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Dilatons in 
Conformal Perturbation Theory

• Assume SM is “embedded” in a CFT

• SM couplings ⇒ CFT perturbations

• CFT spontaneously (and explicitly) broken  ⇒ pseudo-dilaton

• Use non-linear realization of spontaneously broken scale invariance

• Determine couplings of dilaton to SM fields: 
• Couples, at leading order, to mass/f  where f = dilaton decay constant
• Much like higgs would couple, but f  ≥ v so couplings may be suppressed

(not a surprise, in SM higgs is a pseudo-dilaton).
• Trace-anomaly mediated couplings: non-decoupling, deviations from SM

• Study phenomenology
• Reproduces WW, ZZ, bb, widths provided f  ≈ v
• Alternatively can enhance gg (production) and decrease width by v/f
• Can easily accommodate larger 2-photon higgs decay rate
• Fares no worse than SM higgs in failure to explain absence of ττ mode
• Measuring production rates for alternate mechanisms would settle the question

A perfectly reasonable program:



Maybe the only higgs...

and what is observed is a dilaton.



Quickly, before experimental question is settled, do some theory 

Maybe the only higgs...

and what is observed is a dilaton.



deviations (“deformations”) from the CFT by adding small perturbations [23, 24].

Obviously this basic setup applies to our model, and because it is fully perturbative

model one should be able to verify the validity of some general assertions. The

deviations from conformality can be small in one of two ways, either the anomalous

dimensions γn or the coefficients λn of the operators On are small. On general

grounds one can show that for |γn| ! 1 the effective potential for the field χ whose

expectation value gives rise to the dilaton is [26]
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The case |λn| ! 1 is more cumbersome. Only in the case that only one perturbation

is added does one obtain a parameter-free effective potential
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while for more than one perturbation occur one has the less restricted
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where the coupling constants have been traded for constants xn that are constrained

by
∑

n γnxn = 1.

Any model with a conformal fixed point g∗ can be written in the fashion of Eq. (30)

L(g) = L(g∗) + (L(g)− L(g∗))

where g are coupling constants at arbitrary values. If g is sufficiently close to g∗

one is in the case |λn| ! 1 above, while if the region of couplings that includes g

and g∗ is perturbative one expects |γn| ! 1. We need, in addition, that the model

display spontaneous breaking of scale invariance in the vicinity of the fixed point.

Our model furnished an explicit example. The analogue of χ is our field φ1. Because
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Dilaton self-couplings:   Can be determined by Conformal Perturbation Theory 
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or for one coupling: 

V. DISCUSSION, CONCLUSION AND OPEN QUESTIONS

We have presented a model with an IR-fixed point, and demonstrated that the

model has two phases. In phase I RG-trajectories run into the IR-fixed point (in

infinite RG-time). The scale symmetry is approximate and explicitly realized and

it becomes exact at the fixed point. In phase II scale symmetry is spontaneously

broken. Of course, scale invariance is also explicitly broken by the trace anomaly.

The trajectories don’t reach the IR-fixed point but some get very close and for those

the explicit, relative to spontaneous, breaking of scale invariance is small: A light

dilaton appears in the spectrum.

Analytic evidence for this picture was presented at length but the numerical sup-

port was scant. This is clearly an interesting direction for future work. In particular,

one could determine the actual location of the phase transition. Another direction

for future work is to find generalizations of the model. We do not know how general

this picture is or how difficult it may be to come about models that display arbitrarily

light dilatons (we were not aware of any example prior to this work).

Among new models one may try to construct some with the Standard Model of

electroweak interactions embedded in it. One could then test whether the setup

in Ref. [26] works as advertised. The authors there considered the possibility that

the standard model is embedded in an almost conformal, possibly strongly inter-

acting field theory with spontaneously broken scale invariance. In the context of

4-dimensional strongly interacting near-CFTs obtained as AdS/CFT-like duals of

5-dimensional non-factorizable geometries (RS models) one encounters often the

schematic Lagrangian describing the dynamics:

L = LCFT +
∑

n

λnOn . (30)

The first term is a CFT while the sum that follows is an attempt to capture the

27

γn = dn − 4andIf

perturbation is by small anomalous dimensions or small coupling (for this to make sense, the dimensional parameter is 
small when compared to the appropriate power of f ).

Assume                         and mass is given,          ,  then�χ� = f Mσ



Let’s not dwell on applications. Focus on rationale, underlying dynamics.
Here is the situation we just described, where CFT perturbation theory is used to determine Veff



For what kind of model does this happen?

One example we know: Potential with flat directions (moduli space), common in SUSY

Theory space: includes moduli (as well as coupling constants).

But the picture is different

(literally and figuratively)



Here couplings are dimensionless



Include relevant deformations (dimensional couplings). Expect generically: 



Not clear how to implement the scenario described above.

Nor is it clear how conformal perturbation theory can be used
(other than to verify flow away from IR-FP by relevant deformations). 

We need a better example.

Moreover...



The real problem is that this does not look to me like Walking Technicolor

which is what I would really like to understand a little better.

To me WTC looks like this:

Can I use CFT pert.-thy.
to study the physics here?



Let me explain why I think this is the picture in WTC. Recall for WTC:

(ETC scale)

The coupling constant flows toward the 
“would be” IR fixed-point, αIR. 
Close to the fixed-point, the flow is slow and the 
theory posseses approximate scale symmetry.

Digression: physics does not depend on which point is 
picked on the RG-trajectory. The statement “as one 
approaches αIR one reaches first the critical coupling for 
χSB” is confusing: the symmetry is broken, regardless of 
where on the RG-trajectory. 



Here it is again:



WTC framework: 
• strongly interacting would-be IR fixed-point 
• fermion condensate forms
• scale invariance broken spontaneously (condensate) and explicitly (β ≠ 0)
• strongly interacting:  difficult to analyze analytically
• Is there a (light) dilaton? The subject of an old,  recently rekindled debate 

(Approximate) Scale Invariant Theory

• Yes (Appelquist, Bai ’10) 
• No (Hashimoto, Yamawaki ’10; Vecchi ’10)

The argument hyper-vulgarized:

small β: explicit breaking is by trace anomaly 

η´-like: QCD anomaly, η´ not a GB

Will have more to say about this, 
but will not review their arguments here. 

Tµ
µ =

β

g
G2



Having a perturbative toy model with the above properties – an 
interacting IR-fixed-point and an approximate scale invariance which is 
broken dynamically – would help me understand this better.

Broken dynamically in perturbative case? no scale of SB given a priori

Better yet... a perturbative example of walking.

Meaning what??  In perturbative regime couplings always walk!! 
By perturbative walking I mean running towards an IR fixed point,
slowing down by an arbitrary amount, and then getting ‛detouredʼ by SSB

Can it be done??



