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“Higgs boson”

• Higgs like particle fund at LHC

• mH = 126 GeV

• spin, parity, other properties are under investigation

• so far consistent with Standard Model Higgs  (JPC=0++) fundamental scalar

• but it could be different

• one of the possibilities

• walking technicolor 

• “Higgs” = pNGB due to breaking of the approximate scale invariance
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requirements for model

• nearly conformal: walking

• γm ~ 1

• input: F = 246 /√N GeV

• N:  # weak doublet from new techni-sector

• could mH  (0++) be made light:  ~126 GeV
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models being studied:

• SU(3)

• fundamental: Nf=6, 8, 10, 12, 16

• sextet: Nf=2

• SU(2)

• adjoint: Nf=2

• fundamental: Nf=8

• SU(4)

• decuplet: Nf=2
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Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.

Fund

2A

2S Adj

Ladder

γ = 1 γ = 2

Ryttov & Sannino 07

SU(N) Phase Diagram

Dietrich & Sannino 07

Sannino & Tuominen 04

Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
each case we try to emphasize the sources of systematic errors that need to be kept under control
in order to draw robust conclusions from numerical data.

2.1 Phase structure of the lattice theories.

Lattice simulations are performed by discretizing the action of a given theory on a Euclidean
space-time lattice. At weak coupling the RG flow can be computed perturbatively, and the relevant
parameters are easily identified. For an asymptotically-free gauge theory, g = 0 is an UV fixed
point that defines the usual continuum limit of the lattice theory. The IRFP that we are seeking is
a fixed point on the massless renormalized trajectory that originates from the continuum limit. As
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SU(3) + Nf=12   [fundamental]

               

[LatKMI collab. PRD86 (2012) 054506]
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Hadron spectrum: 
         mf-response in mass deformed theory

• IR conformal phase:

• coupling runs for μ<mf:   like nf=0 QCD with ΛQCD~mf

• multi particle state :  MH ∝ mf1/(1+γm*);   Fπ ∝ mf1/(1+γm*)    (criticality @ IRFP)

• ratio of the masses, decay constant  is  constant as function of mf

• SχSB phase:

• ChPT (but, large Nf, small F    ⇔ real QCD)

• hard to get to the chiral regime

• at leading:  Mπ2 ∝ mf,  ;   Fπ = F + c mf
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Simulation

• HISQ (Highly Improved Staggered Quarks)

• being used for state-of-the-art QCD calculations / MILC,..

• tree level Symanzik gauge

➡HISQ/tree

• β=6/g2=3.7,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.04≦mf≦0.2

• β=6/g2=4.0,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.05≦mf≦0.24

• Nf=4 HISQ for the reference of SχSB for comparison

• using MILC code v7 with some modifications (non-rational HMC)
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staggered flavor symmetry for Nf=12 HISQ

• comparing masses with different staggered operators for π & ρ for β=3.7

• excellent staggered flavor symmetry, thanks to HISQ
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FIG. 20. The effective mass of both two operators at β = 3.7, 4 on (L/a, T/a) = (30, 40). {fig:spectrum}

Appendix B: Analysis of conformal hypothesis fit

{sec:conformal_fit}

In this appendix we show the details of fit results on the conformal hypothesis.

In the conformal hypothesis with a finite volume, we make an attempt to use the fit

functions given in Eq. 14. In the generic situation, however, we do not know how and what

kind of such correction terms can appear from the RG analysis. Therefore in this appendix

we fix the value of the exponent α to a certain value in the fit since it is hard to determine

both two exponents of the power behavior from the fit. We consider three possible value of

alpha as α = (3 − 2γ)/(1 + γ), 1 and 2, so we denote these fit functions as fit b-1, fit b-2

and fit b-3, respectively. We carry out simultaneous fit with above fit functions using all the

data for Mπ, Fπ and Mρ with common anomalous dimension γ and α. We also use same

data points for the fit as in the section V. As already discussed in the section V, additional

correction terms improve the accuracy of the fit efficiently for both case of β = 3.7 and

β = 4. On the other hand, each of the fit results with correction term gives same magnitude

of χ2/dof. Thus in this analysis it is not easy to determine both of γ and α.
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a crude analysis: Fπ/Mπ vs Mπ

