Exploring for walking technicolor from QCD

Yasumichi Aoki［Kobayashi－Maskawa Institute（KMI），Nagoya University］
for the LatKMI collaboration
－Lattice meets experiment 2012 ＠Boulder－
Oct．27， 2012

圈而 名古屋大学

| $\mathrm{K} \mathrm{M}_{i}$ |
| :--- | :--- |
| $\mathrm{I} \mathrm{M}_{\mathrm{i}}$ |
| $\mathrm{K} \mathrm{M}_{\mathrm{I}}$ |

LatKMI collaboration

＂Higgs boson＂

－Higgs like particle fund at LHC
－ $\mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}$
－spin，parity，other properties are under investigation
－so far consistent with Standard Model Higgs $\left(J^{\mathrm{PC}}=0^{++}\right)$fundamental scalar
－but it could be different
－one of the possibilities
－walking technicolor
－＂Higgs＂$=$ pNGB due to breaking of the approximate scale invariance

requirements for model

－nearly conformal：walking
－$\gamma_{m} \sim 1$
－input：F＝ $246 / \sqrt{ } \mathrm{N}$ GeV
－N：\＃weak doublet from new techni－sector
－could $\mathrm{m}_{\mathrm{H}}\left(0_{++}\right)$be made light：$\sim 126 \mathrm{GeV}$

models being studied：

－SU（3）
－fundamental： $\mathrm{Nf}=6,8,10,12,16$
－sextet：Nf＝2
－SU（2）
－adjoint： $\mathrm{Nf}=2$
－fundamental： $\mathrm{Nf}=8$
－SU（4）
－decuplet：Nf＝2

SU（N）Phase Diagram

models being studied：

－SU（3）
－fundamental： $\mathrm{Nf}=6,8,10$ ，（12）（16）
－sextet：Nf＝2
－SU（2）

SU（N）Phase Diagram

－adjoint： $\mathrm{Nf}=2$
－fundamental： $\mathrm{Nf}=8$
－SU（4）
－decuplet：Nf＝2

models being studied：

－SU（3）
－fundamental： $\mathrm{Nf}=6$ 8， 10 ，（12）（16）
－sextet：Nf＝2
－SU（2）
－adjoint： $\mathrm{Nf}=2$
－fundamental： $\mathrm{Nf}=8$
－SU（4）
－decuplet： $\mathrm{Nf}=2$

SU（N）Phase Diagram

$\mathrm{SU}(3)+\mathrm{N}_{\mathrm{f}}=12$［fundamental］

［LatKMI collab．PRD86（2012）054506］

Hadron spectrum： m_{f}－response in mass deformed theory

－IR conformal phase：
－coupling runs for $\mu<\mathrm{m}_{\mathrm{f}}$ ：like $\mathrm{n}_{\mathrm{f}}=0$ QCD with $\Lambda_{\mathrm{QCD}} \sim \mathrm{m}_{\mathrm{f}}$
－multi particle state ： $\mathrm{M}_{\mathrm{H}} \propto \mathrm{mf}^{1 /\left(1+\gamma_{m}{ }^{*}\right) ; ~} \mathrm{~F}_{\pi} \propto \mathrm{mf}^{1 /\left(1+\gamma_{m}{ }^{*}\right)} \quad$（criticality＠IRFP）
－ratio of the masses，decay constant is constant as function of m_{f}
－ $\mathrm{S} \chi$ SB phase：
－ChPT（but，large $\mathrm{N}_{\mathrm{f}, \text { small } \mathrm{F} \quad \Leftrightarrow \text { real QCD）}}^{\text {（ }}$
－hard to get to the chiral regime
－at leading： $\mathrm{M}_{\mathrm{\pi}}{ }^{2} \propto \mathrm{~m}_{\mathrm{f}}, ; \quad \mathrm{F}_{\pi}=\mathrm{F}+\mathrm{c} \mathrm{m}_{\mathrm{f}}$