Why is it non-straightforward? 



1894 SIDNE Y COLEMAN AND ERICK WEINBERG

(5}Since the logarithm of a small number is
negative, it appears as though the one-loop cor-
rections have turned the minimum at the origin
into a maximum, and caused a new minimum to
appear away from the origin- that is to say, that
the one-loop corrections have generated spontane-
ous symmetry breaking. Alas, appearances are
deceptive: The apparent new minimum occurs at
a value of y, determined by

Aln, =——m'+O(A. ) .(y)' 32 (3.13)

Since we expect higher orders to bring in higher
powers of X in(y, '/M'), the new minimum lies
very far outside the expected range of validity of
the one-loop approximation, even for an arbi-
trarily small coupling constant, and must be re-
jected as an artifact of our approximation. As we
shall see shortly, though, there do exist physical-
ly interesting theories for which the effective po-
tential has a very similar form, and to which the
same criticism can not be applied. Among them
is massless scalar electrodynamics.

IV. MASSLESS SCALAR ELECTRODYNAMICS

+ —,'(s„y, + eA„(p, )' ——,(y, + cp, ')'

where

+ counterterms, (4.1)

F„„=B,A„- 8„&„. (4.2}
The calculation of the effective potential can be

somewhat simplified if we realize that it can only
depend on

2 — 2 2
9 c =0'zc +9 2c (4.3)

Thus, we need only compute graphs with all the
external lines ~I(),'s. Furthermore, if we work in

We shall now apply the apparatus developed in
the last two sections to massless scalar electro-
dynamics, the theory of a massless charged me-
son minimally coupled to the electrodynamic field.
We write the charged meson field in terms of two
real fields, cp, and y„and write the Lagrange
density as

', (E„„)'+5-(-s„rp, —eA„qr, )'

Landau gauge, where the photon propagator is
. gp v —kgkv/k

p v k2+i (4.4)

then the contribution of any graph of the type shown
in Fig. 3 vanishes. This is because the external
momentum is zero; therefore the momentum of
the internal meson is the same as that of the in-
ternal photon, and vanishes when it is contracted
with the photon propagator.
Thus there are only three classes of graphs to

compute: those of the type shown in Fig. 2, with
a y, running around the polygon, those of the same
type, but with a cp, running around the polygon,
and those shown in Fig. 4, with a photon running
around the polygon. Aside from trivial numerical
factors, all are of exactly the same structure as
the graphs considered in Sec. III. After some
straightforward computation, we obtain

4~ 9 c + 1152' 64' Wc M2 6

(4.5)
This function, like the one discussed in Sec. III,

has a minimum away from the origin. Here, how-
ever, the minimum need not be illusory. In Sec.
III, the minimum arose from balancing a term of
order Z against a term of order )Pin(rp/M); thus,
for small A, , it inevitably occurred at large
1n(y/M), outside the expected domain of validity
of our approximation. Here, even for an arbi-
trarily small coupling constant, we can obtain a
minimum by balancing a term of order A. against
a term of order e ln(y/M). Even though the sec-
ond term formally arises in a higher order of our
expansion than the first, there is no reason in the
world why A. cannot be of the same order of mag-
nitude as e'. Indeed, this is what we should ex-
pect if we think of the quartic meson self-interac-
tion as being forced on us by renormalization, to
cancel the divergence in Coulomb scattering, it-
self of order e4.
We think this point is so important that we will
restate it in slightly different language: At first
glance, the central idea of this paper, that higher-
order effects may qualitatively change the char-

FIG. 3. Some diagrams which do not contribute to the
effective potential in scalar quantum electrodynamics.
The wiggly lines represent photons, the solid lines, spin-
less mesons.

+ 0 ~ ~

FIG. 4. The photon contribution to the one-loop approx-
imation for the effective potential.

We have seen N = 4 SUSY SU(N) bad.
Better attempt(?): Coleman-Weinberg abelian-higgs model. 

• Fine tune mass to zero, classically scale invariant.
• Effective potential develops a minimum away from origin:

• Gauge and scale symmetries spontaneously broken. 
• Gauge field acquires mass. 
• But would-be-dilaton acquires mass too: trace anomaly spoils 

scaling symmetry. 
• So far, so good. But now:

                         Mdilaton/Mvector  ~ e2/16π2

L = −1
4
FµνFµν + Dµφ∗Dµφ− λ|φ|4
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We have seen N = 4 SUSY SU(N) bad.
Better attempt(?): Coleman-Weinberg abelian-higgs model. 

• Fine tune mass to zero, classically scale invariant.
• Effective potential develops a minimum away from origin:

• Gauge and scale symmetries spontaneously broken. 
• Gauge field acquires mass. 
• But would-be-dilaton acquires mass too: trace anomaly spoils 

scaling symmetry. 
• So far, so good. But now:

                         Mdilaton/Mvector  ~ e2/16π2

Want: arbitrarily light dilaton without turning off interactions

(note: as Kuti pointed out, Hashimoto and Yamawaki argue that in WTC
the analogous ratio is constant).

L = −1
4
FµνFµν + Dµφ∗Dµφ− λ|φ|4



We construct a model which 

Is perturbative (naively)

Has a perturbative IR fixed point (a la Caswell-Banks-Zaks)

Spontaneously breaks approximate scale symmetry

Dilaton can be made arbitrarily light while still interacting

In the rest of the talk I will explain this model.

First the big picture:   (yes, more pictures!)

follow-up by Antipin, Mojaza, Sannino ʼ11 
some qualitative differences; effective
SUSY at low energies...





This time need a better picture...



IRFP

Region where we can
reliably find minimum
of Veff

Theory space: couplings at fixed µ0

Symmetric Phase Broken Phase

critical surface
     Mσ = 0

dilaton of small mass Mσ

near critical surface

�φ� = v �= 0
uniformly,arbitrary



The Model

The Model
SU(N) gauge theory with nψ = nχ fundamental fermions ψ and χ
and two scalar singlets φ1 and φ2.

L = −
1

2
TrFµνFµν +

nχ
∑

j=1

(

ψ̄j i /Dψj + χ̄j i /Dχj

)

+
1

2
(∂µφ1)

2 +
1

2
(∂µφ2)

2

− y1
(

ψ̄ψ + χ̄χ
)

φ1 − y2(ψ̄χ+ χ̄ψ)φ2

−
1

24
λ1φ

4
1 −

1

24
λ2φ

4
2 −

1

4
λ3φ

2
1φ

2
2

This theory is invariant under discrete Z2 as well as SU(nχ) symmetry

φ1,ψ → φ1,ψ

φ2,χ → −φ2,−χ
and

ψ → Uψ

χ → Uχ
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Nota bene

Masses set to zero (I am not solving the hierarchy problem).
Precisely as with Coleman and Weinberg.
Set them to zero and use dimensional regularization.

