A Supersymmetric Lattice Theory: $\mathcal{N}=4$ YM

Simon Catterall, Poul Damgaard, Tom Degrand, Dhagash Mehta, Richard Galvez also Joel Giedt, Anosh Joseph,..

October 26, 2012

Lattice SUSY - the problems and how to dodge them

 $\mathcal{N}=4$ Super Yang-Mills: new formulation

Non-perturbative study: phase diagram

Barriers to Lattice Supersymmetry

- $\{Q, \overline{Q}\} = \gamma_{\mu} p_{\mu}$. No generators of infinitessimal translations on lattice. Equivalently: no Leibniz rule for difference ops on lattice: $\Delta(AB) \neq \Delta AB + A\Delta B$.
- ▶ Classical SUSY breaking leads to (many) SUSY violating ops via quantum corrections. Couplings must be adjusted with cut-off (1/a) to achieve SUSY in continuum limit -fine tuning.
- Discretization of Dirac equation: Lattice theories contain additional fermions (doublers) which do not decouple in continuum limit. Consequence: no. fermions ≠ no. bosons
- ▶ Lattice gauge fields live on lattice links and take values in group. Fermions live on lattice sites and (for adjoint fields) live in algebra

Putting SUSY on a lattice

Goals of any successful SUSY lattice formulation:

- ► Reduce/eliminate fine tuning. In particular scalar masses.
- More symmetrical treatment of bosons and fermions particularly for gauge theories.
- Keep exact gauge invariance. Lesson of lattice QCD (Wilson)
- Avoid fermion doubling...
- Avoid sign problems. After integration over fermions is effective bosonic action real? Monte Carlo simulation requires this ...

New formulations exist with all these features

New ideas - twisting

- Rewrite continuum theory in twisted variables.
- ► Exposes a single scalar supersymmetry \mathcal{Q} whose algebra is simple: $\mathcal{Q}^2 = 0$. Furthermore $S = \sim \mathcal{Q}\Lambda$.
- Key: this SUSY can be retained on discretization: easy to build invariant lattice action.
- ▶ Fine tuning reduced (eliminated ?):

$\begin{array}{cccc} \textbf{Exact hypercubic symmetry} & \stackrel{a \to 0}{\to} & \textbf{Full Poincare invariance} \\ & \textbf{Exact } \mathcal{Q} \textbf{ symmetry} & \to & \textbf{Full SUSY} \end{array}$

- ► See that all fields will live on links and take values in algebra.
- Structure of fermionic action dictated by exact SUSY would doublers will be physical

Most interesting application: $\mathcal{N}=4$ SYM

Many lattice SUSY theories in D < 4.

However in D=4 they single out a unique theory: $\mathcal{N}=4$ YM

- Fascinating QFT finite but non-trivial. A lattice formulation gives a non-perturbative definition of theory (like lattice QCD for QCD)
- ▶ Heart of AdS/CFT correspondence. Equivalence between string theory in AdS_5 and $\mathcal{N}=4$ SYM on boundary. Lattice formulation allows us to verify and extend holographic ideas: compute classical and quantum string corrections ... (expansion in 1/N and $1/\lambda$)
- Possible connection to low energy physics: Higgs as a dilaton arising from scalar fluctuations along flat directions (Hubisz's talk)?

Twisted (Lattice) Fields for $\mathcal{N}=4$

$$\begin{array}{c|c} \text{Usual fields} & \text{Twisted fields} \\ A_{\mu}, \mu = 1 \dots 4 & \phi_i, i = 1 \dots 6 & \mathcal{U}_{a}, a = 1 \dots 5 \\ \Psi^i, i = 1 \dots 4 & \eta, \psi_a, \chi_{ab}, a, b = 1 \dots 5 \end{array}$$

- ▶ Scalars appear as $\operatorname{Im} \mathcal{U}_a$! (miracle of twisting...)
- Fermions appear as anticommuting antisymmetric tensors!
- All Lattice fields live on links.
- ▶ Lattice is determined: 5 (complex) gauge fields \rightarrow lattice with (equal) 5 basis vectors. 4D implies $\sum_{a=1}^{5} \mathbf{e}^{a} = 0$. A_{4}^{*}
- ▶ All fields take values in U(N) algebra.
- ▶ Fields transform like links: $\psi_a \to G(x)\psi_a(x)G^{\dagger}(x+a)$