Simulation

－HISQ（Highly Improved Staggered Quarks）
－being used for state－of－the－art QCD calculations／MILC，．．
－tree level Symanzik gauge
＝HISQ／tree
－$\beta=6 / \mathrm{g}^{2}=3.7, \quad V=L^{3} \times T: L / T=3 / 4 ; L=18,24,30, \quad 0.04 \leqq m_{f} \leqq 0.2$
－$\beta=6 / g^{2}=4.0, \quad V=L^{3} \times T: L / T=3 / 4 ; L=18,24,30, \quad 0.05 \leqq m_{\mathrm{f}} \leqq 0.24$
－ $\mathrm{N}_{\mathrm{f}}=4$ HISQ for the reference of $\mathrm{S} \chi \mathrm{SB}$ for comparison
－using MILC code v7 with some modifications（non－rational HMC）

staggered flavor symmetry for $\mathrm{N}_{\mathrm{f}}=12$ HISQ

－comparing masses with different staggered operators for $\pi \& \rho$ for $\beta=3.7$

－excellent staggered flavor symmetry，thanks to HISQ

a crude analysis：$F_{\pi} / M_{\pi} v s M_{\pi}$

$\mathrm{N}_{\mathrm{f}}=12: \mathrm{HISQ}$

a crude analysis：$F_{\pi} / M_{\pi} v s M_{\pi}$

$\mathrm{N}_{\mathrm{f}}=12: \mathrm{HISQ}$

$N_{f}=4$ ：HISQ $\beta=3.7$

－$\beta=3.7$ ：small mass：consistent with hyper－scaling

a crude analysis：F_{π} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{f}}=12: \mathrm{HISQ}$

$N_{\mathrm{f}}=4$ ： $\mathrm{HISQ} \quad \beta=3.7$

－$\beta=3.7$ ：small mass：consistent with hyper－scaling
－$\beta=4.0$ ：volume to small ？unlikely in the hyper－scaling region

a crude analysis：M_{ρ} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{i}}=12: \mathrm{HISQ}$

a crude analysis：M_{ρ} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{i}}=12: \mathrm{HISQ}$

a crude analysis：M_{ρ} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{f}}=12: \mathrm{HISQ}$

－$\beta=3.7$ \＆4．0：small mass（wider than F_{π} ）：consistent with hyper scaling（HS）

a crude analysis：M_{ρ} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{i}}=12: \mathrm{HISQ}$

－$\beta=3.7$ \＆4．0：small mass（wider than F_{π} ）：consistent with hyper scaling（HS）
－mass dependence at the tail is due to non－universal mass correction to HS

a crude analysis：M_{ρ} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{f}}=12: \mathrm{HISQ}$

－one may attempt to perform a matching
－assuming $(\mathrm{am})^{2}$ error is small
－$\beta=3.7$ \＆4．0：small mass（wider than F_{π} ）：consistent with hyper scaling（HS）
－mass dependence at the tail is due to non－universal mass correction to HS

a crude analysis：M_{ρ} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{i}}=12: \mathrm{HISQ}$

－one may attempt to perform a matching
－assuming $(\mathrm{am})^{2}$ error is small
$\Rightarrow a(\beta=3.7) /(\beta=4.0)>1$
－$\beta=3.7$ \＆4．0：small mass（wider than F_{π} ）：consistent with hyper scaling（HS）
－mass dependence at the tail is due to non－universal mass correction to HS

a crude analysis：M_{ρ} / M_{π} vs M_{π}

$\mathrm{N}_{\mathrm{i}}=12: \mathrm{HISQ}$

－one may attempt to perform a matching
－assuming $(\mathrm{am})^{2}$ error is small
$\Rightarrow a(\beta=3.7) /(\beta=4.0)>1$
－movement：correct direction in asymptotically free domain！
－$\beta=3.7$ \＆4．0：small mass（wider than F_{π} ）：consistent with hyper scaling（HS）
－mass dependence at the tail is due to non－universal mass correction to HS

conformal（finite size）scaling

－Scaling dimension at IR fixed point［Wilson－Fisher］；Hyper Scaling［Miransky］
－mass dependence is described by anomalous dimensions at IRFP
－quark mass anomalous dimension γ^{*}
－operator anomalous dimension
－hadron mass and pion decay constant obey same scaling

$$
M_{H} \propto m_{f}^{\frac{1}{1+\gamma^{*}}} \quad F_{\pi} \propto m_{f}^{\frac{1}{1+\gamma^{*}}}
$$