Theory has Landau pole. This is a UV issue. 
We study the IR properties of the model. 
We can take it to be a cut-off theory.

This is not the theory of everything.
It is a Toy Model.



The Model Fixed-point Structure

Fixed-point
To get a fixed-point for the gauge coupling, need to balance a 1-loop
against a 2-loop.

This is possible because for large N, δ can be made small by a
carefully chosen nχ.

The fixed-point to leading order in 1/N is

g 2
∗ = 16π2 2

75

δ

N

y 2
1∗ = y 2

2∗ =
3

11

g 2
∗

N

λ1∗ = λ2∗ = λ3∗ =
18

11

g 2
∗

N
= 6y 2

1∗
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Caswell-Banks-Zaks

Drives this

Drives this



The Model Vacuum Structure

Effective Potential (cont.)
Minimizing the potential analytically is difficult. But easy to identify
some local minima. Focus on minimum which preserves discrete Z2

(i.e. 〈φ2〉 = 0).
The potential reduces to

Veff =
λ1

24
φ4
1 +

(λ1φ2
1)

2

256π2

(

ln
λ1φ2

1

2µ2
−

3

2

)

+
(λ3φ2

1)
2

256π2

(

ln
λ3φ2

1

2µ2
−

3

2

)

−
22N2y 4

1φ
4
1

64π2

(

ln
y 2
1φ

2
1

µ2
−

3

2

)

The extremum, ∂/∂φ1Veff(〈φ1〉) = 0, is at

−
λ1

6
=

λ2
1

64π2

(

ln
λ1〈φ1〉2

2µ2
− 1

)

+
λ2
3

64π2

(

ln
λ3〈φ1〉2

2µ2
− 1

)

−
88N2y 4

1

64π2

(

ln
y 2
1 〈φ1〉2

µ2
− 1

)
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λ1 ∼

λ2
3

64π2
∼ 88N2y4

1

64π2
(which is why we needed a second scalar)



The Model Vacuum Structure

Vacuum Expectation
λ1 can be traded with 〈φ1〉 as a free parameter. For consistency,
λ1

16π2 ln
〈φ1〉2

µ2 # 1. Stability of the vev is determined from the
eigenvalues of second derivative matrix

∂2

∂φ2
1

Veff(〈φ1〉, 0) =
λ2
3 − 88N2y 4

1

32π2
〈φ1〉2

∂2

∂φ2
2

Veff(〈φ1〉, 0) =
λ3

2
〈φ1〉2 +O(1-loop)

Evaluate Veff at 〈φ1〉 yields

Veff(〈φ1〉) = −
λ2
3 − 88N2y 4

1

512π2
〈φ1〉4

Thus when ε ≡ λ2
3 − 88N2y 4

1 ≥ 0, there is a non-trivial minimum.
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The Model Spectrum

Pole mass in Broken Phase
The explicit 1-loop pole masses are

Mψ(µ) = Mχ(µ) = y1v

[

1−
g 2

16π2

N

2

(

3 ln
y2
1 v

2

µ2
− 4

)]

M2
φ1

=
λ1v

2

2
+

3λ2
1v

2

64π2

(

ln
λ1v

2

2µ2
−

5

3
+

2π

3
√
3

)

+
3λ2

3v
2

64π2

(

ln
λ3v

2

2µ2
−

1

3
−

2λ1

3λ3

)

+
22N2y2

1

16π2

[

y2
1 v

2 −
λ1v

2

12
− 3

(

y2
1 v

2 −
λ1v

2

12

)(

ln
y2
1 v

2

µ2

)

− 3

∫ 1

0
dx

(

y2
1 v

2 −
x(1 − x)

2
λ1v

2

)

ln

(

1− x(1− x)
λ1

2y2
1

)

]

#
λ2
3 − 88N2y4

1

32π2
v2 =

ε

32π2
v2

Since v = 〈φ1〉, it has the same anomalous dimension as φ1.
Using the anomalous dimension and the β functions, one can verify
that the masses are RG invariant at 1-loop.
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Dilatation Decay Constant and Mass

Decay Constanst
Define the decay constant fσ by

〈0|Θµν(x)|σ〉 =
fσ
3

(

pµpν − gµνp2
)

e ip·x

where p is the momentum state |σ〉. The form of the right hand side
is constrained by conservation of Θµν . The factor 1/3 comes from

〈0|∂µDµ|σ〉 = 〈0|Θµ
µ|σ〉 = −fσM

2
σe

ip·x

Note that Θµν = −1/3v∂µ∂νφ1 + · · · .
Thus to lowest order fσ = v + · · · .
The RG invariant expression is easy to guess

fσ = vZ
−1/2
φ1

where Zφ1 is the wavefunction renormalization factor.
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Dilatation Decay Constant and Mass

Dilaton Mass

Having determined the decay constant fσ, the mass of the dilaton can
be obtained from the trace anomaly.
To lowest order, the mass is

M2
σ =

λ2
1 + λ2

3 − 88N2y 4
1

32π2
v 2

=
ε

32π2
v 2 = M2

φ1

where λ2
1 term is dropped for consistency.

RG invariant of Mσ can be inferred from Mφ1 .

Given the vev, we can tune ε to make the dilaton light compares
to the vev.

Patipan Uttayarat (UCSD Physics) A Very Light Dilaton May 25, 2011 20 / 28

RG invariance of

by comparison



Phase Structure Broken/Symmetric Phase

Broken Phase
Recall the theory admits a non-trivial minimum provided

λ1 is much smaller than other couplings,

ε ≡ λ2
3 − 88N2y 4

1 ≥ 0.

We want to study symmetry breaking close to the IR fixed-point.
However, near the fixed-point these conditions are not satisfied.

Use RGE to trace back the RG trajectory to large RG time where
perturbative analysis of effective potential yields a non-trivial
minimum.

Similary can define the theory at scale µ0 where perturbative analysis
yields a non-trivial minimum. Moreover, if the vev is well below µ0,
RG flows will get closed to the fixed-point before the massive
particles decouple.
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Alternatively, 

(convention: RG time here grows from IR to UV)



IRFP

Region where we can
reliably find minimum
of Veff

Theory parameter space: couplings at fixed µ0

Flow towards IRFP

? When μ≈ v fermions and 
heaver scalar decouple and
walking turns to running

walking



Phase Structure Broken/Symmetric Phase

Symmetric Phase
For a point in parameter space where ε < 0

Veff (〈φ1〉) becomes positive and the non-trivial minimum
disappears,

the effective potential seems to be unbounded from below along
φ1 direction for large φ1.

The second point threatens the validity of the model.

