !q nonet. Figure 1
shows the current experimentally known scalar mesons
whose number more than doubles that of a nonet. One
viable solution is that low-lying scalars, such as the
!!600", a0!980", and f0!980", are tetraquark mesoniums
whose classification and spectroscopy have been studied in
the MIT bag model [1] and the potential model [2].
Another suggestion is that a0!980" and f0!980" are K !K
molecular states [3]. Other candidates for tetraquark meso-
niums include vector meson pairs produced in $$ reactions
[4] and hadronic productions [5] and the recently discov-
ered charmed narrow resonances [6].

Under the supposition that a0!980" and f0!980" are
tetraquark mesoniums on account of the fact that they are
favored by spectroscopy studies [1,2], small two-photon
decay widths [7], and the pattern of% and J=" decays [8],
the question remains: where is the isovector scalar q !q
state? From Fig. 1, we see that one candidate is
a0!1450". However, in the conventional wisdom of the
quark model, its mass is too high. Not only is it higher
than a2!1320" and a1!1230", in contrast to the spin-orbit
splitting pattern in charmonium, but it is even slightly
higher than K#0!1430" which contains a strange quark and
is believed to be the s !u or s !d meson in practically all the
models [9]. According to the quark counting rule, mesons
and baryons made up of strange quarks are expected to lie
higher than their counterparts with u=d quarks.

Notwithstanding the success of the quark potential model
in describing charm and bottom hadrons, its applicability
to light hadrons with SU!6" symmetry has been ques-
tioned, since chiral symmetry plays an essential role
[10,11] in light hadron dynamics. Might it be that the scalar
q !q meson is yet another challenge to the SU!6" quark
model’s delineation of light hadrons?

Lattice QCD is perhaps the most desirable tool to ad-
judicate the theoretical controversy surrounding the issue
and to reveal the nature of the scalar mesons. In fact, there
have been several calculations to study the a0 meson with
the !  interpolation field in the quenched approximation
[12–14] and with dynamical fermions [15–19]. In calcu-

FIG. 1 (color online). Spectrum of scalar mesons together with
#, &, a1, and a2 mesons.
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(Plot from N. Mathur et al. 2007.)

isosinglet

isotriplet
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Light Scalars in Walking Technicolor? 
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Can we have light scalars in Walking Technicolor? 

Model builders say yes. 

See talks by Kuti, Grinstein, Evans, Matsuzaki, ... . 

Can we produce light scalars on the lattice? 
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• Connected diagrams only 
(isotriplet)
• Values in the chiral limit depend 
on extrapolations.
• At finite quark mass, the scalar 
becomes closer to the pseudoscalar 
as we increase the number of 
flavors. 



Summary
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There are indications of condensate enhancement, reduced S 
parameter and a large anomalous dimension as we increase 
the flavor of fermions in the SU(3) gauge theory. 

With the discovery of a 125 GeV ``Higgs” boson, it is 
important for lattice to investigate the possibility of a light 
scalar in near-conformal gauge theories. 


