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Dilatons 1n
Conformal Perturbation Theory

A perfectly reasonable program:
e Assume SM is “embedded” in a CFT
e SM couplings = CFT perturbations
e CFT spontaneously (and explicitly) broken = pseudo-dilaton
e Use non-linear realization of spontaneously broken scale invariance

e Determine couplings of dilaton to SM fields:
e Couples, at leading order, to mass/f* where = dilaton decay constant
* Much like higgs would couple, but f > v so couplings may be suppressed
(not a surprise, in SM higgs is a pseudo-dilaton).
e Trace-anomaly mediated couplings: non-decoupling, deviations from SM

e Study phenomenology

* Reproduces WW, ZZ, bb, widths provided f = v
Alternatively can enhance gg (production) and decrease width by v/f
Can easily accommodate larger 2-photon higgs decay rate

Fares no worse than SM higgs in failure to explain absence of 77 mode .
Measuring production rates for alternate mechanisms would settle the question



Maybe the only higgs...

RO IEIN 1' )

hlgg
‘ AN (3 & S

and what 1s observed 1s a dilaton.



Maybe the only higgs...

and what 1s observed 1s a dilaton.

Quickly, before experimental question is settled, do some theory



Dilaton self-couplings: Can be determined by Conformal Perturbation Theory

If £:£CFT+Z)\non, and Vo = dp — 4

perturbation is by small anomalous dimensions or small coupling (for this to make sense, the dimensional parameter is
small when compared to the appropriate power of f').

Assume (x) = f  and mass is given, M, , then

M? 1
Yn| <1 then Ver(X) = —5x° lln (1) —~ Z] + 0.

or

Anl <1 then  Vig(x) = A@X4;{wn[ ! (X>% ﬂ}JrO()F), > nTn = 1.

M? 1 T
or for one coupling: Ve (X) = —== X4 [— <1> — —] + @O\Q) ;



Let’s not dwell on applications. Focus on rationale, underlying dynamics.
Here is the situation we just described, where CFT perturbation theory is used to determine Vesr

<$>=0O g



For what kind of model does this happen?
One example we know: Potential with flat directions (moduli space), common in SUSY

Theory space: includes moduli (as well as coupling constants).

But the picture is different

(literally and figuratively)



Here couplings are dimensionless
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Include relevant deformations (dimensional couplings). Expect generically:

<$2-0



Not clear how to implement the scenario described above.

Nor is it clear how conformal perturbation theory can be used
(other than to verify flow away from IR-FP by relevant deformations).

We need a better example.

Moreover...



The real problem is that this does not look to me like Walking Technicolor
which 1s what I would really like to understand a [ittle better.

To me WTC looks like this:

to study the physics here?



Let me explain why I think this is the picture in WTC. Recall for WTC:
The coupling constant flows toward the

“would be” IR fixed-point, air.
L Close to the fixed-point, the flow is slow and the

— theory posseses approximate scale symmetry.
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Digression: physics does not depend on which point is ' /l“ ‘f = >
picked on the RG-trajectory. The statement “as one * ~ N M A
xse Xsp
approaches arr one reaches first the critical coupling for (ETC scale)
vSB” is confusing: the symmetry is broken, regardless of (w1 Qep s gy zATc,)

where on the RG-trajectory.






(Approximate) Scale Invariant Theory

WTC framework:

e strongly interacting would-be IR fixed-point
e fermion condensate forms

e scale invariance broken spontancously (condensate) and explicitly (5 = 0)
e strongly interacting: difficult to analyze analytically
e [s there a (light) dilaton? The subject of an old, recently rekindled debate

* Yes
e No

The argument hyper-vulgarized:
small /5 explicit breaking is by trace anomaly T/ = §G2
9

n’ -like: QCD anomaly, " not a GB

Will have more to say about this,
but will not review their arguments here.



Having a perturbative toy model with the above properties — an
interacting IR-fixed-point and an approximate scale invariance which i1s
broken dynamically — would help me understand this better.