However, at large φ1 perturbative analysis breaks down.
Can extend the range of perturbativity using the improved effective
potential which effectively re-sum large logarithms.

V imp
eff =

1

24
λ̄1(t)e

−4
∫ t′

0 γφ1dt
′

φ4
1

Here t = lnφ1/µ0. This form is valid as long as λ̄1(t) is perturbative.

Patipan Uttayarat (UCSD Physics) A Very Light Dilaton May 25, 2011 22 / 28

s



Phase Structure Broken/Symmetric Phase

Symmetric Phase (cont.)

For points in parameter space closed to the IR fixed-point, gauge
coupling drives the Yukawa coupling to 0 in the UV.
Thus in the far UV, the β-function for λ1 has a Landau pole.

The effective potential is bounded from below because
λ̄1(t) > 0 for large φ1.

The theory need a UV cutoff.
! One can view the model as being a low energy effective theory

of some UV completed models.
! Since the cutoff will be many order of magnitude above the

scale of symmetry breaking, one can (safely) ignore it.
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IRFP

Region where we can
reliably find minimum
of Veff

Theory parameter space: couplings at fixed μ0

Symmetric Phase

Broken Phase

critical surface
     Mσ =0



Final remarks



Conclusion

Applications

We can use this model to verify various results in the literature. For a
specific example we will verify the dilaton potential in nearly
conformal theory of Goldberger, Grinstein and Skiba. Taking
L = LCFT +

∑

n λnOn, GGS arrives, via indirect argument, at the
dilaton potential

Veff(χ) =
M2

σ

4f 2σ
χ4

[

ln

(

χ

fσ

)

−
1

4

]

+O(γ2).

To compare our model with GGS, we view our model as
L(g) = L(g∗) + (L(g)− L(g∗)). In our model the dilaton field is
identify with φ1 and the anomalous dimensions are small.
Our effective potential for φ1 turns out to be exactly the same as
GGS.
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identified

Is conformal perturbation theory applicable in this model?
Recall GGS had



What about lessons for WTC?

In our model eventually glueballs form and
dilaton mass expected to be no smaller than
about glueball mass

Λ � ve
− 32π2

b0g2∗ � v

But in WTC  g* is large. And CFT perturbation theory questionable.

Is there a separation ΛχSB � ΛTC ?



Better approximation to running from close to fixed point?

Λ ≈ v exp

�
−
� ∞

g∗

dg

β(g)

�

β(g) ≈ β∗ −
beff
16π2

(g − g∗)
3

Model beta function:

Then 

It seems that there can be a separation between scales 
and a light dilaton provided  

β∗ � 1

Λ ≈ v exp

�
−
�

27π5

3
9
2 beffβ2

∗

�1
3

�



it is perturbative one has |γn| ! 1. Reassuringly, when the tree level term in the

effective potential of Eq. (6) is eliminated by use of Eq. (7), and the expressions for

dilaton mass and decay constant in Eq. (27) the resulting potential is exactly of the

form of Eq. (31). To emphasize, the dependence on the many coupling constants of

our model is completely contained now in only two parameters: Mσ and fσ.

Finally, we address one of the central questions we set out to investigate: Is the

AB estimate of the dilaton mass in walking technicolor scenarios correct? For AB,

the dilaton mass is given by

M2
σ "

s(α∗ − αc)

αc
Λ2 "

N c
f −Nf

N c
f

Λ2, (32)

where α∗ is the coupling at the fixed point, Nf is the number of flavors and Λ is

the scale of chiral symmetry breaking which occurs only if the critical coupling αc is

below the fixed point, αc < α∗, which in turn corresponds to the number of flavors

below a critical value, N c
f . The middle expression in Eq. (32), relating the mass to

the distance between the critical coupling and the fixed-point, does not carry over

to our model. In our case, the role of the critical value of the coupling constant αc is

played by a critical surface, ε = 0, separating the symmetric and broken phases. But

the mass of the dilaton is not proportional to the distance between this surface and

the fixed point (however one defines distance): the fixed-point lies on the critical

surface and the dilaton mass vanishes everywhere on the surface. The rightmost

expression in Eq. (32), however, has a counterpart in our model. In that formula

(N c
f −Nf )/N c

f measures how far the theory is from the critical point. In our model

ε plays the role of this quantity. It measures how far the theory is from the critical

surface. Moreover, both (N c
f −Nf )/N c

f and ε can be made arbitrarily small which in

turn make the dilaton arbitrarily light compared to the scale of symmetry breaking.

To the extent that one can arrange for arbitrarily small (N c
f−Nf )/N c

f , AB’s estimate

of a parametrically small dilaton mass is consistent with our analysis.

29

Intorduction

(Approximate) Scale Invariant Theory

A schematic β function of the theory.
The coupling flow toward the “would
be” IR fixed-point, g∗.
Close to the fixed-point, the flow is
slow and the theory posses approxi-
mate scale symmetry.

β(g)

gg∗

If the RG-trajectory reaches g∗, scale invariance becomes exact.

However, some degree of freedom in the theory can get a vev. If this
happens close to the fixed-point, scale invariance is spontaneously
broken and one expect a dilaton in the spectrum.

A field theory with this behavior is not common!
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One more (really, really, the last) word on Dilaton in WTC?
 
AB say:

First equation: In our model the critical coupling is a critical surface,
the IRFP is on critical surface, 0=0, correct but not interesting and
not what is intended

Second equation: ( Nc - N ) / N plays role of ε, measures distance to
critical surface, and equation is qualitatively correct!



The End



Supplementary Slides



Phase Structure Numerical Analysis

Numerical Value
N = 20, nf = 11/2N, δ = 0.2,
g(µ0) =

4
9g∗, y1(µ0) = 0.32y1∗, y2(µ0) =

1
5y2∗,

λ1(µ0) =
1
30λ2∗, λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗.

These condition corresponds to ε ! 0.
The vev is at

ln
〈φ1〉
µ0

# −29

and the spectrum are

Mψ,χ

v
# 8.5× 10−3,

Mφ1

v
# 7.9× 10−4,

Mφ2

v
# 9.5× 10−2.

Fractional correction to the effective potential from higher order
terms are approximated to be

∣

∣

∣

∣

Ng 2
∗

16π2
ln

(

y 2
1 v

2

µ2

)
∣

∣

∣

∣

# 0.2.
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Phase Structure Numerical Analysis

Numerical Value
N = 20, nf = 11/2N, δ = 0.2,
g(µ0) =

4
9g∗, y1(µ0) = 0.32y1∗, y2(µ0) =

1
5y2∗,

λ1(µ0) =
1
30λ2∗, λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗.