－finite size scaling in a L^{4} box（DeGrand；Del Debbio et al）
－scaling variable：$\quad x=L m_{f}^{\frac{1}{1+\gamma^{*}}}$

$$
L \cdot M_{H}=f_{H}(x) \quad L \cdot F_{\pi}=f_{F}(x)
$$

$N_{f}=12$ see if data align at some γ

$N_{f}=4$ see if data align at some γ

$\mathrm{N}_{\mathrm{f}}=4$ see if data align at some γ

$N_{f}=4$ see if data align at some γ

$N_{f}=4$ see if data align at some γ

measure of the＂alignment＂ without resorting to a model

measure of the＂alignment＂ without resorting to a model

－γ of optimal alignment will minimize：

$$
P_{p}(\gamma)=\frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{\left|\xi_{p}^{j}-f_{p}^{(K)}\left(x_{j}\right)\right|^{2}}{\delta^{2} \xi_{p}^{j}}
$$

－$\xi_{p}=L M_{p}$ for $p=\pi, \rho ; \quad \xi_{F}=L F_{\pi}$
－$f_{p}(x)$ ：interpolation ．．．．linear
－（quadratic for a systematic error）
－if ξ^{j} is away from $f\left(x_{i}\right)$ by $\delta \xi^{j}$ as average $\rightarrow P=1$
－optimal γ from the minimum of P
－similar definition of the measure：DeGrand，Giedt \＆Weinberg

measure of the＂alignment＂ without resorting to a model

－γ of optimal alignment will minimize：

$$
P_{p}(\gamma)=\frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{\left|\xi_{p}^{j}-f_{p}^{(K)}\left(x_{j}\right)\right|^{2}}{\delta^{2} \xi_{p}^{j}}
$$

－$\xi_{p}=L M_{p}$ for $p=\pi, \rho ; \quad \xi_{F=L F}$
－$f_{p}(x)$ ：interpolation ．．．．linear
－（quadratic for a systematic error）
－if ξ^{j} is away from $f\left(x_{i}\right)$ by $\delta \xi^{j}$ as average $\rightarrow P=1$
－optimal γ from the minimum of P

－similar definition of the measure：DeGrand，Giedt \＆Weinberg

measure of the＂alignment＂ without resorting to a model

－γ of optimal alignment will minimize：

$$
P_{p}(\gamma)=\frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{\left|\xi_{p}^{j}-f_{p}^{(K)}\left(x_{j}\right)\right|^{2}}{\delta^{2} \xi_{p}^{j}}
$$

－$\xi_{p}=L M_{p}$ for $p=\pi, \rho ; \quad \xi_{F=L F}$
－$f_{p}(x)$ ：interpolation ．．．．linear
－（quadratic for a systematic error）
－if ξ^{j} is away from $f\left(x_{i}\right)$ by $\delta \xi^{j}$ as average $\rightarrow P=1$
－optimal γ from the minimum of P

－similar definition of the measure：DeGrand，Giedt \＆Weinberg
－systematic error due to small L ，large m estimated by examining the x and L range dependence

TABLE VII．Summary of the optimal values of γ ．See the text for details．

quantity	β	all
M_{π}	3.7	$0.434(4)$
F_{π}	3.7	$0.516(12)$
M_{ρ}	3.7	$0.459(8)$

TABLE VII．Summary of the optimal values of γ ．See the text for details．

			x		
quantity	β	all	range 1	range 2	range 3
M_{π}	3.7	$0.434(4)$	$0.425(9)$	$0.436(6)$	$0.437(4)$
F_{π}	3.7	$0.516(12)$	$0.481(19)$	$0.512(19)$	$0.544(14)$
M_{ρ}	3.7	$0.459(8)$	$0.411(17)$	$0.461(10)$	$0.473(8)$

TABLE VII．Summary of the optimal values of γ ．See the text for details．

－$\beta=3.7$ ：smaller m ：closer to M_{π}

TABLE VII．Summary of the optimal values of γ ．See the text for details．

quantity	β	all	x			L		
			range 1	range 2	range 3	$(18,24)$	$(18,30)$	$(24,30)$
M_{π}	3.7	$0.434(4)$	0．425（9）	0．436（6）	0．437（4）	0．438（6）	0．433（4）	0．429（8）
F_{π}	3.7	0．516（12）	$0.481(19$	0．512（19）	$0.544(14)$	0．526（18）	$0.514(11)$	0．505（24）
M_{ρ}	3.7	0．459（8）	0．411（17	0．461（10）	0．473（8）	0．491（15）	0．457（8）	0．414（18）

