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e So far no new SUSY or other particles were found from new physics!
e A light Higgs-like state was found first! (Higgs impostor?)

e The best signal is the yy mode!

Shrewd choice from Mother Nature: borderline for SUSY and SM (vacuum instability)

MSSM at the weak scale | —
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Is this the Higgs boson?

spin 07 parity?

H—vyy (s=0or 2 in s-wave)
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Is this the Higgs boson?

spin 07 parity?

H—=yy (s=0or 2 in s-wave)

H—bb and H—11 (favors s=0 in s-wave)

H—Z/Z*—4 leptons, or WW*—4 leptons (will nail down spin)

branching ratios?

some yy excess and 1T deficit

How do we plan USQCD with the new Higgs-like particle?
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Why is SUSY not on the Tombstone?
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¢ is the theory space large enough?

e caveat: very large field with very large set of problems, inevitably sampled with bias
and limited in scope (of some lattice activities)



Outline

how large Theory Space is needed?

light scalar and dilaton mechanism close to CW

chiral condensates and spectroscopy

running (walking) coupling

light scalar spectroscopy

Summary and outlook
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most projects stay close to conformal window
expected model features when “close enough”?

walking coupling?\

separation of two scales to facilitate dilaton mechanism?
light scalar?/

there are candidate models but only limited results

very difficult issues on-lattice and off-lattice

let us try first the simplest model:
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role of third massive fermion flavor? Conformal Technicolor?
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The dilaton: pseudo-Goldstone particle of broken scale invariance

scale anomaly (RG invariant)

9. D! = @ = IB(CL’)Ga G DH = @y, Dilatation current
p = S =

dav

OO (Wl = 2 (pp" ~ g p)e

010, D" (D)o (p)y = frm?e P

1], = i [Gne]

NP dav NP

o], = B2 6,60 - 026,60y

symmetric energy-momentum tensor

Looking for PCDC relation among three
unknowns:

1. dilaton mass m¢
2. dilaton decay constant f,
3. non-perturbative gluon condensate

long history of PCDC relation
only non-perturbative part kept in derivation

recently:
Bai and Appelquist Phys.Rev. D82 (2010) 071701
Matsuzaki and Yamawaki arXiv:1206.6703[hep-ph]

earlier:

Dietrich, Sannino, Phys.Rev. D 72 (2005) 055001
and others ...
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lim,_q (a4 (1 3 tr P>) _ 3716 <a Mattice non-perturbative lattice gluon condensate*

from current correlators?
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is this separation meaningful? G. Rossi

better lattice methods?
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BSM lattice tools and tasks?

e establish chiSB or chiral symmetry

e spectroscopy, confining force

* running coupling (walking?)

* [ight scalar? disconnected diagrams?

e control cutoff, finite volume, and fermion mass
hard problems, studies remain limited
hard even in QCD where we know the answer!

and we have only a small fraction of QCD resources
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! c,= 7.278+0.048

/ xZ/dof=1.47

+?/dof= 3.63

1= gt [ ()

d0= 0.00982 + 0.00010

my=

d2= 209.95 + 5.95

:d0+d2-m2

0.004 0.006

m

0.002

two independent determinations of the chiral condensate
(partially cancelled UV divergences in subtracted form)

consistently non-vanishing in chiral limit

all sextet results are treated as inf volume (only m=0.003 is truly extrapolated)

relying on L-Mm > 5 (less than one percent L correction)

0.008

0.01



Nf=2 SU(3) sextet chiral condensate

chiral condensate and its subtracted form subtracted chiral condensate

0.025 7
B=3.20 |

() =co+c1-m

/
c,= 0.01037 = 0.00030 0.02} / €,= 0.01037 =+ 0.00030

) ! c,= 7.278x0.048
0.05- ¢ = 7.278 +0.048 2 L
. / v “/dof=1.47
, /
~qoal  xPdof=1.47 = '
= 004 | 0.015F "/dof=3.63
= /
- /
0.03} < /