These condition corresponds to ε ! 0.
The vev is at

ln
〈φ1〉
µ0

# −29

and the spectrum are

Mψ,χ

v
# 8.5× 10−3,

Mφ1

v
# 7.9× 10−4,

Mφ2

v
# 9.5× 10−2.

Fractional correction to the effective potential from higher order
terms are approximated to be

∣

∣

∣

∣

Ng 2
∗

16π2
ln

(

y 2
1 v

2

µ2

)
∣

∣

∣

∣

# 0.2.
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So we start from region were
Veff has competition between
tree level and 1-loop



Phase Structure Numerical Analysis

Numerical Value
N = 20, nf = 11/2N, δ = 0.2,
g(µ0) =

4
9g∗, y1(µ0) = 0.32y1∗, y2(µ0) =

1
5y2∗,

λ1(µ0) =
1
30λ2∗, λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗.

These condition corresponds to ε ! 0.
The vev is at

ln
〈φ1〉
µ0

# −29

and the spectrum are

Mψ,χ

v
# 8.5× 10−3,

Mφ1
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Mφ2
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# 9.5× 10−2.

Fractional correction to the effective potential from higher order
terms are approximated to be
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∣

∣

∣
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∣

∣

∣

# 0.2.
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So we start from region were
Veff has competition between
tree level and 1-loop

Will change this to 0.45y1* 
for symmetric phase



Phase Structure Numerical Analysis

Numerical: Couplings Evolution

N = 20, nf = 11/2N, δ = 0.2,
g(µ0) =

4
9g∗, y1(µ0) = 0.45y1∗, y2(µ0) =

1
5y2∗,

λ1(µ0) =
1
30λ1∗, λ2(µ0) = 3λ2∗, λ3(µ0) = 5.2λ3∗. These condition

corresponds to ε < 0.

!400 !300 !200 !100 100

0.02

0.04

0.06

0.08

!400 !300 !200 !100 100

0.005

0.010

0.015

0.020

0.025
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g(t)

y1(t)
y2(t)

λ1(t)

λ3(t)

λ2(t)

Fixed point positive 
(stable)

Symmetric phase



Phase Structure Numerical Analysis

Numerical: Broken Phase

y1(µ0) = 0.32y1∗. This corresponds to a positive ε.

!400 !300 !200 !100 100

0.005

0.010

0.015

0.020

0.025

0.030

!80 !60 !40 !20

0.00002

0.00004

0.00006

0.00008

0.0001

The coupling λ1 becomes negative during the flow.
This agrees with our expectation from the improved effective
potential.
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λ1(t)

λ2(t)

λ3(t)

Gauge coupling walks. Eventually runs again. Endgame: glueballs.

blow up of left panel

Broken phase



Notes on: Dilatons in 
Conformal Perturbation Theory
• Assume SM is “embedded” in a CFT

• SM couplings ⇒ CFT perturbations

• CFT spontaneously broken ⇒ pseudo-dilaton

2

to the couplings of a pseudo-dilaton that arises from an
underlying strong sector. By non-linearly realized scale
invariance, the tree level pseudo-dilaton couplings are ob-
tained from those of the Higgs boson by replacing the
electroweak scale v with the scale f of conformal symme-
try breaking. In general the scale f may differ from v, so
that the unitarization of Standard Model amplitudes is
only partial. At the loop level, the dilaton also has cou-
plings to massless SM gauge bosons, but their strength
is model dependent. However, if f is close to v and no
other light states appear, it would be nearly impossible
to distinguish the new strong dynamics from the mini-
mal Higgs model. Finally, the self-couplings depend on
the dimension of operators that explicitly break the con-
formal symmetry, and this provides an opportunity to
differentiate the dilaton from the Higgs.

In the next section we describe our setup, which con-
sists of the SM with nonlinearly realized electroweak sym-
metry coupled to a light dilaton arising from a conformal
theory. There, we discuss the couplings of the dilaton
to SM fields. Assuming that the SM is embedded in
the conformal sector, we obtain the dilaton couplings to
massless SM gauge bosons, finding a large enhancement
relative to the analogous SM Higgs couplings. Unfor-
tunately, this does not constitute a tell tale sign of the
dilaton since the perturbative SM gauge interactions can
be non-conformal at high scales without spoiling the dy-
namics of a strongly interacting conformal sector. In ad-
dition, Higgs couplings to photons and gluons can be
radiatively induced by new heavy states, making an un-
ambiguous comparison of the Higgs and dilaton couplings
difficult. We also show that, in certain limits, the dilaton
cubic self coupling can be calculated in terms of its mass
and the scale of conformal symmetry breaking. This cou-
pling, although difficult to measure, is perhaps the most
interesting probe of the conformal sector.

In section II we briefly discuss collider phenomenology.
We first address current bounds inferred by LEP exper-
iments, then turn to LHC prospects, and finally com-
ment on the measurement of the dilaton self coupling
that could be achieved at a linear collider.

I. SETUP

We assume that the light degrees of freedom consist
of the SM gauge bosons and fermions as well as an elec-
troweak neutral scalar, the dilaton, whose mass is pro-
tected by approximate scale invariance. All other states
responsible either for conformal or electroweak breaking
are taken to be roughly heavier than a scale ΛEW ∼ 4πv.
The interactions among the light fields are described by
a low-energy effective Lagrangian with non-linearly real-
ized SU(2)L × U(1)Y and (approximate) conformal in-
variance.

A. Conformal sector

In this section we briefly recall the standard lore on
broken scale invariance. Conformal invariance in a field
theory can be broken by both classical (couplings with
non-zero mass dimension) and quantum (dependence on
a renormalization scale µ) effects. The manner in which
scale invariance is broken can be read off the RG equa-
tions of the theory.

A heuristic way of understanding the effects of scale
transformations on the theory can be obtained by writing
the Lagrangian in a basis of anomalous dimension eigen-
operators,

L =
∑

i

gi(µ)Oi(x), (1)

with [Oi] = di. The content of the RG equations is sum-
marized by assigning the transformations laws

Oi(x) → eλdiOi(e
λx),

µ → e−λµ,

under scale transformations xµ → eλxµ. This gives

δL =
∑

i

gi(µ)(di + xµ∂µ)Oi(x) +
∑

i

βi(g)
∂

∂gi
L, (2)

where βi(g) = µ∂gi(µ)/∂µ. From this one obtains the
divergence of the scale current Sµ = T µ

νxν ,

∂µSµ = T µ
µ =

∑

i

gi(µ)(di − 4)Oi(x) +
∑

i

βi(g)
∂

∂gi
L,

(3)
This implies in particular the standard result that if di =
4 and βi = 0, the theory is scale invariant.

