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Motivation

(near) Conformal Field Theories are important
BSM walking technicolor

AdS/CFT weak-strong duality
Model building

Lattice difficulty: scales are (nearly) exponential.

Hypercubic VS Radial Lattice

a < Ar <L vs a< Alog(r) <L



Early History

S. Fubini, A. Hanson and R. Jackiw PRD 7, 1732 (1972)

Abstract: A field theory is quantized covariantly on Lorentz-invariant
surfaces. Dilatations replace time translations as dynamical equations of
motion. This leads to an operator formulation for Euclidean quantum
field theory. A covariant thermodynamics is developed, with which the
Hagedorn spectrum can be obtained, given further hypotheses. The
Virasoro algebra of the dual resonance model is derived in a wide class of
2-dimensional Euclidean field theories.

J. Cardy J. Math. Gen 18 757 (1985).

Abstract: The relationship between the correlation length and critical
exponents in finite width strips in two dimensions is generalised to
cylindrical geometries of arbitrary dimensionality d. For d > 2 these
correspond however, to curved spaces. The result is verified for the

spherical model



Outline

Conformal Field Theory
Lattice Radial Quantization
3-D Ising model at Tc

Conclusion & Future Directions



Conformal Field Theories

O(d+1,1) adds Dilations and Inversion to Poincare transformations
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CFT are highly constrained

1. More than hyper scaling (scale invariance).
2. 2 and 3 point correlators are determined.
3. OPE & factorization may fixed the theory completely*?
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* “Solving the 3D Ising Model with the Conformal Bootstrap” (EI-Showk, Paulos,
Poland, Rychkov, Simmons-Duffin and Vichi) arXiv:1203.6064v1v [hep-th] (2012)



Inequalities from Bootstrap*
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*“Solving the 3D Ising Model with the Conformal Bootstrap” (EI-Showk, Paulos,
Poland, Rychkov, Simmons-Duffin and Vichi) arXiv:1203.6064v1v [hep-th] (2012)



Radial Quantization

Evoluton: H = Pypint — D in 7 = log(r)

ds® = dztdx, = e*7[dr* + dQ°]

e

R 5 R x S 1

“time” T = log( "mass” A =d/2—-1+n
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Power Law Correlator

Conformal correlator: (¢(x1)p(x2)) =C

T1AT2A<¢(717 Q1)¢(7'27 Q2)> = C [7“2/7"1 I 7“1/7"2 — 2COS(912)]A

~ (e log(rz) —log(r)A
OG_TA

With |z1 — x2|* = rire[re/r1 + 11 /12 — 2 cos(612)]

as 7 = log(ry) — log(r1) — oo
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Order s Refined Triangulated Icosahedron

| = 0,1, 2 irreducible under 120 |h Iscosahedral subgroup of O(3)



Fixed t lattice are s refined Icosahedrons

s=38

vertices:
N=10+ 2*s*s = 138

edges:
E=3"N-6

faces:
F=E-N+2=2"N-4

Continuum limit is s — 0o at 8 = Beritical



Primary operators 3-d Ising Model

Operator | Spinl | Z | A Exponent
S 0 — | 0.5182(3) A=1/24n/2
s’ 0 — | 2 4.5 A =34+ wy
€ 0 + | 1.413(1) A=3—-1/v
g’ 0 + | 3.84(4) A=3+w
g 0 + | 4.67(11) A =3+ wy
T 2 + 13 A =3
Clvr 4 + | 5.0208(12) | A =3+ wnr

Low-lying primary operators of the 3D Ising model at criticality.
K, 00)] =0

Ors1(x) = [P, O(x)] = i9,0(x)

Primary | =0

Descendants 1> 0



Preliminary Numerical Work

Swendsen Wang & Wolff cluster algorithm

| o (M
Binder U(B,s=1L)=1 3022
Fixes: Berit = 0.16098703(3)