Lattice action

Twisting=change of variables in flat space

$$S_{1} = \sum_{\mathbf{x}} \operatorname{Tr} \left(\mathcal{F}_{ab}^{\dagger} \mathcal{F}_{ab} + \frac{1}{2} \left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a} \right)^{2} \right.$$

$$- \chi_{ab} \mathcal{D}_{[a}^{(+)} \psi_{b]} - \eta \overline{\mathcal{D}}_{a}^{(-)} \psi_{a} \right)$$

$$S_{2} = -\frac{1}{2} \sum_{\mathbf{x}} \operatorname{Tr} \epsilon_{abcde} \chi_{de} (\mathbf{x} + \mu_{\mathbf{a}} + \mu_{\mathbf{b}} + \mu_{\mathbf{c}}) \overline{\mathcal{D}}_{\mathbf{c}}^{(-)} \chi (\mathbf{x} + \mu_{\mathbf{c}})$$

- ▶ Bosonic action collapses to Wilson plaquette if $\mathcal{U}_a^{\dagger}\mathcal{U}_a = 1$.
- ► Fermions: Kähler-Dirac action ≡ (reduced) staggered fermions Describes 4 (Majorana) fermions in continuum limit.

Gauge invariance, doublers and all that

- All terms local, correspond to closed loops and hence are lattice gauge invariant
- ▶ \mathcal{U}_a 's non compact! $\mathcal{U}_a = \sum_B T^B \mathcal{U}_a^B$ flat measure $\int \prod D\mathcal{U}_a D\overline{\mathcal{U}}_a$. Nevertheless, still gauge invariant Jacobians resulting from gauge transformation of \mathcal{U} and $\overline{\mathcal{U}}$ cancel.
- ▶ Bigger question: how to generate correct naive continuum limit requires that can expand (suitable gauge) $U_a = I + A_a(x) + \dots$?

Naive continuum limit

- Need $\mathcal{U}_a = I + \mathcal{A}_a(x) + \ldots$ Here, unlike lattice QCD, unit matrix necessary for generating kinetic terms arises from the vev of a dynamical field! trace piece of imaginary part (scalar) of the gauge field
- Ensure by adding gauge invariant potential

$$\delta S = \mu^2 \sum_{x,a} \left(\frac{1}{N} \text{Tr} \left(\mathcal{U}_a^{\dagger} \mathcal{U}_a \right) - 1 \right)^2$$

To leading order: If $U_a = e^{A_a + iB_a}$ then Tr $B_a = 0$.

▶ Breaks Q SUSY softly. All breaking terms must vanish for $\mu \to 0$ (exact Q).

Quantum corrections ...

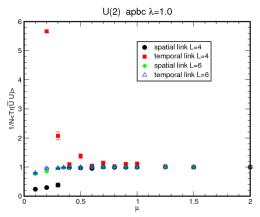
Can show:

- Lattice theory renormalizable: only counterterms allowed by exact symmetries correspond to terms in original action
- Effective potential vanishes to all orders in p. theory. No scalar mass terms!
- ► At one loop:
 - ▶ No fine tuning: common wavefunction renormalization
 - Vanishing beta function: Divergence structure matches continuum
- Need to go beyond p. theory. Phase diagram of lattice theory (next), Ward identities for broken SUSYs (see Anosh Joseph's talk)

Simulations

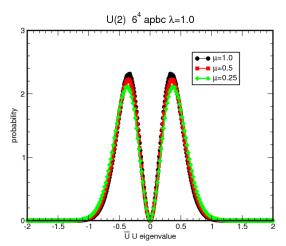
- ▶ Integrate fermions $\rightarrow \operatorname{Pf}(M)$. Realize as $\det \left(M^{\dagger}M\right)^{-\frac{1}{4}}$
- Standard lattice QCD algs may be used: RHMC with Omelyan, multi time step evolution. GPU acceleration for inverter (speedup: 5-10 over single core code for $L=8^3\times 16$)
- ▶ Phase quenched approximation should be ok: analytical argument, numerical evidence ...
- ► First step: phase structure U(2), L^4 , apbc, L = 4, 6, 8
 - ► Fix the unit matrix vev ? Instabilities from flat directions ?
 - Supersymmetry realized ?
 - String tension, chiral symmetry breaking ?
 - Phase transitions ?