Given Eq. (1), a simple way of incorporating non-
linearly realized scale invariance is to add a field χ(x)
that serves as a conformal compensator. Assigning the
scale transformation law

χ(x) → eλχ(eλx),

we simply need to make the replacement

gi(µ) → gi

(

µ
χ

f

)(

χ

f

)4−di

,

in Eq. (1). Here f = 〈χ〉 is the order parameter for scale
symmetry breaking, determined by the dynamics of the
underlying strong sector. The Goldstone boson associ-
ated with conformal symmetry breaking is parameterized
as

χ(x) = feσ(x)/f , (4)

which transforms non-linearly under scale transforma-
tions, λ : σ(x)/f → σ(eλx)/f + λ. However, a more
convenient parameterization for the fluctuations about
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pling, although difficult to measure, is perhaps the most
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of the SM gauge bosons and fermions as well as an elec-
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tected by approximate scale invariance. All other states
responsible either for conformal or electroweak breaking
are taken to be roughly heavier than a scale ΛEW ∼ 4πv.
The interactions among the light fields are described by
a low-energy effective Lagrangian with non-linearly real-
ized SU(2)L × U(1)Y and (approximate) conformal in-
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A. Conformal sector

In this section we briefly recall the standard lore on
broken scale invariance. Conformal invariance in a field
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A heuristic way of understanding the effects of scale
transformations on the theory can be obtained by writing
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This implies in particular the standard result that if di =
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Given Eq. (1), a simple way of incorporating non-
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in Eq. (1). Here f = 〈χ〉 is the order parameter for scale
symmetry breaking, determined by the dynamics of the
underlying strong sector. The Goldstone boson associ-
ated with conformal symmetry breaking is parameterized
as

χ(x) = feσ(x)/f , (4)

which transforms non-linearly under scale transforma-
tions, λ : σ(x)/f → σ(eλx)/f + λ. However, a more
convenient parameterization for the fluctuations about
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tected by approximate scale invariance. All other states
responsible either for conformal or electroweak breaking
are taken to be roughly heavier than a scale ΛEW ∼ 4πv.
The interactions among the light fields are described by
a low-energy effective Lagrangian with non-linearly real-
ized SU(2)L × U(1)Y and (approximate) conformal in-
variance.

A. Conformal sector

In this section we briefly recall the standard lore on
broken scale invariance. Conformal invariance in a field
theory can be broken by both classical (couplings with
non-zero mass dimension) and quantum (dependence on
a renormalization scale µ) effects. The manner in which
scale invariance is broken can be read off the RG equa-
tions of the theory.

A heuristic way of understanding the effects of scale
transformations on the theory can be obtained by writing
the Lagrangian in a basis of anomalous dimension eigen-
operators,

L =
∑

i

gi(µ)Oi(x), (1)

with [Oi] = di. The content of the RG equations is sum-
marized by assigning the transformations laws

Oi(x) → eλdiOi(e
λx),

µ → e−λµ,

under scale transformations xµ → eλxµ. This gives

δL =
∑

i

gi(µ)(di + xµ∂µ)Oi(x) +
∑

i

βi(g)
∂

∂gi
L, (2)

where βi(g) = µ∂gi(µ)/∂µ. From this one obtains the
divergence of the scale current Sµ = T µ

νxν ,

∂µSµ = T µ
µ =

∑

i

gi(µ)(di − 4)Oi(x) +
∑

i

βi(g)
∂

∂gi
L,

(3)
This implies in particular the standard result that if di =
4 and βi = 0, the theory is scale invariant.

Given Eq. (1), a simple way of incorporating non-
linearly realized scale invariance is to add a field χ(x)
that serves as a conformal compensator. Assigning the
scale transformation law

χ(x) → eλχ(eλx),

we simply need to make the replacement

gi(µ) → gi

(

µ
χ

f

)(

χ

f

)4−di

,

in Eq. (1). Here f = 〈χ〉 is the order parameter for scale
symmetry breaking, determined by the dynamics of the
underlying strong sector. The Goldstone boson associ-
ated with conformal symmetry breaking is parameterized
as

χ(x) = feσ(x)/f , (4)

which transforms non-linearly under scale transforma-
tions, λ : σ(x)/f → σ(eλx)/f + λ. However, a more
convenient parameterization for the fluctuations about

Then simply replace above

where = order parameter for scale symmetry breaking
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pling, although difficult to measure, is perhaps the most
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iments, then turn to LHC prospects, and finally com-
ment on the measurement of the dilaton self coupling
that could be achieved at a linear collider.
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theory can be broken by both classical (couplings with
non-zero mass dimension) and quantum (dependence on
a renormalization scale µ) effects. The manner in which
scale invariance is broken can be read off the RG equa-
tions of the theory.

A heuristic way of understanding the effects of scale
transformations on the theory can be obtained by writing
the Lagrangian in a basis of anomalous dimension eigen-
operators,

L =
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marized by assigning the transformations laws
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This implies in particular the standard result that if di =
4 and βi = 0, the theory is scale invariant.

Given Eq. (1), a simple way of incorporating non-
linearly realized scale invariance is to add a field χ(x)
that serves as a conformal compensator. Assigning the
scale transformation law

χ(x) → eλχ(eλx),

we simply need to make the replacement

gi(µ) → gi

(

µ
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)(
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)4−di
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in Eq. (1). Here f = 〈χ〉 is the order parameter for scale
symmetry breaking, determined by the dynamics of the
underlying strong sector. The Goldstone boson associ-
ated with conformal symmetry breaking is parameterized
as

χ(x) = feσ(x)/f , (4)

which transforms non-linearly under scale transforma-
tions, λ : σ(x)/f → σ(eλx)/f + λ. However, a more
convenient parameterization for the fluctuations about
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the VEV is χ̄(x) = χ(x) − f. Expanding about 〈χ〉 = f ,
one gets the standard result

Lχ =
1

2
∂µχ̄∂µχ̄ +

χ̄

f
T µ

µ + · · · , (5)

with T µ
µ as in Eq. (3).

B. Electroweak sector

A convenient, model-independent description of a
strongly interacting Higgs sector is in terms of the elec-
troweak chiral Lagrangian [10]. Introducing a 2 × 2 uni-
modular matrix field U(x), the dynamics of the EWSB
sector at energies below ΛEW ∼ 4πv & 1 TeV is given by

LEW = LχEW + Lψ + LY , (6)

with

LχEW = −
1

4
(Bµν)2 −

1

2
trW 2

µν +
1

4
v2trDµU †DµU + · · · ,

(7)
where the covariant derivative of U(x) is

DµU = ∂µU + ig1BµU
τ3

2
− ig2

%Wµ ·
%τ

2
U, (8)

and

LY = −Q̄LUmqqR − L̄LUm$&R + h.c. (9)

where mq/v, m$/v are quark and lepton Yukawa matri-
ces2. The term Lψ contains the usual fermion kinetic
energy operators.