0.01 [1 - mvd%v]wwpq

d0= 0.00982 + 0.00010

:d0+d2-m2

my=

0.01 - §
(V) = Xcon = do+ dy-m? d,= 209.95 = 5.95
m range in fit: 0.003 — 0.008
0 | | | ' 0.005 ' ' | '
0 0.002 0.004 0.006 0.008 0.01 0 0.002 0.004 0.006 0.008 0.01
m m

two independent determinations of the chiral condensate

(partially cancelled UV divergences in subtracted form)

consistently non-vanishing in chiral limit

all sextet results are treated as inf volume (only m=0.003 is truly extrapolated)
relying on L-Mm > 5 (less than one percent L correction)

spectral density analysis more powerful (Giusti and Luscher, Boulder group, Patella ...)



complete control on UV divergences: node number density of chiral condensate

l — )y .
= > (00 = ) lim lim lim p(A,m)=—  spectral density
kzl
A [ ]

v(M,m)=V / dX p(\, m), A=+\/M2—m?2 node number density
—A

. . . Luscher and Giusti
vr(Mr, mr) = v(M,mq) renormalized and RG invariant goyider group (Schaich talk?)

Patella
earlier DeGrand
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spectroscopy and force m#0



mass deformed chiral SB in finite volume below conformal window:

A 1
L, ; Goldstone dynamics is different in each regime
I £ study of 6 and £-regimes (RMT)
L " chiral p-regime and p-regime (probing chiral loops)
................ 4 complement each other
interpretation of rotator levels in m,—0 limit:
4+ |Z£2 6
FL’
% — rotz-ltor = pion
2F°L; energy gap M =,/2Bm,
I ' I >
! )
F’L} L,
0.16 =4
= g Veff: chiral condensate in flavor space -
b =380 . , , P tilted condensate
0.12 } 167x32 = { arbitrary orientation of condensate
N% 0.08 | . W AN L ‘ J Not to misidentify rotator gaps
- 5 | | ) as evidence of chirally symmetric
0.04 phase !
O L L L L L
0 0.01 0.02 0.03 0.04 0.05

amq

sextet simulations are in the p-regime f=3.2 and p=3.25



crossover of asymptotic finite volume behavior :

large volume
hadrons point-like

squeezed wave-function

volume dep. ~ 1/L3

- F(k) .
V(k)= % extended hadron with form factor F'(k)
+m

crossover to femto world

hadron with form-factor

T exchange ~ exp(-mL) 10°
SE L (a)
*® I
: volume dep. ~ 1/L3 F(k) —_ =)
10'F l+c-k
|k
OF = ZV(ﬁL) hadrom self energy from interaction with images 10“1: e é) 55 o
" L
| A 2T . : ALz :
OF = EZV(n T) Poisson resummation, V (k) is the Fourier transform 14
ii d E1 of (b)
A= 1 e " X .- . . a L' -exp(-mL) fit 1
V(k)==—— = V()=—— for large r in point-like approximation 10} F ( k) —
K+ m 4 08 1+c -k
06
—mL C
SE=~V(0)+6V(L) JE= eT point-like interaction for large L (non-relativistic) 04p
02— Y
5 10 15 20

Liischer made it relativistic using field theory

the size where the 1/L3 correction to the masses disappears and the exponential
behavior sets in depends on the behavior of the hadron form factor

Leutwyler put in the chiral vertices, hence the g(mL) form in chiral PT

the characteristic inverse power vs. exponential behavior can
frustrate at limited lattice sizes the analysis of chiral vs.
conformal hypotheses

the size where the 1/L3 correction to the masses disappears and the exponential
behavior sets in depends on the behavior of the hadron form factor



crossover of asymptotic finite volume behavior :

V(k)==——  extended hadron with form factor F(k)
k*+m
large volume squeezed wave-function crossover to femto world
hadrons point-like
volume dep ~1/L3 i "‘h“i-“a.‘h *.ﬁf EM T
. - &j?:{ ... - ..|. . b . [l
#ﬁ‘ ';:,;"" #f&ri_ﬂ; : , hadron with form-factor
T exchange ~ exp(-mL) ﬁ‘% i 10 )
.._:"_ .- ':.Z_:__:_I ™ 'E;} SE g (a) !
=, 1n2 1

Squeezing of wave-func’rlons IS an important effecf
po’ren'rially confusing chiral and conformal tests

21
OF = B ZV(n T) Poisson resummation, V(k) is the Fourier transform 14

E t (b)
812:

for large r in point-like approximation 10F L -exp(-mL) fit F ( k) —
08F -
06}

—mr

1 e
Vik)== = V()=
(k) En (r) ;

1+c-k?