Setting the vev



Classical vev stable $<\mathcal{U}_{\it a}\mathcal{U}_{\it a}>=I$ for $\mu>\mu_*$ with μ_* decreasing for increasing L

SU(2) Flat directions - I

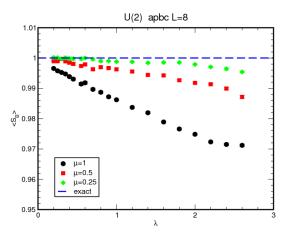


Distribution of scalars insensitive to μ

Comments

- \blacktriangleright Common statement: "Moduli space is not lifted in $\mathcal{N}=4$ by quantum corrections ..."
 - Why is scalar distribution not flat as $\mu \to 0$?
- ▶ Pfaffian vanishes on flat directions. Formally this zero cancels against infinity from boson zero modes but latter are lifted at non-zero μ .
- Thus configurations corresponding to flat directions make no contribution to lattice path integral.
- Small fluctuations around flat directions cost increasing action as move away from origin in field space - large scalar eigenvalues suppressed.

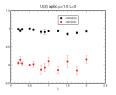
Test of exact supersymmetry



For $\mu \to 0$ S_B given by simple Q Ward identity.

Sign problem?

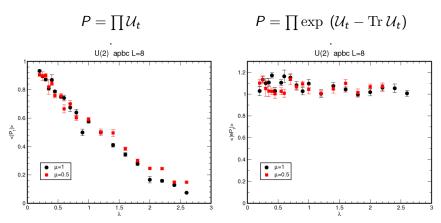
► Integrate fermions: complex Pfaffian. But observed phase small in phase quenched simulations..



Why ? For $\mu=0$ and pbc one can show that $Z_{\mathrm{lattice}}^{1-loop}=1$ indep of $\lambda!$ No phase appears!

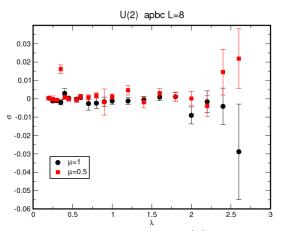
Exact Q symmetry -(formally) true to all orders in p theory!

Phase structure - Polyakov lines



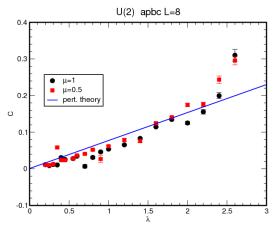
Traceless modes yield λ -indep Polyakov line

Phase structure - String tension



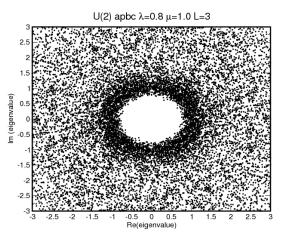
Extract by fitting W(R, T) to $e^{-V(R)T}$ and extract σ Vanishing for all λ

Coulomb fits



Fits are good and consistent with p theory .. no sign of Maldacena $\sqrt{\lambda}$ behavior

Chiral symmetry breaking - or lack of it ..



Eigenvalues excluded from origin: insensitive to μ and λ

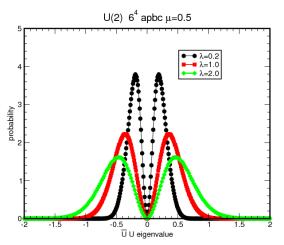
Conclusions

- ▶ Simulations of $\mathcal{N}=4$ YM look promising: gauge invariance and (some) SUSY can be preserved. No instabilities from flat directions, no sign problem.
- Prelim investigations show no sign of any phase transitions as vary λ. String tension small and static quark potential best fit with simple Coulomb term. Evidence for single, deconfined phase.
- lacktriangle Consistent with pert theory: 1 loop calc shows $eta_{\mathrm{latt}}(\lambda)=0$
- ► In addition to tests of AdS/CFT theory may serve as test bed for lattice theories with IRFPs

The end

To SuperSymmetry & BEYOND

SU(2) Flat directions - II



Localized distribution for all λ

frame

- Establish phase structure definitively ... using large lattices (better quark potentials), push to stronger λ , smaller μ
- ightharpoonup Examine the spectrum: evidence of SUSY, anomalous dims. Compare to known results in $\mathcal{N}=4$
- Check restoration of full SUSY: study broken SUSY Ward identities, determine how much fine tuning needed.
- Need to understand how to take continuum limit; in QCD send $\beta \to \infty$ and ever increasing L. In CFT g is parameter does not determine lattice spacing. Continuum physics by increasing L. But how to tune μ ?

Exciting time - lots to do !!