Broken dynamically in perturbative case? no scale of SB given a priori

Better yet... a perturbative example of walking.

Meaning what?? In perturbative regime couplings always walk!!
By perturbative walking | mean running towards an IR fixed point,
slowing down by an arbitrary amount, and then getting ‘detoured’ by SSB

Can 1t be done??



Why is it non-straightforward?



We have seen . /'=4 SUSY SU(N) bad.

Better attempt(?): Coleman-Weinberg abelian-higgs model.

1 *
L = _Z MVFMV + D'u¢ D,ugb o )\‘¢‘4

e Fine tune mass to zero, classically scale invariant.

e Effective potential develops a minimum away from origin:

A s 334) 4( @ 25)
TR +%+64f P \IM g7 =

e Gauge and scale symmetries spontaneously broken.

e Gauge field acquires mass.

e But would-be-dilaton acquires mass too: trace anomaly spoils
scaling symmetry.

e So far, so good. But now:

Mdilaton/ Mvector ~ 62/ 167[2



We have seen . /'=4 SUSY SU(N) bad.

Better attempt(?): Coleman-Weinberg abelian-higgs model.

1 *
L= _Z ,uuFMV _|_D'u¢ D,ugb_ )\‘¢‘4

e Fine tune mass to zero, classically scale invariant.

e Effective potential develops a minimum away from origin:

A s 334) 4( @ 25)
TR +(>§2+641r2 P \IM g7 =

e Gauge and scale symmetries spontaneously broken.

e Gauge field acquires mass.

e But would-be-dilaton acquires mass too: trace anomaly spoils
scaling symmetry.

e So far, so good. But now:
M itaton/ Myector ~ e?/16m?

. arbitrarily light dilaton without turning off interactions

(note: as Kuti pointed out, Hashimoto and Yamawaki argue that in WTC
the analogous ratio 1s constant).



We construct a model which

™ Is perturbative (naively)

M Has a perturbative IR fixed point (a la Caswell-Banks-Zaks)
M Spontaneously breaks approximate scale symmetry

M Dilaton can be made arbitrarily light while still interacting

follow-up by
some qualitative differences; effective
SUSY at low energies...

In the rest of the talk | will explain this model.

First the big picture: (yes, more pictures!)






This time need a better picture...



Theory space: couplings at fixed o

| IRFP
Symmetric Phase g Broken Phase

(@) =v#0

uniformly,arbitrary

Region where we can
reliably find minimum
of Vetr

critical surface
.Mo' = 0

.+ dilaton of small mass M,
near critical surface



The Model

SU(N) gauge theory with n;, = n, fundamental fermions ¢ and x
and two scalar singlets ¢; and ¢,.

1

. . 1 1
L= TP Fy, + Z; (i + X i) + 5(9:61)" + 5(9u02)°

— 1 (VY + Xx) ¢1 — ya(¥x + X))o
1 1

1
- ﬂ)‘lgbéf - ﬂ)\zﬁbg - Z)\ﬂﬁ?bg

This theory is invariant under discrete Z, as well as SU(n,,) symmetry

lea@béﬁblﬂ? w%uw

and
G2, X — — P2, —X Yy — Ux



Nota bene

Masses set to zero (I am not solving the hierarchy problem).
Precisely as with Coleman and Weinberg.
Set them to zero and use dimensional regularization.

Theory has Landau pole. This is a UV issue.
We study the IR properties of the model.
We can take it to be a cut-off theory.

This is not the theory of everything.
It is a Toy Model.



The fixed-point to leading order in 1/N is

52 0
— 167" — — Caswell-Banks-Zaks
g: = 167 75N |
VR = yR = & ves ti
1 2% 11 N Drlies this
18 g2
)\1* — >\2>|< — )\3* — g — 6)/12* Drives this



Minimizing the potential analytically is difficult. But easy to identify
some local minima. Focus on minimum which preserves discrete Z,

(i.e. (¢2) =0).