In the unitary gauge, U = 1, LχEW above describes the
kinetic and mass terms for the SU(2)L × U(1)Y gauge
fields. Terms omitted in Eq. (7) are higher derivative
operators that encode the various precision electroweak
parameters with coefficients that scale as inverse powers
of the scale ΛEW . We simply assume that these coeffi-
cients are adjusted to be consistent with the measured
experimental values of the electroweak observables. We
have also neglected an additional custodial SU(2) vio-
lating two-derivative operator whose coefficient is exper-
imentally known to be small.

It is clear that the gauge boson and fermion mass terms
include the coupling of gauge fields to the dilaton as,
the replacement v → vχ/f makes Eq. (6) formally scale
invariant. Expanding about 〈χ〉 = f gives the couplings
of the dilaton to the SM gauge bosons and fermions at
tree level

Lχ,SM =

(

2χ̄

f
+

χ̄2

f2

) [

m2
W W+

µ W−µ
+

1

2
m2

ZZµZµ

]

+
χ̄

f

∑

ψ

mψψ̄ψ, (10)

2 We have written the right-handed fermions as custodial SU(2)
doublets, so that mq,! is a 2× 2 diagonal matrix of 3× 3 blocks,
with the lower block of m! set to zero.

which are identical in form to the couplings of a minimal
Higgs boson.

C. Dilaton self couplings

In the limit of exact scale invariance χ is derivatively
self-coupled. Ignoring for the time being terms that ex-
plicitly break the symmetry, self-interactions of the dila-
ton take the form

Lχ =
1

2
∂µχ∂µχ +

c4

(4πχ)4
(∂µχ∂µχ)2 + · · · , (11)

where the constant c4 ∼ O(1) depends on the details of
the underlying CFT. The inverse powers of χ are neces-
sary to ensure that Lχ transforms correctly under scal-
ings.

In addition, the theory may possess explicit sources
of scale symmetry breaking. For example, suppose that
conformal invariance is broken by the addition of an op-
erator O(x) with scaling dimension ∆O (= 4 to the La-
grangian,

LCFT → LCFT + λOO(x). (12)

It is straightforward to include this pattern of symmetry
breaking by the introduction of a spurion field into the
low-energy effective theory. This spurion constrains the
non-derivative interactions of χ(x) to be of the form [11]

V (χ) = χ4
∞
∑

n=0

cn(∆O)

(

χ

f

)n(∆O−4)

, (13)

where the coefficients cn ∼ λn
O depend on the dynamics

of the underlying CFT. By assumption, this dynamics
must be such that V (χ) is minimized at 〈χ〉 = f with
m2

χ = d2V (〈χ〉)/dχ2 > 0. In general, the coefficients cn

are functions of the scaling dimension, which we assume
are non-singular in the limit ∆O → 4.

It is not possible to make detailed predictions without
knowledge of the coefficients cn in V (χ) unless there ex-
ists a small expansion parameter. Here we are interested
in the case where the explicit conformal breaking term
above is small. This can be either because the opera-
tor O is nearly marginal (|∆O − 4| ) 1), as is the case
in walking technicolor theories or RS models stabilized
by the scenario of [12], or because the coefficient λO is
chosen to be small in units of f , as in the case of the
minimal Higgs model. If this happens, it is possible to
obtain definite expressions for the dilaton self-couplings
once the parameters m and f are fixed. We find that the
potential is

V (χ̄) =
1

2
m2χ̄2 +

λ

3!

m2

f
χ̄3 + · · · , (14)

where m2 ) f2 is proportional to the small symmetry
breaking parameter: m2/f2 ∝ λO for λO ) 1 (in units of

Then expanding about 
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µ as in Eq. (3).
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A convenient, model-independent description of a
strongly interacting Higgs sector is in terms of the elec-
troweak chiral Lagrangian [10]. Introducing a 2 × 2 uni-
modular matrix field U(x), the dynamics of the EWSB
sector at energies below ΛEW ∼ 4πv & 1 TeV is given by
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with
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and

LY = −Q̄LUmqqR − L̄LUm$&R + h.c. (9)

where mq/v, m$/v are quark and lepton Yukawa matri-
ces2. The term Lψ contains the usual fermion kinetic
energy operators.

In the unitary gauge, U = 1, LχEW above describes the
kinetic and mass terms for the SU(2)L × U(1)Y gauge
fields. Terms omitted in Eq. (7) are higher derivative
operators that encode the various precision electroweak
parameters with coefficients that scale as inverse powers
of the scale ΛEW . We simply assume that these coeffi-
cients are adjusted to be consistent with the measured
experimental values of the electroweak observables. We
have also neglected an additional custodial SU(2) vio-
lating two-derivative operator whose coefficient is exper-
imentally known to be small.

It is clear that the gauge boson and fermion mass terms
include the coupling of gauge fields to the dilaton as,
the replacement v → vχ/f makes Eq. (6) formally scale
invariant. Expanding about 〈χ〉 = f gives the couplings
of the dilaton to the SM gauge bosons and fermions at
tree level

Lχ,SM =
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2χ̄
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+
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+
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which are identical in form to the couplings of a minimal
Higgs boson.

C. Dilaton self couplings

In the limit of exact scale invariance χ is derivatively
self-coupled. Ignoring for the time being terms that ex-
plicitly break the symmetry, self-interactions of the dila-
ton take the form

Lχ =
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2
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(4πχ)4
(∂µχ∂µχ)2 + · · · , (11)

where the constant c4 ∼ O(1) depends on the details of
the underlying CFT. The inverse powers of χ are neces-
sary to ensure that Lχ transforms correctly under scal-
ings.

In addition, the theory may possess explicit sources
of scale symmetry breaking. For example, suppose that
conformal invariance is broken by the addition of an op-
erator O(x) with scaling dimension ∆O (= 4 to the La-
grangian,

LCFT → LCFT + λOO(x). (12)

It is straightforward to include this pattern of symmetry
breaking by the introduction of a spurion field into the
low-energy effective theory. This spurion constrains the
non-derivative interactions of χ(x) to be of the form [11]

V (χ) = χ4
∞
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where the coefficients cn ∼ λn
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of the underlying CFT. By assumption, this dynamics
must be such that V (χ) is minimized at 〈χ〉 = f with
m2

χ = d2V (〈χ〉)/dχ2 > 0. In general, the coefficients cn

are functions of the scaling dimension, which we assume
are non-singular in the limit ∆O → 4.