SE~V(0)+6V(L) OE~ eL

point-like interaction for large L (non-relativistic) 04t

T 15 20

Liischer made it relativistic using field theory the size where the 1/L3 correction to the masses disappears and the exponential

behavior sets in depends on the behavior of the hadron form factor
Leutwyler put in the chiral vertices, hence the g(mL) form in chiral PT
the characteristic inverse power vs. exponential behavior can
frustrate at limited lattice sizes the analysis of chiral vs.
conformal hypotheses

the size where the 1/L3 correction to the masses disappears and the exponential
behavior sets in depends on the behavior of the hadron form factor



0.07

0.06

0.05

0.04

0.03

0.02

0.01

m=0.003-0.006 range close to chiral log regime?

Nf=2 SU(3) sextet chiral fits of M; and F,

sextet model

Goldstone pion in PCAC channel

quadratic fit p=3.2 B=3.2
2 2 .7
MJt =C, M +C, M 7
¢, = 6.35x0.21 y
c,= -30.9 + 453 P
s 2ldof = 2.05 &
i o fitted i
not fitted
%SB — — —linear part only
i quadratic fit i
the Goldstone boson of TC
I inputs from volumes 32%x 64 and 48%x 96 |
m fit range: 0.003 — 0.006
0.002 0.004 0.006 0.008 0.01 0.012
m

0.08

0.07}
0.06f
0.05f

" 0.04f
0.03f
0.02f

0.01r

log detection will require more precise data

sextet model Fn from PCAC channel

linear fit p=3.2 B=3.2

F =c +c,m setting the EW scale F=co

Co = 0.0279 = 0.0004

c, = 3.1 +0.1 |
2 _
¥ /dof = 0.923 o fitted
not fitted H
linear fit

inputs from volumes 323x 64 and 48%x 96

m fit range: 0.003 - 0.006

|
0.002 0.004 0.006 0.008 0.01
m

Nf=2 helps, more QCD-like

consistency with partially quenched staggered chiral perturbation theory?

0.012



conformal hypothesis breaks down in global fits:

sextet model Goldstone pion in PCAC channel sextet model Fn from PCAC channel
025 T T T T T 008 T T T T T

conformal power fit $=3.2

conformal power fit f=3.2 _
M =c m'/™ 3.2 0.07} P B B=3.2 i}
T _ 114y
0.2 c_= 2.362x0.22 . F =c_m
0.06 |
v= 1.040 £ 0.073 Cp = 0.234 + 0.020
2
x'/dof =2.25 005l y= 2.20+0.15 |
0.151 7 2
/dof =2.11 :
B o fitted e % O fltteq
not fitted - 0.04r not fitted -
conformal fit conformal fit
01r . 0.03} 1

inconsistent and large anomalous

large anomalous dimension? YW 0.02 dimension is fake! |

0.05

0.01 inputs from volumes 32%x 64 and 48°x 96

inputs from volumes 32°x 64 and 48°x 96

m fit range: 0.003I — 0.006

m fit range: 0.003 — 0.006 0 . ! !
0 ' : : : : 0 0.002 0.004 0.006 0.008 0.01 0.012
0 0.002 0.004 0.006 0.008 0.01 0.012 m
m

large effective “critical exponents” ( }) are forced by chiral behavior
in far infrared

it is not the running v(u) at scale p!



sextet simulations confining force at finite m? (LHC group)

sextet N. = 2, } = 3.20

0
— V, *+ or, fit r:10-20

+ 48%x96, m = 0.003

— V. - o/r + or, fit r:3-20

0.12

1/2

0.11

— linear fit, y'/dof = 0.48/1

— power fit comlly"‘, XZ/dof = 0.38/1

+ V(r) fits with o/r term

0.002 0.004 0.006
m

1/1+y ~0.04(4) ?