The potential reduces to

o (, k3, Duolf (et 3)

Verr = _¢1 25672 22 2 25672 22 2
_ 22Nyt [ yidr 3
6472 (12 2

The extremum, 9/0¢1 Vegs({(¢1)) = 0, is at

A 2 A ° A2 A .
L _}1{ In 1(¢1)° 1)+ 23 (In 3(f1)° 1
6 Arr 2147 6472 2117
B8NPy " yilo1)® .
6472 (12

A2 N 88 N2y}
6472 6472

(which is why we needed a second scalar)

A1~




Vacuum Expectation

A1 can be traded with (¢;) as a free parameter. For consistency,
2L | q;l> < 1. Stability of the vev is determined from the

1672
eigenvalues of second derivative matrix

0? A2 — 88N2y
067 ((¢1),0) = = 392 = (¢1)°
82

557 Ve (92),0) = 3 {62)* + O(1-loop)

Evaluate Vg at (¢1) yields

A2 — 88N2y*
Ver((01)) = =252 ()

Thus when ¢ = A3 — 88N?y} > 0, there is a non-trivial minimum.



Pole mass in Broken Phase
The explicit 1-loop pole masses are

2

g= N y2v?
M¢(“):MX(M):Y1V[1—167T2§<3|n L —4>]

14
Mq% : A1 V2 N 3)\%v2 " A1 V2 B 5 N 27 N 3)\§v2 " A3 V2 B 1 B 2_>\1
! 2 6472 22 3 34/3 6472 2u? 3 3)3
22N?y? 2

+

A1 V2 A1 V2 V2
2 2 1 2 2 1 Y1
1672 P17 T 12 _3<y1‘/ - 12)('” /ﬂ)

= 3/01dx <y12v2 - X(12_X))\1v2) In <1 — x(1 —x);7112> }

-~ A3 _88N2)/f‘/2 _ &

30772 — 30727

Since v = (¢1), it has the same anomalous dimension as ¢.
Using the anomalous dimension and the 3 functions, one can verify
that the masses are RG invariant at 1-loop.



Decay Constanst
Define the decay constant £, by

]L'

010" (x)|o) = = (p"p" — g"p?) "

where p is the momentum of |o). The form of the right hand side
is constrained by conservation of ©*”. The factor 1/3 comes from

010, D*|o) = (0|&h]0) = —f, MZeP™
p v o

Note that ©* = —1/3vo* 0" ¢1 +
Thus to lowest order f, = v + - - -
The RG invariant expression is easy to guess

12
f, = VZ¢1

where Z,, is the wavefunction renormalization factor.



Dilaton Mass

Having determined the decay constant f,, the mass of the dilaton can
be obtained from the trace anomaly.
To lowest order, the mass is

2 — A2+ A3 — 88N2y!
7 3272

where \? term is dropped for consistency.
RG invariance of M, can be inferred from M,;, .

@ Given the vev, we can tune € to make the dilaton light
by comparison



Broken Phase

Recall the theory admits a non-trivial minimum provided

@ Ay Is much smaller than other couplings,
@ ¢ = )5 — 88N?y} > 0.

We want to study symmetry breaking close to the IR fixed-point.
However, near the fixed-point these conditions are not satisfied.

Use RGE to trace back the RG trajectory to large RG time where

perturbative analysis of effective potential yields a non-trivial

minimum. (convention: RG time here grows from IR to UV)

Alternatively, define the theory at scale 1o where perturbative analysis
yields a non-trivial minimum. Moreover, if the vev is well below i,
RG flows will get close to the fixed-point before the massive
particles decouple.



Theory parameter space: couplings at fixed uo

¥ IRFP

? — When u= v fermions and
heaver scalar decouple and
walking turns to running

walking

Flow towards IRFP

Region where we can
reliably find minimum
Of Veff



Symmetric Phase

For a point in parameter space where € < 0

@ Vir({¢p1)) becomes positive and the non-trivial minimum
disappears,

@ the effective potential seems to be unbounded from below along
@1 direction for large ¢.