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11

Nf=4: HISQ  β=3.7Nf=12: HISQ
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dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,

11

flat: β=3.7

Nf=4: HISQ  β=3.7Nf=12: HISQ
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dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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?: β=4.0

Nf=4: HISQ  β=3.7Nf=12: HISQ
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

Nf=12: HISQ
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flat: β=4.0
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

Nf=12: HISQ

flat: β=3.7

flat: β=4.0

• one may attempt to perform a 
matching

• assuming (am)2 error is small
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

Nf=12: HISQ
• one may attempt to perform a 

matching

• assuming (am)2 error is small
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a crude analysis: Mρ/Mπ vs Mπ

• β=3.7 & 4.0: small mass (wider than Fπ): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

Nf=12: HISQ
• one may attempt to perform a 
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• assuming (am)2 error is small

➡a(β=3.7) / (β=4.0) > 1

• movement: correct direction 
in asymptotically free 
domain !0 0.5 1 1.5

raM
π

1.1

1.15

1.2

1.25

1.3

R
M

ρ
/M

π

L=24

L=30

2012年10月27日土曜日



conformal (finite size) scaling

• Scaling dimension at IR fixed point [Wilson-Fisher];  Hyper Scaling [Miransky]

• mass dependence is described by anomalous dimensions at IRFP

• quark mass anomalous dimension

• operator anomalous dimension

• hadron mass and pion decay constant obey same scaling 

• finite size scaling in a L4 box (DeGrand; Del Debbio et al)

• scaling variable: x = Lm
1

1+γ∗

f

γ∗

Fπ ∝ m
1

1+γ∗

f

L ·MH = fH(x) L · Fπ = fF (x)

MH ∝ m
1

1+γ∗

f
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Nf=12  see if data align at some γ
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FIG. 5. ξπ plotted against the scaling variable x for γ = 0.1, 0.4, 0.7 from left to right for Nf = 12

at β = 3.7. An alignment is found for γ ∼ 0.4. {fig:mpi_g}

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

! F

18^3 x 24
24^3 x 32
30^3 x 40

"=0.2

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

! F

18^3 x 24
24^3 x 32
30^3 x 40

"=0.5

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

! F

18^3 x 24
24^3 x 32
30^3 x 40

"=0.8

FIG. 6. ξF v.s. x for γ = 0.2, 0.5, 0.8 from left to right for Nf = 12 at β = 3.7 γ ∼ 0.5. {fig:fpi_g}

Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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Nf=4  see if data align at some γ
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FIG. 7. ξπ plotted against the scaling variable x for γ = 0.5, 1.0, 1.5 from left to right for Nf = 4

at β = 3.7, where spontaneous chiral symmetry breaking occurs. An alignment found at γ = 1 is

consistent with Eq. (5) {fig:nf4_mpi_g}
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FIG. 8. ξF v.s. x for γ = 0, 1, 2 from left to right for Nf = 4 at β = 3.7. No alignment found. {fig:nf4_fpi_g}

deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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consistent with Eq. (5) {fig:nf4_mpi_g}
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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at β = 3.7, where spontaneous chiral symmetry breaking occurs. An alignment found at γ = 1 is

consistent with Eq. (5) {fig:nf4_mpi_g}
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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measure of the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=π, ρ;   ξF=LFπ

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg
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at β = 3.7. An alignment is found for γ ∼ 0.4. {fig:mpi_g}
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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•  ξp=LMp  for p=π, ρ;   ξF=LFπ
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• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg
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Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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measure of the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=π, ρ;   ξF=LFπ

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• similar definition of the measure: DeGrand,  Giedt & Weinberg

• systematic error due to small L, large m estimated by examining the x and L 
range dependence
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FIG. 5. ξπ plotted against the scaling variable x for γ = 0.1, 0.4, 0.7 from left to right for Nf = 12

at β = 3.7. An alignment is found for γ ∼ 0.4. {fig:mpi_g}
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FIG. 6. ξF v.s. x for γ = 0.2, 0.5, 0.8 from left to right for Nf = 12 at β = 3.7 γ ∼ 0.5. {fig:fpi_g}

Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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TABLE VII. Summary of the optimal values of γ. See the text for details.

x L

quantity β all range 1 range 2 range 3 (18,24) (18,30) (24,30)

Mπ 3.7 0.434(4) 0.425(9) 0.436(6) 0.437(4) 0.438(6) 0.433(4) 0.429(8)

Mπ 4 0.414(5) 0.420(7) 0.418(6) 0.411(5) 0.397(7) 0.414(4) 0.447(9)

Fπ 3.7 0.516(12) 0.481(19) 0.512(19) 0.544(14) 0.526(18) 0.514(11) 0.505(24)

Fπ 4 0.580(15) 0.552(21) 0.602(20) 0.605(19) 0.544(27) 0.577(14) 0.645(32)

Mρ 3.7 0.459(8) 0.411(17) 0.461(10) 0.473(8) 0.491(15) 0.457(8) 0.414(18)

Mρ 4 0.460(9) 0.458(13) 0.455(14) 0.460(8) 0.457(16) 0.459(8) 0.463(15)
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

dependence beyond the error bars, and thus ξπ is well described by a function of a single

variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)

should get closer to that of γ(Mπ). This is actually the case, as is observed from Table VII

in which γ(Mρ) reduces for smaller mass range (toward range 1) and larger volume (toward
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TABLE VII. Summary of the optimal values of γ. See the text for details.
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dependence beyond the error bars, and thus ξπ is well described by a function of a single

variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)

should get closer to that of γ(Mπ). This is actually the case, as is observed from Table VII

in which γ(Mρ) reduces for smaller mass range (toward range 1) and larger volume (toward
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• β=3.7: smaller m : closer to Mπ

TABLE VII. Summary of the optimal values of γ. See the text for details.
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quantity β all range 1 range 2 range 3 (18,24) (18,30) (24,30)
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Fπ 3.7 0.516(12) 0.481(19) 0.512(19) 0.544(14) 0.526(18) 0.514(11) 0.505(24)

Fπ 4 0.580(15) 0.552(21) 0.602(20) 0.605(19) 0.544(27) 0.577(14) 0.645(32)

Mρ 3.7 0.459(8) 0.411(17) 0.461(10) 0.473(8) 0.491(15) 0.457(8) 0.414(18)

Mρ 4 0.460(9) 0.458(13) 0.455(14) 0.460(8) 0.457(16) 0.459(8) 0.463(15)

0.3 0.4 0.5 0.6 0.7 0.8
 !

1

10

100

1000

10000

P

M
"
 (linear)

M
"
 (quadratic)

F
"
 (linear)

F
"
 (quadratic)

M
#
 (linear)

M
#
 (quadratic)

FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

dependence beyond the error bars, and thus ξπ is well described by a function of a single

variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)

should get closer to that of γ(Mπ). This is actually the case, as is observed from Table VII

in which γ(Mρ) reduces for smaller mass range (toward range 1) and larger volume (toward
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• β=3.7: smaller m : closer to Mπ

TABLE VII. Summary of the optimal values of γ. See the text for details.

x L

quantity β all range 1 range 2 range 3 (18,24) (18,30) (24,30)
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

dependence beyond the error bars, and thus ξπ is well described by a function of a single

variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)

should get closer to that of γ(Mπ). This is actually the case, as is observed from Table VII

in which γ(Mρ) reduces for smaller mass range (toward range 1) and larger volume (toward
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• β=3.7: smaller m : closer to Mπ

• β=3.7: larger V:     closer to Mπ

TABLE VII. Summary of the optimal values of γ. See the text for details.
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quantity β all range 1 range 2 range 3 (18,24) (18,30) (24,30)
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Mπ 4 0.414(5) 0.420(7) 0.418(6) 0.411(5) 0.397(7) 0.414(4) 0.447(9)
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

dependence beyond the error bars, and thus ξπ is well described by a function of a single

variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)

should get closer to that of γ(Mπ). This is actually the case, as is observed from Table VII

in which γ(Mρ) reduces for smaller mass range (toward range 1) and larger volume (toward
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• β=3.7: smaller m : closer to Mπ

• β=3.7: larger V:     closer to Mπ

• β=4.0: not conclusive: possibly due to large m → take variation as sys. err.