0.008

sextet N, = 2, } = 3.20

0.6
~
N
> 005
0.4 — V, - o/r + or, fit r:3-16
B — V, *+ or, fit r:10-16 i
+ 32°%64, m = 0.006
0.3 —
| . | . | . | . | |
6 8 10 12 14 16
r
sextet N. = 2, f§ = 3.20
0.18 T T
0.17— |
LT |
0.16 } —
[ ! !
0.15— |
o L i
0.14+ —
0.13- — linear fit, y /dof = 2.8/1 _
L — power fit comlly“‘, xz/dof = 2.9/1 i
+ V(r) fits without o/r term
0.12— |
| | L | L |
0 0.002 0.004 0.006 0.008
m






running coupling at m=0



running coupling at m=0

Schrodinger functional



running coupling at m=0

Schrodinger functional

New gradient flow coupling



DeGrand et al. find: Nf=2 sextet beta function may have an IRFP zero, or walks?
good work and difficult model

chiral symmetry breaking is not inconsistent with the results = walking?

‘ | I | I I | I | I
\
| \ |:| Bf:o ]
\

B(u,2)

[ |© thinlinks 4->8 (DeGrand ef al.) il (DeGrand et al.) —_05
O fat links 6->12 s \ o B o .
0041~ | x fat links 8->16 7 A S oo oop
— — 2 IOOPS = \ _— WO 100pPS |
I - \
- \ IRFP re-appearing or walking? 1
0.02 - . . . \ % PP go g
IRFP disappearing? 0 \
N - = B \ i
| [ ]= N
I

) TV I St |
0021 7[\}1]% + Elf__i%}_j___ 005%\-%___%____

-0.04 - —

02 04 0.6 u=1/g
u=1/g" 4',6", or 8"

Some independent method using a different running coupling scheme?



LHC group
Running coupling definition from gauge field gradient flow

B 3
472

(E(t)) a(q){1+kia(q) + O(a?®)}, q= , ky =1.0978 + 0.0075 x N;

1
NG




LHC group

Running coupling definition from gauge field gradient flow

B 3
472

(E(t)) a(q){1+kia(q) + O(a?®)}, q= , ky =1.0978 + 0.0075 x N;

1
NG

t is the gradient flow time
Running coupling definition (range is (81)/2) :

A (1*E
while holding ¢ = (8)Y/2/L fixed: a.(L) = T (LE(1))

3 1+d(c)
_1/c2 C47T2
5(6) — ?9;1(6 1/ ) — 1 — T

3rd Jacobi function




LHC group
Running coupling definition from gauge field gradient flow

(E@®) = ——a(@){1 + ka(g) + O(?)}, ¢=

Art? . ki = 1.0978 + 0.0075 x N;

1
NG

t is the gradient flow time
Running coupling definition (range is (81)'/2) :

4 (t*F
while holding ¢ = (8t)/2/L fixed: a.(L) = m {"E®R))

3 1+4(c)
_1/c2 C47'('2
5(6) — 79;1(6 1/ ) — 1 — T

3rd Jacobi function

massless fermions; antiperiodic all directions s=1.5 step
Nf=4 staggered fermions; 4-stout; L=12-18; 16-24; 24-36




LHC group

Running coupling definition from gauge field gradient flow

235

231

s=1.5 o(u) step function at fixed u and fixed L in physical units

3

(B(t)) = 1-g0a){1+ hoalg) + 0()}, ¢=

1
NG

, Ky = 1.0978 + 0.0075 x:N;

t is the gradient flow time

Running coupling definition (range is (81)'/2) :

while holding ¢ = (8t)/2/L fixed: a.(L) =

3 1+d(c)
_1/c2 C47'('2
5(6) — 79;1(6 1/ ) — 1 — T

3rd Jacobi function

massless fermions; antiperiodic all directions s=1.5 step
Nf=4 staggered fermions; 4-stout; L=12-18; 16-24; 24-36

gz(sL, a2/L?

22

215

21

2.05

1.95H

Z(gQ(L), a2/L2) = gz(sL,aQ/LZ) =C,+C, a?/L?

u=1.9

Nf=4
¢c=0.3

o(u) = ¢, =2.0893 = 0.01
c,=22.36 = 1.6

0 v?/dof= 0.432

2 loop

1 loop
I

| | | | | |
1 2 3 4 5 6 7 8
a2/L? x107°



LHC group

Running coupling definition from gauge field gradient flow

231

235

s=1.5 o(u) step function at fixed u and fixed L in physical units

Z(gQ(L), a2/L2) = gz(sL,aQ/LZ) =C,+C, a?/L?