－$\beta=3.7$ ：smaller m ：closer to M_{π}

TABLE VII．Summary of the optimal values of γ ．See the text for details．

			x			L		
quantity	β	all	range 1	range 2	range 3	$(18,24)$	$(18,30)$	$(24,30)$
M_{π}	3.7	$0.434(4)$	0．425（9）	0．436（6）	0．437（4）	0．438（6）	0．433（4）	0．429（8）
F_{π}	3.7	0．516（12）	$0.481(19$	$0.512(19)$	0．544（14）	$0.526(18)$	$0.514(11)$	$0.505(24)$
M_{ρ}	3.7	$0.459(8)$	$0.411(17)$	$0.461(10)$	0．473（8）	$0.491(15)$	$0.457(8)$	$0.414(18)$

－$\beta=3.7$ ：smaller m ：closer to M_{π}
－$\beta=3.7$ ：larger V ：closer to M_{π}

TABLE VII．Summary of the optimal values of γ ．See the text for details．

quantity	β	all	x			L		
			range 1	range 2	range 3	$(18,24)$	$(18,30)$	$(24,30)$
M_{π}	3.7	$0.434(4)$	0.425 （9）	0．436（6）	0．437（4）	0．438（6）	0．433（4）	0．429（8）
M_{π}	4	$0.414(5)$	0．420（7）	0．418（6）	0．411（5）	0．397（7）	0．414（4）	0．447（9）
F_{π}	3.7	0．516（12）	0．481（19）	0．512（19）	0．544（14）	0．526（18）	0．514（11）	0．505（24）
F_{π}	4	0．580（15）	0．552（21）	0．602（20）	0．605（19）	$0.544(27)$	$0.577(14)$	$2.645(32)$
M_{ρ}	3.7	0．459（8）	0．411（17）	0．461（10）	0．473（8）	0．491（15）	0．457（8）	0．414（18）
M_{ρ}	4	0．460（9）	$0.458(13)$	$0.455(14)$	0．460（8）	0．457（16）	0．459（8）	$0.463(15)$

－$\beta=3.7$ ：smaller m ：closer to M_{π}
－$\beta=3.7$ ：larger V：closer to M_{π}
－$\beta=4.0$ ：not conclusive：possibly due to large $m \rightarrow$ take variation as sys．err．

summary of γ obtained by minimizing $P(\gamma)$

summary of γ obtained by minimizing $P(\gamma)$

－γ ：consistent with 2σ level except for F_{π} at $\beta=4.0$

summary of γ obtained by minimizing $P(\gamma)$

－γ ：consistent with 2σ level except for F_{π} at $\beta=4.0$
－remember：F_{π} at $\beta=4.0$ speculated to be out of the scaling region

summary of γ obtained by minimizing $P(\gamma)$

－γ ：consistent with 2σ level except for F_{π} at $\beta=4.0$
－remember：F_{π} at $\beta=4.0$ speculated to be out of the scaling region
－universal low energy behavior：good with $0.4<\gamma \star<0.5$

Conformal type global fit with finite volume correction

$$
\begin{aligned}
& \xi=L M_{\pi}, L F_{\pi}, L M_{\rho} \\
& \xi=c_{0}+c_{1} L m_{f}^{1 /(1+\gamma)} \cdots \text { fit a } \\
& \xi=c_{0}+c_{1} L m_{f}^{1 /(1+\gamma)}+c_{2} L m_{f}^{\alpha} \cdots \text { fit } \mathrm{b} .
\end{aligned}
$$

	γ	α	$\chi^{2} /$ dof
fit a	$0.449(3)$	-	4.52
fit b－1	$0.411(9)$	$\frac{(3-2 \gamma)}{(1+\gamma)}$	1.23
fit b－2	$0.423(7)$	$[2]$	1.15

－simultaneous fit it with a leading mass dependent correction is not bad
－b－1：Ladder Schwinger－Dyson，b－2：（am）${ }^{2}$ lattice artifact ［see，LatKMI PRD85（2012）074502］
－resulting γ is consistent with the model independent analysis

ChPT fit（after infinite volume extrapolation）

$h\left(m_{f}\right)=c_{0}+c_{1} m_{f}+c_{2} m_{f}^{2}$				
fit range	c_{0}	c_{1}	c_{2}	$\chi^{2} /$ dof
fit $1:[0.04,0.08]$	0．0190（52）	1．21（18）	$-2.2(1.5)$	0.29
fit $1:[0.04,0.1]$	0．0162（30）	1．31（85）	－3．01（58）	0.37
fit $1:[0.04,0.12]$	0．0231（18）	1．093（48）	$-1.51(29)$	3.30