The second point threatens the validity of the model.

However, at large ¢, perturbative analysis breaks down.
Can extend the range of perturbativity using the improved effective
potential which effectively re-sumslarge logarithms.

: ]. - t/ /
Ver® = S h(t)e "o g

Here t = In ¢1/po. This form is valid as long as A\1(t) is perturbative.



Symmetric Phase (cont.)

For points in parameter space closed to the IR fixed-point, gauge
coupling drives the Yukawa coupling to 0 in the UV.

@ The effective potential is bounded from below because
A1(t) > 0 for large ¢;.



Theory parameter space: couplings at fixed o

crl't.ical surface
) Mo =O

Symmetric Phase I-RFP

Broken Phase

Region where we can
reliably find minimum
of Vet



Final remarks



Is conformal perturbation theory applicable in this model?
Recall GGS had

M? 1
Veff(X) — 4—1_,02X4 [ln (%) — Z] + 0(72)

To compare our model with GGS, we view our model as
L(g)=L(g.)+ (L(g) — L(g)). In our model the dilaton field is
identified with ¢; and the anomalous dimensions are small.

Our effective potential for ¢; turns out to be exactly the same as

GGS.



What about lessons for WTC?

In our model eventually glueballs form and
dilaton mass expected to be no smaller than
about glueball mass

32702

- 2
A~ ve bo9E KL

But in WTC g« is large. And CFT perturbation theory questionable.
Is there a separation A, sp < Ape ?




Better approximation to running from close to fixed point? %

el )

Model beta function:

6(9) ~ Py —

1672

Then

975 \3
A ~vexp —-( 5 )
32 beffﬁf

It seems that there can be a separation between scales
and a light dilaton provided

B, <1
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T
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One more (really, really, the last) word on Dilaton in WTC?

AB say: Mg s(ou — Oéc)Az ~ NJ(“E B NJ"AQ7
Q. N]%

2

First equation: In our model the critical coupling is a critical surface,
the IRFP is on critical surface, 0=0, correct but not interesting and
not what is intended

Second equation: ( N¢- N) /N plays role of ¢, measures distance to
critical surface, and equation is qualitatively correct!

G«




The End



Supplementary Slides



Numerical
N = 20, nf_11/2N §=0.2
g(to) = 9g* y1(to) = 0.32y1., y2(o) = 3 ¥2x,

A1 (10) = 35 20, A2(tt0) = 3A24, As(po) = 5.2Xs,.
These condltlon corresponds to € 2 0.

The vev is at

VY,
Lo
and the spectrum
M
PX 85 %1073, 2 ~79x107 —2~95x 102
74 74 74

Fractional correction to the effective potential from higher order
terms are approximated to be

/V 2.,2
g In v ~ 0.2.
1672 (12




Numerical
N = 20 nf_11/2N 5§ =02
g(1o) = 2. y1(t0) = 0.32y14, y2(pt0) = £2s,

A1( ko) )\2(M0) = 324, A3(po) = 5.2)3..
These conditiorn’ correspontdste—-=<0,

The vev Is at . |So we start from region were
<¢ > Veff has competition between
In 1 ~ 920 tree level and 1-loop
Ho
and the spectrum
M
PX 85 x107%, —2~7.9x107% —2~095x1072

Fractional correction to the effective potential from higher order
terms are approximated to be

N 2.,2
g In 2404 ~ (.2.
1672 (12




N u merica | Will change this to 0.45y1+

for symmetric phase

N =20, nf=11/2 N, § = 2,/
)54 @ y2(to) = %)/2*,
Ao ,UJO) — 2% 1 )\3(”0) — 52)\3*

The vev Is at . |So we start from region were
<¢ > Veff has competition between
In 1 ~ 920 tree level and 1-loop
Ho

and the spectrum
M M M
P, X ~ 85 < 10—37 ®1 ~ 79 < 10—47 @2 ~ 95 > 10—2.
% % %

Fractional correction to the effective potential from higher order
terms are approximated to be