u=1.9

3

T2{1 +kalg) +0(a”)}, g=

(B(t)) = =

, Ky = 1.0978 + 0.0075 x:N;

t is the gradient flow time
Running coupling definition (range is (81)'/2) :

4 (t*F
while holding ¢ = (8t)/2/L fixed: a.(L) = m {"E®R))

3 1+4(c)
_1/c2 C47'('2
5(6) — 79;1(6 1/ ) — 1 — T

3rd Jacobi function

massless fermions; antiperiodic all directions s=1.5 step
Nf=4 staggered fermions; 4-stout; L=12-18; 16-24; 24-36

22

‘“i Nf=4
~ 215
?’, c=0.3
al
O a4t
20510 o(u) = ¢, =2.0893 = 0.01
C, =22.36 = 1.6
o= »Z/dof= 0.432
O 2loop
1'957\ © 1IOOF\) | | | | | |
0 1 2 3 4 5 6 7 8
a?/L2 x107°
O | step funct‘ion from W‘ilson flow
1 loop
2 loop
1.2+ NF=4 C=O.3
«— .. two-loop beta-function °
(2]
€ | non-universal correction?
g 0.8
al
(@)}
I 06
=
s
l
o4t
021

4.5




LHC group
Running coupling definition from gauge field gradient flow

s=1.5 o(u) step function at fixed u and fixed L in physical units

231

235

Z(QQ(L), a2/L2) = gz(sL,aQ/LZ) =C,+C, a?/L?

u=1.9

3

- 2 e =
(E(t)) = 47Tt2oz(q){1 + kia(q) + O(a®)}, ¢ ViTh k1 = 1.0978 + 0.0075 x =Ny

22

:i Nf=4
a c=0.3
t is the gradient flow time 205 o(u) = ¢, =2.0893 = 0.01
Running coupling definition (range is (81)'/2) : c,=22.36 = 1.6
T s 2idof= 0.432
47T <t2E(t)> 1.95 8 ﬂggg
while holding ¢ = (8¢)1/2/L fixed: a.(L) = e e I
g (8 ) / ( ) 3 1_|_ 5(6) a2/L2 x107°
4 __2 12t Nf=4 ¢=0.3 ZIEZg
_ ey 1 ¢
0(c) = vs(e ) —1 3 < 1 two-loop beta-function o
3rd Jacobi function g | non-universal correction?
s
massless fermions; antiperiodic all directions s=1.5 step ol
Nf=4 staggered fermions; 4-stout; L=12-18; 16-24; 24-36

run production now in sextet model

4.5



light scalar? (Higgs impostor?)



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

con
fO

effective mass M

0.6

o
o

o
~

o
w

o
N

0.1

effective mass M%)n from 0™* connected correlator

con _ _
Mfo = MO +C, m p=3.2

f0 meson mass requires missing disconnected part

M0= 0.1555 + 0.0070 B
C,= 253+1.3

xZ/dof=1.21

input from volumes 243« 48, 32°%x 64

m fit range: 0.003 — 0.010

1 1
0.005 0.01

0.015

M(fo)/F ~ 6
without disconnected diagram:



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

con
fO

effective mass M
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o
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o
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0.1

effective mass Mfgn from 0™* connected correlator

con _ _
Mfo = MO +C, m p=3.2

f0 meson mass requires missing disconnected part

M0= 0.1555 + 0.0070 B
C,= 253+1.3

xZ/dof=1.21

input from volumes 243« 48, 32°%x 64

m fit range: 0.003 — 0.010

1 1
0.005 0.01

0.015

M(fo)/F ~ 6
without disconnected diagram:



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

effective mass Mfgn from 0™* connected correlator

MZ" =M +c,m =32 M(fo)/F ~ 6
without disconnected diagram:

fO meson mass requires missing disconnected part

0.6 i
M = 0.1555 + 0.0070
° L X
0.5F _ . |
S o c,= 253=13
= 2
x“/dof=1.21 > (
@ 0.4 1
(4]
=
(O]
_E 0.3 i
3 Higgs impostor in coupled channels?
® 0.2 .
01 input from volumes 243« 48, 32°%x 64 |

m fit range: 0.003 — 0.010

1 1
0 0.005 0.01 0.015



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

effective mass Mfgn from 0™* connected correlator

MZ" =M +c,m =32 M(fo)/F ~ 6
without disconnected diagram:

f0 meson mass requires missing disconnected part

0.6 i
M = 0.1555 + 0.0070
0 B=3.2
0.5 _ . i
S o c,= 25313
= 2
¥~ /dof=1.21 > (
@ 0.4 .
(4]
=
(O]
__é 0.3 i
3 Higgs impostor in coupled channels?
© 0.2 —
' T, 0** glueball, fo scalar coupled!
01 input from volumes 243« 48, 32°%x 64 |

m fit range: 0.003 — 0.010

1 1
0 0.005 0.01 0.015



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

effective mass Mfgn from 0™* connected correlator

MZ" =M +c,m =32 M(fo)/F ~ 6
without disconnected diagram:

f0 meson mass requires missing disconnected part

0.6 _
M = 0.1555 = 0.0070
0 B=3.2
0.5 _ . i
S o c,= 25313
= 2
¥~ /dof=1.21 > (
@ 0.4 -
©
£
()
_E 0.3 i
3 Higgs impostor in coupled channels?
© 0.2 .
' T, 0** glueball, fo scalar coupled!
input from volumes 243« 48, 32°%x 64
0.1 7 0** glueball can have low mass!

m fit range: 0.003 — 0.010

1 1
0 0.005 0.01 0.015



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

effective mass M%)n from 0™* connected correlator

MZ" =M +c,m =32 M(fo)/F ~ 6
0.6 f0 meson mass requires missing disconnected part ] without disconnected diag ram:
M = 0.1555 + 0.0070
° L x
§90-5- c,= 253+1.3 .
P ) (
2 04 x“/dof=1.21 |
©
£
()
__E 0.3 |
3 Higgs impostor in coupled channels?
©
0.2 |
1, 0** glueball, fo scalar coupled!
01 input from volumes 243« 48, 32°%x 64 |

0** glueball can have low mass!
m fit range: 0.003 — 0.010

1 1
0 0.005 0.01 0.015

annihilation diagram with good signal/noise: demanding project



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

effective mass M%)n from 0™* connected correlator

MZ" =M +c,m =32 M(fo)/F ~ 6
0.6 f0 meson mass requires missing disconnected part ] without disconnected diag ram:
M = 0.1555 = 0.0070
° L x
S o 057 ¢ .= 25313 .
2 —
ol fidoi=121 | )C) <:><

o
w

Higgs impostor in coupled channels?

effective mass M

o
N

1, 0** glueball, fo scalar coupled!

input from volumes 243« 48, 32°%x 64

0.1F 0** glueball can have low mass!

m fit range: 0.003 — 0.010

1 1
0 0.005 0.01 0.015

annihilation diagram with good signal/noise: demanding project
CMU group demonstrated that it can be done!



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

effective mass M%)" from 0™* connected correlator

MZ" =M +c,m =32 M(fo)/F ~ 6
0.6 f0 meson mass requires missing disconnected part ] without disconnected diag ram:
M _= 0.1555 = 0.0070
° L x
S o 0.5 c,= 253+1.3 .
= ) (
a 04 x“/dof=1.21 |
©
£
()
= 03 .
3 Higgs impostor in coupled channels?
©
0.2 i
1, 0** glueball, fo scalar coupled!
o1l input from volumes 24°x 48, 32°x 64 |

0** glueball can have low mass!
m fit range: 0.003 — 0.010

1 1
0 0.005 0.01 0.015

annihilation diagram with good signal/noise: demanding project
CMU group demonstrated that it can be done!
CMU => UCSD: Ricky Wong is our lead in the sextet application of the method



Nf=2 SU(3) sextet chiral fits: fo state with 0** quantum numbers:

effective mass M%)" from 0™* connected correlator

MZ" =M +c,m =32 M(fo)/F ~ 6
o6l f,meson mass requires missing disconnected part i without disconnected diag ram:
M _= 0.1555 = 0.0070
° L x ™
S o 057  ¢.= 25313
5 on © ) E—
? 04 ¥~ /dof=1.21
©
S
o
= 03
3 Higgs impostor in coupled channels?
©
0.2
1, 0** glueball, fo scalar coupled!
input from volumes 243 48, 323« 64
0.1 0** glueball can have low mass!
m fit range: 0.003 — 0.010

1 1
0 0.005 0.01 0.015
m

annihilation diagram with good signal/noise: demanding project

CMU group demonstrated that it can be done!