－2nd order polynomial fit is reasonably good for small mass range \＆$c_{0}>0$

ChPT fit（after infinite volume extrapolation）

$h\left(m_{f}\right)=c_{0}+c_{1} m_{f}+c_{2} m_{f}^{2}$				
fit range	c_{0}	c_{1}	c_{2}	$\chi^{2} /$ dof
fit $1:[0.04,0.08]$	0．0190（52）	1．21（18）	－2．2（1．5）	0.29
fit $1:[0.04,0.1]$	0．0162（30）	1.31 （85）	－3．01（58）	0.37
fit $1:[0.04,0.12]$	0．0231（18）	1.093 （48）	－1．51（29）	3.30

－2nd order polynomial fit is reasonably good for small mass range \＆$c_{0}>0$

ChPT fit（after infinite volume extrapolation）

$$
h\left(m_{f}\right)=c_{0}+c_{1} m_{f}+c_{2} m_{f}^{2}
$$

fit range	c_{0}	c_{1}	c_{2}	$\chi^{2} /$ dof
fit 1：［0．04，0．08］	$-0.0057(91)$	$1.82(32)$	$15.2(2.6)$	1.35
	$[0]$	$1.62(3)$	$16.76(45)$	0.88
fit 1：$[0.04,0.1]$	$-0.0209(48)$	$2.37(15)$	$10.6(1.1)$	2.59
		$[0]$	$1.729(21)$	$14.99(25)$
fit 1：$:[0.04,0.12]$	$-0.0183(31)$	$2.28(87)$	$11.21(55)$	1.90
	$[0]$	$1.780(17)$	$14.28(17)$	10.29

ChPT fit（after infinite volume extrapolation）

$$
h\left(m_{f}\right)=c_{0}+c_{1} m_{f}+c_{2} m_{f}^{2}
$$

fit range	c_{0}	c_{1}	c_{2}	$\chi^{2} /$ dof
fit 1：［0．04，0．08］	$-0.0057(91)$	$1.82(32)$	$15.2(2.6)$	1.35
	$[0]$	$1.62(3)$	$16.76(45)$	0.88

－consistent with $\mathrm{c}_{0}=0$ for the smallest mass range

ChPT fit（after infinite volume extrapolation）

$$
h\left(m_{f}\right)=c_{0}+c_{1} m_{f}+c_{2} m_{f}^{2}
$$

fit range	c_{0}	c_{1}	c_{2}	$\chi^{2} /$ dof
fit 1 $:[0.04,0.08]$	$-0.0057(91)$	$1.82(32)$	$15.2(2.6)$	1.35
	$[0]$	$1.62(3)$	$16.76(45)$	0.88

－consistent with $\mathrm{c}_{0}=0$ for the smallest mass range
－But：$\quad N_{f}\left[M_{\pi} /(4 \pi F)\right]^{2} \sim 40$ at lightest point \rightarrow difficult to tell real chiral behavior

$N_{f}=12$ Summary

for details，see LatKMI collaboration，PRD86（2012） 054506 ［arXiv：1207．3060］．
－$\beta=3.7,4.0$ ：consistent with being in the asymptotically free regime
－$M_{\pi}, F_{\pi}, M_{\rho}$ ：consistent with the finite size hyper scaling for conformal theory
－resulting γ^{*} from different quantities，lattice spacings are consistent except
－F_{π} at $\beta=4.0$（ m_{f} likely too heavy for universal mass dep．to dominate）
－careful continuum scaling required to get more accurate than $0.4<\gamma^{*}<0.5$
－real／remnant（approximate）conformal property definitely exists
－could not exclude S χ SB with very small breaking scale
－even if $S \chi$ SB，γ_{m} too small for walking theory of phenomenological interest
－ $\mathrm{N}_{\mathrm{f}}<12$ should be examined for the quest of the walking technicolor theory

$S U(3)+N_{f}=8 \quad$［fundamental］

examined with same setup／method candidate of the walking technicolor？ ［preliminary］

［LatKMI collab．，Lattice2011／2012］

hyperscaling test m_{π}

hyperscaling test m_{π}

$$
r=0.5
$$

good alignment

hyperscaling test f_{π}

hyperscaling test f_{π}

$r=1$
good alignment

$P(\gamma)$ analysis

quantity	γ
M_{π}	$0.596(7)$
f_{π}	$0.917(11)$
M_{ρ}	$0.741(34)$

$P(\gamma)$ analysis

$\mathrm{N}_{\mathrm{f}}=8$| quantity | γ |
| :---: | :---: |
| M_{π} | $0.596(7)$ |
| | f_{π} |
| M_{ρ} | $0.917(11)$ |
| | $0.741(34)$ |