N2 2 2
&+ In 1Y ~ 0.2.
1672 (12




Numerical: Couplings Evolution

N =20, nf =11/2N, 5 =02,

8(10) = 58+, y1(p10) = 045y, ya(po) = 52,
)\1(,LL()) )\1*, )\2(,&0) = 3)\2*, )\3(#0) = b. 2)\3* These condition

corresponds to € < 0. Symmetric phase

0.08 i g(t) 0.025 f

I 0.020 - Aa(1)

0.06 |
I 0.015 -
004
002 0.005 |

| u(t) / "

\\\\\\\\\\\\\\\\\\\\\7 \\\\\\ y2(t> \\\\\\\\\\\\\\\\W:w i R

400“ -100 7 —400 -300 -200 -100 f 100

positive

Fixed point (stable)




Numerical: Broken Phase

y1(po) = 0.32y1,. This corresponds to a positive €.  Broken phase

: As(t)

0.030 |-

0.025 7

0.020 - blow up of left panel ,
- 0.00006 -

0.015 / Ao (t) i

00 7 0.00004 -

0.005 0.00002 -

I 7 A1(?)
\\\\\\\\\\\\\ : L T R N R |
400 ~300 ~200 ~100 100 80 =66 40 20

The coupling A\; becomes negative during the flow.
This agrees with our expectation from the improved effective
potential.

Gauge coupling walks. Eventually runs again. Endgame: glueballs.




Notes on: Dilatons 1n
Conformal Perturbation Theory

e Assume SM i1s “embedded” in a CFT
e SM couplings = CFT perturbations

e CFT spontaneously broken = pseudo-dilaton

Effects of scale invariance: write lagrangian in basis of scale-eigenoperators

L= Z g;(1)O;(x),  with [0;] = d;

O;(x) — e)‘d O, (e x ,
where (@) (") under ot — erpH
po— e M,

Then 0,S" =T", —Zgz )(d; —4)0 +Zﬁz




Dilaton as conformal compensator:  x(z) — e*x(e*x)

4—d;
Then simply replace above g¢i(¢) — g; (M?) (?)

where  f = (yx) = order parameter for scale symmetry breaking

and x(z) =f e” /T with o = dilaton (GB of spontaneously broken scale symmetry)

Then expanding about X(z) = x(z) — f.

Lo _ue | X
Lx:§ uXéwXJF?TMu"""

EW sector: strongly interacting higgs sector (or higgsless models), below Agw ~ 47v ~ 1 TeV

1 1 1
~(Bu)? - §trW3V + —v*trD, UTD'U + - -,

Lomw = —
xEW A A

. . . . T3 . = T
with U a unimodular 2 by 2 matrix, D,U =9,U +ig:B, U 33 —19oW, - §U

At tree level 97 2 1 v _
W

much like the SM’s higgs (but f a free parameter, f > v)



Dilaton self-couplings (and conformal perturbation theory)

If exact scale invariance, dilaton self-interactions

L, ==0,x0"x + 0, x0"x)" + - depends on details
o2 (4mx)? (O ) of underlying CFT

Now break symmetry with scaling eigenoperators,
Lerr — Lorr + 200(2) Ap # 4

00 n(Ap—4)
then Vix)=x* Z cn(Ao) (?)
n=0

From this we derive effective potentail by placing conditions on cn
(i) Thatithas (x) = f
(i1) That 1t gives mass M,



MS 3 Functions
For large N with n, = 11N/4 (1 — /11), the leading terms are

0g ON 5 25N? g°

6m) 5 = =38 + 3 16

(167 )aa); = 4y, ys + 11IN?y? — 3Ng?y,
(16722 = 352y, + 11Ny — 3Ngy,

(167 )aail = 3X\2 4 3)3 + 44N>\ yf — 264N°y;
(167 )aa? — 302 4 3)2 + 44N2)\, )2 — 264N2y
(167 )aa: = A3+ dodz + 4)2

+ 22N A3y2 4 22N2 \sy? — 264N2y2y2



Effective Potential

At tree-level, (¢;) = 0 and all the particle are massless. The theory
flows to the IR fixed-point.