CMU => UCSD: Ricky Wong is our lead in the sextet application of the method
staggered fermions with rooting presents added complications (Bernard et al.)



Preliminary Results—Particle(s) Mixing in JP¢ = 0+ Channel

» Lowest Energy Levels: Mixture of fg(or o), Gg and I = 0 S-Wave of 7r7r at rest

> Examined on 163 x 128 Nf = 2 + 1 m; = 0.3911(14)GeV Anisotropic Clover Ensemble
(99 configs; Time Dilution: Full, LapH Dilution: Full, Spin Dilution: Full; Two f Operators fO and fO )
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> After D|agona||zat|on
" mostly 2-pion state scalar mixed with glueball scalar mixed with glueball
0.4} . 0.4} | - 0.4} 5
LE tmax=21 at LE‘: tmaX=45 at E } } ® )
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Ql,cﬂliminary Results—Particle(s) Mixing in JP¢ = 071 Channel
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Preliminary Results—Particle(s) Mixing in JP¢ = 0+ Channel

» Lowest Energy Levels: Mixture of fg(or o), Gg and I = 0 S-Wave of 7r7r at rest

> Examined on 163 x 128 Nf = 2 + 1 m; = 0.3911(14)GeV Anisotropic Clover Ensemble
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Summary and Outlook

® Lattice community has developed powerful tools to study BSM theories
® The most interesting models are the hardest to calculate
® Close to CW sextet model remains a candidate with unresolved issues

® Close to conformal window large fluctuations in finite volume blur the distinction
between the conformal and chiSB phases

® new algorithmic developments have major impact:
fermion matrix inversion, improved disconnected correlators, ...

® Scalar spectrum from disconnected correlators is high BSM priority

® USQCD BSM community is “theory aware” and prepared to consider interesting
new directions (Higgs-Gauge, little Higgs, ... ?)
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conformal scaling test with FSS - physical model fit (spline fit similar)

LM (L)

LM (L)
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_ -1/2 a
LMn(L)_c ) exp( C, X) X> X,

1 1

X+C _(c,*Xx
exp t

LM_(L)=c,

ym=1 +, C1’ Cexp

+c x“ X <X
o cut

, o, X 5 fit parameters
cut

v=0.393 + 0.008 4
o=3.47 +0.26

X =2.05=0.11
cut

xZ/dof= 2.83
c,=4.326 = 0.068
O 20x40
c =0.189 24x48
o O 28x56
O  32x64
¢, = 6.69 o 4080
O 48x96
0.5 1 1.5 2 25 3
x=L m'_
conformal FSS  (cRho2 channel)
_ T . T _1/2 _ T T
i LMp(L)_c1 X + Cexp (cn X) exp( C_ x) forx> Xt ]
_ (04
i LMp(L)_c0 +C_X for x < Xt |
ym=1+y, C,; cexp, o X, 5 fit parameters
v=0.300 + 0.017
| 0=3.64+0.31 |
x =1.62+0.14 4
cut
2
i x“/dof= 1.51 ]
[ ¢,=6.259:0.24 )
- c =043 O 20x40 H
a 24x48
c =777 O 28x56
L 0 O  32x64
c =4.326 O 40x80
7T O 48x96
0 0.5 1 15 2 25

x=L m!_

LF (L)

conformal FSS  (Fpi — PCAC channel)

251

1.5

_ (03
LFﬂ(L)_c0 +C_ X

ym=1+y, Cqr & C, 4 fit parameters

y=0.214 + 0.016

o =0.852 + 0.027
Co= -0.196 = 0.03

C= 1.192 + 0.056

+?/dof= 14.3

O

Ooooo

20x40
24x48 ||
28x32
32x64
40x80
48x96

22

20

18

12

10

x=L m'_

conformal FSS (cNucleon channel)
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Nf=2 SU(3) sextet chiral fits M, and M(A,)

sextet model Rho meson linear chiral fit
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conformal hypothesis breaks down in global fits:

MJE fit residuals in combined fit
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EW phase transition in sextet model - early universe

Kogut-Sinclair consistent with XSB phase at T=0

relevance in early cosmology

We are planning to run sextet thermodynamics

Third massive fermion flavor (electroweak singlet) dark matter?
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