TABLE VII. Summary of the optimal values of γ. See the text for details.

x L

quantity β all range 1 range 2 range 3 (18,24) (18,30) (24,30)
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

dependence beyond the error bars, and thus ξπ is well described by a function of a single

variable x. If there is IR conformality, the non-universal correction to the hyperscaling is

negligible at this precision. Then, from the fact that in Sec. III the scaling is observed in

the small mass range for the ratio Mρ/Mπ at β = 3.7 it is suggested that there should be

certain window dependence of γ from Mρ. As γ(Mπ) = 0.434(4) and γ(Fπ) = 0.459(8) at

β = 3.7, if one restricts the mass range for Mρ to the smaller side, then the value of γ(Mρ)

should get closer to that of γ(Mπ). This is actually the case, as is observed from Table VII

in which γ(Mρ) reduces for smaller mass range (toward range 1) and larger volume (toward
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summary of γ obtained by minimizing P(γ) 
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summary of γ obtained by minimizing P(γ) 

• γ: consistent with 2 σ level except for Fπ at β=4.0
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summary of γ obtained by minimizing P(γ) 

• γ: consistent with 2 σ level except for Fπ at β=4.0

• remember: Fπ at β=4.0 speculated to be out of the scaling region
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summary of γ obtained by minimizing P(γ) 

• γ: consistent with 2 σ level except for Fπ at β=4.0

• remember: Fπ at β=4.0 speculated to be out of the scaling region

• universal low energy behavior: good with 0.4<γ*<0.5
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Conformal type global fit
   with finite volume correction

• simultaneous fit it with a leading mass dependent correction is not bad

• b-1: Ladder Schwinger-Dyson,   b-2: (am)2 lattice artifact

• resulting γ is consistent with the model independent analysis

x = Lm1/(1+γ)
f . We make an attempt to use the following formulae as

ξ = c0 + c1Lm
1/(1+γ)
f · · · fit a, (14) {eq:f}

ξ = c0 + c1Lm
1/(1+γ)
f + c2Lm

α
f · · · fit b. (15)

The first one (fit a) is a naive fit form based on the hyper-scaling relation which is described

by the function form of f(x) = c0+ c1x with x = Lm1/(1+γ)
f . This formula is motivated from

the results obtained in Fig. 10, since the clear linearity of the data for large x can be found

near the optimal value of γ.

The second one (fit b) is considered as the above function for the hyperscaling including

the mass corrections. As discussed in the previous section, there may exist some corrections

beyond the hyperscaling relations in the region we simulated, so we try to include such

contributions. In particular the value of α = (3 − 2γ)/(1 + γ) is inspired by the analytic

expression of the solution of the SD equation given in [33] and the analogous structure in the

region of the large anomalous dimension is also discussed in [39]. We also consider the case

of the value of α = 2. This correction could be regarded as the small mass correction caused

by explicit chiral symmetry breaking effects or due to the lattice discretization artifact. It

is noted that in both cases the fit function cannot be described by a single scaling variable

x = Lm1/(1+γ)
f . We denote these fit functions with α = (3− 2γ)/(1+ γ) and α = 2 as fit b-1

and fit b-2, respectively. In this section we try to carry out the fit using these fit functions,

namely, fit a, fit b-1, and fit b-2. Another simple correction term with α = 1 can also be

considered in Ref. [26]. All the details of the fit results including other ansatz are shown in

the appendix B.

The finite size correction to the value ξ has been also considered. This kind of the

correction is motivated by the Fisher’s argument for the critical phenomena on a finite

system [40]. The study of the hyper scaling with such corrections in the QCD with many-

flavor has been seen in [41]. Here in order to avoid the large finite size effects, we restrict

ourselves to use of the data points in the fit which satisfy ξπ > L(= 30) ×Mπ(mf = 0.04)

for β = 3.7 and ξπ > L(= 18)×Mπ(mf = 0.08) for β = 4.