However, quantum effect could drastically change the structure of the
vacuum

Vo(o) Verp(o)

/
¢ ¢

The non-trivial vev gives mass to both fermions and scalars and alters
the RG trajectory.




Effective Potential (cont.)

The effective potential in MS is

Vet = —24)\1¢1 24>\2¢2 )\3¢%¢§
LN, ( ME 3\ LINAME (0 ME 3
(6472) " 2u2 2 (6472)

n

2u% 2
N M2, Mz 3 N M Mz 3
(6472) w2 (6472) 2u? 2

Mer = y101 £ Y202,

(A1 4+ A3)pf + (A2 + A3) 3
4

2
MS:|:_

N VAL = X3)20% + (M2 — A3)205 — 2(A1 A2 — A3 — Az — TA3) @263

4



Role of ¢,

Note that ¢.never enters any calculations above.
Moreover, one can get an attractive IR fixed—point

with just one scalar singlet.
This raises the question: what is the purpose of the

second singlet?



Role of ¢,

Note that ¢.never enters any calculations above.
Moreover, one can get an attractive IR fixed—point

with just one scalar singlet.
This raises the question: what is the purpose of the

second singlet?

e It allows us to introduce more couplings, in particular
the cross—coupling 4s.

e Without the second singlet, the extremum found by
perturbative analysis would have been the maximum.

» The scalar potential appears to be unbounded
from below.

» Possible to have non-trivial minimum at higher
scale which is inaccessible to perturbative

analysis.



Dilaton: The particle (state)

We may look for the dilaton state, o, by using the following
generic criteria:

e spinless state
e couples strongly/linearly to the energy-momentum tensor

* lightest such state

Clearly ¢: satisfies all of the above.

e It is the only state whose mass starts at 1-loop (modulo

gauge fields)
* |tis the only state which couples linearly to the energy-
momentum tensor when expanded about

p1 =v, g2 =0

Thus we identify o with a single particle state created by ¢1.



Dilatation Current

The dilatation current, D#, is constructed from the improved
energy-moementum tensor, ©#”, of Callan, Coleman and Jackiw.

DH = x, ©OH

1_ 1 -
O = —F¥ 4 “Xi(y"D¥ + 7" D) + S $i(y*D" + " D"}y
1
+ 0906, — gL — SR(0"0 — 6" )}

k Is the improvement term. It is a total derivative.
The CCJ improved tensor is the one with Kk = 1/3.

@ The improvement term does not change the charges constructed
from ©H",

@ [ he matrix elements of ©#"arefinite, it doesn't get
renormalized.



Trace Anomaly

The divergence of the dilatation current is the trace of the improved
energy-momentum tensor.

Classically ©f vanishes for theory without any dimensional couplings.
Quantum effects make ©/ non-zero, this is known as trace anomaly.
For the theory under consideration

@Z — 7¢1§b102¢1 + (4%1)\1 - 5/\1)—1 T ..
Terms involving other fields are omitted.

Terms proportional to vy,, are usually omitted.

They cancel when EOM is applied but can contribute to off-shell
matrix element and Green functions.

Also these terms are needed to make the trace RG-invariant.



Why i1s 1t non-straightforward? Try the obvious stuff first:
SSB in CFT?

e Take CFT with moduli space (common in SCFT). Say, for
definiteness:
N=4 SUSY SU(N) » flat directions " expand about a point away

from origin
e EFT =SU(N) — SU(N — k) x SU(k) x U(l).

e But EFT has /=4 SUSY unbroken, “Dilaton” is exactly massless
together with partners " no mass gap

e Perturbations: flow into ??? (possibly another CFT, interacting),
fate of “dilaton?”

e More generally: want to study CFT perturbed by classically
marginal deformation AND want to understand phase structure
(vacuum)