$P(\gamma)$ analysis

$\mathrm{Nf}=\boldsymbol{O}$

quantity	γ
M_{π}	$0.596(7)$
f_{π}	$0.917(11)$
M_{ρ}	$0.741(34)$

$N_{f}=12$

$\mathrm{N}_{\mathrm{f}}=8$［preliminary］Summary

$\mathrm{N}_{\mathrm{f}}=8$［preliminary］Summary

－likely： $\mathrm{f}_{\mathrm{m}} \neq 0, \mathrm{~m}_{\rho} \neq 0$ for $\mathrm{m}_{\mathrm{f}} \rightarrow 0$
－no common optimal $\gamma \rightarrow$ suggesting no exact conformality
－ Y （expected to be approximate）larger than $\mathrm{N}_{\mathrm{f}}=12$ ，promising．

$\mathrm{N}_{\mathrm{f}}=8$［preliminary］Summary

－likely：$f_{\pi} \neq 0, m_{\rho} \neq 0$ for $m_{f} \rightarrow 0$
－no common optimal $\gamma \rightarrow$ suggesting no exact conformality
－ Y （expected to be approximate）larger than $\mathrm{N}_{\mathrm{f}}=12$ ，promising．
－candidate of walking？

$\mathrm{N}_{\mathrm{f}}=8$［preliminary］Summary

－likely：$f_{\pi} \neq 0, m_{\rho} \neq 0$ for $m_{f} \rightarrow 0$
－no common optimal $\gamma \rightarrow$ suggesting no exact conformality
－ Y （expected to be approximate）larger than $\mathrm{N}_{\mathrm{f}}=12$ ，promising．
－candidate of walking ？
－needs further study！

0＋＋
glueball spectrum
［VERY preliminary］

0＋＋glueball

0＋＋glueball

－could a WTC model produce light 0＋＋？

0＋＋glueball

－could a WTC model produce light 0＋＋？
－promising results from a model in the conformal window： $\mathrm{SU}(2)+2$ adjs

0＋＋glueball

－could a WTC model produce light 0＋＋？
－promising results from a model in the conformal window： $\mathrm{SU}(2)+2$ adjs
－Del Debbio et al［PRD82（2010）014510］： $\mathrm{m}_{\mathfrak{f} \neq 0,0++ \text { glueball lighter than pion }}$

0＋＋glueball

－could a WTC model produce light 0＋＋？
－promising results from a model in the conformal window： $\mathrm{SU}(2)+2$ adjs
－Del Debbio et al［PRD82（2010）014510］： $\mathrm{m}_{\mathrm{f}} \neq 0$ ， $0++$ glueball lighter than pion
－test for $\operatorname{SU}(3) \mathrm{n}_{\mathrm{f}=12}$（consistent with conformal）underway．．．

$\mathrm{SU}(3) \mathrm{N}_{\mathrm{f}}=12,0^{++}$techni－glueball［preliminary］

－effective mass from variational method（e．g．E．Gregory et al arXiv：1208．1858）
－ 0^{++}techni－glueball is righter than techni－pion＠ $\mathrm{m}_{\mathrm{f}}=0.06$
－but．．．

SU（3） $\mathrm{N}_{\mathrm{f}}=12,0^{++}$techni－glueball［preliminary］

SU（3） $\mathrm{N}_{\mathrm{f}}=12,0^{++}$techni－glueball［preliminary］

SU（3） $\mathrm{N}_{\mathrm{f}}=12,0^{++}$techni－glueball［preliminary］

－finite volume effect needs to be carefully studied．．．

Outlook

－continue for $\operatorname{SU}(3) \mathrm{N}_{\mathrm{f}}=8,12$
－underway／planned／wish list for both $\mathrm{N}_{\mathrm{f}}=12$／ 8
－lighter mass
－more hadrons
－glueball：study of finite volume effects
－isosinglet scaler
－and more．．．

Thank you for your attention

ChPT inspired infinite volume limit（ $\beta=3.7$ ）

－ChPT type finite volume effect \rightarrow chiral fit results not inconsistent with $\mathrm{S} \chi$ SB