Fix asymmetry of lattice by descendants.
Ar=Ag+1 for [=0,1,2,---

Rough values of 3 primaries: 71 » V', W

Much more is feasible with modest effort



Determining beta_critical

UL(B) = ﬁ(ﬁ - Bc)Ll/V + b L% + bQL_W/V + ..
— U*+a1(5—5C)L1/”+b1L_“-|-b2L—7/v+...

|
(M) .
U = [)=1— _
(67 5 ) 3<M2>2 _ 0.160985 _ _
QE 0.160980 ; By = 0.16098684(7) ;
Bcrit — 016098703(3) ©+ 1/v = 251(11)
0160975 1 o | . . . |
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Determining beta_critical

Icosahedron(s) N,=8xs Icosahedron(s) N,=4xs
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Observables

Cim (t) = Z Yir (Q2) (Stt-to,2 Sto,y) Yim (S2y)

tO?'CU?y
cosh fit: Clm(t) — C[e_mlt e_ml(Nt_l_t)]
for t=0, No—1.1=0.12 m=—l- I
c 1
m; = =4\ Al:——l—ﬁ—l—l

S 2 2

After you adjust ¢ = speed of light so Ajp1 — A =1



[cosahedron(s) N,=8xs
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Improved cluster Estimator

Swendsen-Wang: Real space

Nconfzg
1
g(.flf T y) — <Sa:5y> = N Z AC?L (Qj)ACz (y)
config 1 Z_

Ac(x)= 1ifx € C else 0

Wolff single cluster
1 Nconfzg 1
glm(k) ~ N . Z ’_‘ Z ’LQﬂ'kt/LtY (Q )‘
config

=1 t,xeC

Note: All to All O(V) improved estimator in Momentum space *
*C. Ruge, P. Zhu and F. Wagner Physica A (1994) 431:



Numerical Test (so far)

Equal spacing test of descendants:

P2 71 0.999(1)
K1 — Mo

“Speed of light” ¢ = 1.5105(7)

But critical point Berit = 0.16098703(3)

Current anomalous dimensions (more soon)
from Binder: w + 1/y — 2,51(11)

from corr. Ay =1/2+n/2 = 0.5175(6)
Simulation are on going to reduce errors



Check Descendant Relation &

rescale “log(r)”

Icosahedron(s), T=8xs, £=0.16098700
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Current Fit: A, = 0.5175(6)

Icosahedron(s), T=8xs, =0.16098700
0.64 I I I I ‘ I I I I ‘ I I
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n=2(A-1/2)=0.345(1)




Fitting correlators

Discrete states have exact cosh correlators

Ci(t) = Ay cosh(—pu(t —T/2))

Transform tO k—space Disconnected piece
T—1

~ 1 itk

Ci(k) = thzge Ci (1)

Good fits required 3 mass



Preliminary: Higher Primaries

Icosahedron(s), T=8xs, £=0.16098700
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Some Questions

Restoration of full Conformal O(d+1,1) as 1/s 2 o
Lattice only approximates the isometriesof R x gd—1
Our action has aiscosahedron with flat faces

(i.e. simplicial geometry from Regge calculus)

III

Do “conical” curvature defects relevant (Try tetrahedron)
Check 2-pt correlator for full conformal symmetry.
Check 3-point and 4-point functions as well?
“"Hamiltonian Form”: continuous time exact (dilation)

+ worm algorithms

etc.



Future Challenges & Directions

Other applications
O(N) model in 3-d compare with large N

Fermionson R x S 1 (Dirac with Vierbein)
Maybe easiest with hypercubic shells.
Strengthen bootstrap inequalities.

Add mass deformations?

Study conformal IR fixed points for BSM.
(Dilation operator is “time” dependent!)



Can you add Running coupling
and mass deformations?

Callan-Symanzik Equation

0 0

[7“5 - B(g)a—g —(1+ 7(9))maim + 2A(g)] C(r,,g,m,u) =0

B(g) 2 w(g™ —g) g