It is not possible to make detailed predictions without
knowledge of the coefficients cn in V (χ) unless there ex-
ists a small expansion parameter. Here we are interested
in the case where the explicit conformal breaking term
above is small. This can be either because the opera-
tor O is nearly marginal (|∆O − 4| ) 1), as is the case
in walking technicolor theories or RS models stabilized
by the scenario of [12], or because the coefficient λO is
chosen to be small in units of f , as in the case of the
minimal Higgs model. If this happens, it is possible to
obtain definite expressions for the dilaton self-couplings
once the parameters m and f are fixed. We find that the
potential is
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fields. Terms omitted in Eq. (7) are higher derivative
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parameters with coefficients that scale as inverse powers
of the scale ΛEW . We simply assume that these coeffi-
cients are adjusted to be consistent with the measured
experimental values of the electroweak observables. We
have also neglected an additional custodial SU(2) vio-
lating two-derivative operator whose coefficient is exper-
imentally known to be small.

It is clear that the gauge boson and fermion mass terms
include the coupling of gauge fields to the dilaton as,
the replacement v → vχ/f makes Eq. (6) formally scale
invariant. Expanding about 〈χ〉 = f gives the couplings
of the dilaton to the SM gauge bosons and fermions at
tree level
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which are identical in form to the couplings of a minimal
Higgs boson.

C. Dilaton self couplings

In the limit of exact scale invariance χ is derivatively
self-coupled. Ignoring for the time being terms that ex-
plicitly break the symmetry, self-interactions of the dila-
ton take the form
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(∂µχ∂µχ)2 + · · · , (11)

where the constant c4 ∼ O(1) depends on the details of
the underlying CFT. The inverse powers of χ are neces-
sary to ensure that Lχ transforms correctly under scal-
ings.

In addition, the theory may possess explicit sources
of scale symmetry breaking. For example, suppose that
conformal invariance is broken by the addition of an op-
erator O(x) with scaling dimension ∆O (= 4 to the La-
grangian,

LCFT → LCFT + λOO(x). (12)

It is straightforward to include this pattern of symmetry
breaking by the introduction of a spurion field into the
low-energy effective theory. This spurion constrains the
non-derivative interactions of χ(x) to be of the form [11]
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must be such that V (χ) is minimized at 〈χ〉 = f with
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χ = d2V (〈χ〉)/dχ2 > 0. In general, the coefficients cn

are functions of the scaling dimension, which we assume
are non-singular in the limit ∆O → 4.

It is not possible to make detailed predictions without
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ists a small expansion parameter. Here we are interested
in the case where the explicit conformal breaking term
above is small. This can be either because the opera-
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by the scenario of [12], or because the coefficient λO is
chosen to be small in units of f , as in the case of the
minimal Higgs model. If this happens, it is possible to
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From this we derive effective potentail by placing conditions on cn
(i) That it has
(ii) That it gives mass 

�χ� = f
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The Model Fixed-point Structure

MS β Functions
For large N with nχ = 11N/4 (1− δ/11), the leading terms are
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The Model Vacuum Structure

Effective Potential
At tree-level, 〈φi〉 = 0 and all the particle are massless. The theory
flows to the IR fixed-point.

However, quantum effect could drastically change the structure of the
vacuum (Coleman, Weinberg ’73)

V0(φ)

φ φ

Veff(φ)

The non-trivial vev gives mass to both fermions and scalars and alters
the RG trajectory.
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The Model Vacuum Structure

Effective Potential (cont.)

The effective potential in MS is

Veff = −
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Role of ϕ2

Note that ϕ2 never enters any calculations above. 
Moreover, one can get an attractive IR fixed-point 
with just one scalar singlet. 
This raises the question: what is the purpose of the 
second singlet?



Role of ϕ2

Note that ϕ2 never enters any calculations above. 
Moreover, one can get an attractive IR fixed-point 
with just one scalar singlet. 
This raises the question: what is the purpose of the 
second singlet?

• It allows us to introduce more couplings, in particular 
the cross-coupling λ3.

•Without the second singlet, the extremum found by 
perturbative analysis would have been the maximum.

‣ The scalar potential appears to be unbounded 
from below. 

‣ Possible to have non-trivial minimum at higher 
scale which is inaccessible to perturbative 
analysis.



We may look for the dilaton state, σ , by using the following 
generic criteria:

• spinless state 
• couples strongly/linearly to the energy-momentum tensor 
• lightest such state

Dilaton: The particle (state)

Clearly ϕ1 satisfies all of the above.
• It is the only state whose mass starts at 1-loop (modulo 

gauge fields)
• It is the only state which couples linearly to the energy-

momentum tensor when expanded about 
ϕ1  = v, ϕ2  = 0

Thus we identify σ with a single particle state created by ϕ1.



Dilatation Dilation Current

Dilatation Current
The dilatation current, Dµ, is constructed from the improved
energy-moementum tensor, Θµν , of Callan, Coleman and Jackiw.

Dµ = xνΘ
µν

Θµν = −F aµλF aν
λ +

1

2
χ̄i(γµDν + γνDµ)χ+

1

2
ψ̄i(γµDν + γνDµ)ψ

+ ∂µφi∂
νφi − gµνL−

1

2
κ(∂µ∂ν − gµν∂2)φ2

i

κ is the improvement term. It is a total derivative.
The CCJ improved tensor is the one with κ = 1/3.

The improvement term does not change the charges constructed
from Θµν .

The matrix elements of Θµν is finite, thus it doesn’t get
renormalized.

Patipan Uttayarat (UCSD Physics) A Very Light Dilaton May 25, 2011 16 / 28

are



Dilatation Dilation Current

Trace Anomaly

The divergence of the dilatation current is the trace of the improved
energy-momentum tensor.
Classically Θµ

µ vanishes for theory without any dimensional couplings.
Quantum effects make Θµ

µ non-zero, this is known as trace anomaly.
For the theory under consideration

Θµ
µ = γφ1φ1∂

2φ1 + (4γφ1λ1 − βλ1)
φ4
1

24
+ . . .

Terms involving other fields are omitted.

Terms proportional to γφ1 are usually omitted.
They cancel when EOM is applied but can contribute to off-shell
matrix element and Green functions.
Also these terms are needed to make the trace RG-invariant.
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Why is it non-straightforward? Try the obvious stuff first:

SSB in CFT? 

• Take CFT with moduli space (common in SCFT). Say, for 
definiteness: 
N = 4 SUSY SU(N) ➠ flat directions ➠ expand about a point away 
from origin

• EFT = SU(N) → SU(N − k) × SU(k) × U(1). 

• But EFT has N = 4 SUSY unbroken, “Dilaton” is exactly massless 
together with partners ➠ no mass gap

• Perturbations: flow into ??? (possibly another CFT,  interacting), 
fate of “dilaton?”

• More generally: want to study CFT perturbed by classically 
marginal deformation AND want to understand phase structure 
(vacuum)