We carry out simultaneous fit with above fit functions using all the data for Mπ, Fπ and

Mρ with common anomalous dimension γ. The fit results of γ and χ2/dof are shown in

table VIII and figure 14 for β = 3.7 and and figure 15 for β = 4. Here we assume that the

possible correlations among these observables can be neglected. In these figures the data
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Near the optimal value of !, the data become to align, 
 where linearity is observed.

•  L-> infinity, the (infinite volume) hyper-scaling relation is obtained. 
•  3 fit parameters : c0, c1, ! 
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γ α χ2/dof

fit a 0.449(3) - 4.52

fit b-1 0.411(9) (3−2γ)
(1+γ) 1.23

fit b-2 0.423(7) [2] 1.15

γ α χ2/dof

fit a 0.430(3) - 6.78

fit b-1 0.461(18) (3−2γ)
(1+γ) 1.86

fit b-2 0.453(11) [2] 2.00

TABLE VIII. The fit results of finite size conformal hypothesis at β = 3.7(left) and β = 4(right).

The values sandwiched as [· · · ] mean the input in the fit.
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FIG. 15. The each of spectra ξπ(left), ξF (center) and ξρ(right) as a function of mf at β = 3.7.

For simplicity, we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit.
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FIG. 16. The each of spectra ξπ(left), ξF (center) and ξρ(right) as a function of mf at β = 4.

For simplicity we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit.
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γ α χ2/dof
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fit b-1 0.411(9) (3−2γ)
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fit b-2 0.423(7) [2] 1.15

γ α χ2/dof

fit a 0.430(3) - 6.78
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(1+γ) 1.86
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TABLE VIII. The fit results of finite size conformal hypothesis at β = 3.7(left) and β = 4(right).

The values sandwiched as [· · · ] mean the input in the fit.
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FIG. 15. The each of spectra ξπ(left), ξF (center) and ξρ(right) as a function of mf at β = 3.7.

For simplicity, we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit.
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For simplicity we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit.
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ChPT fit (after infinite volume extrapolation) 

• 2nd order polynomial fit is reasonably good for small mass range & c0>0
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2. ChPT fit analysis

We analyze the fit using the second order polynomial function as

h(mf ) = c0 + c1mf + c2m
2
f (C5) {eq:action}

where c0,1,2 are free parameters. Using this simple polynomial functions we carry out the

fits for M2
π , Fπ and the chiral condensate by the function h(mf ) varying the fit range of

the fermion mass from mf = 0.04 to mf = 0.12. We denote the fit range of fermion mass

as [mmin
f , mmax

f ]. As the current data set of β = 3.7 simulation has physically lighter quark

mass, the property of the mass zero limit is captured better than those at β = 4. Therefore

we focus on the former.

The fit results for M2
π are shown in Fig. 20 and XI. Among these fits, the center values

of intercept c0 are negative for M2
π , while the fit with mmax

f = 0.08 are consistent with the

vanishing intercept. In Fig. 20 we also show the fit results with c0 being fixed to zero. In the

fit of each fermion mass range the value of χ2/dof become much larger than the one from the

fit with non-zero c0 except for the fit with mmax
f = 0.08. Furthermore, the contribution of

the higher order term with c2 is not small enough even in the fit result using the data with

the smallest mass range. There may be a possible reason that the fermion mass in the data

we have is too heavy to take a reliable chiral extrapolation with ChPT formula. Anyhow,

these are in contrast to our result in Nf = 4.

The similar analysis can be done in the case of Fπ. We take same fit ranges as in the case

of M2
π and the fit function as Fπ = h(mf ). The value of Fπ at the chiral limit is a important

signal of SCSB. The fit results are shown in Fig. 21 and table XII. This result gives O(1)

value of χ2/dof for the fit with smaller mass range. We obtain tiny non-zero value of Fπ in

the chiral limit.

The chiral condensate through the Gell-Mann−Oakes−Renner (GMOR) relation given

by (FπMπ)
2 /mf is also studied. We fit the data of (FπMπ)

2 /mf using above function. It is

found that the result is similar to the one obtained from the individual fits of two quantities

of M2
π and Fπ, where the intercept c0 of M2

π is fixed to be zero in the fit. Then the center

value of chiral condensate at the chiral limit is negative and tiny. We also find that the fit

result with small mass range is consistent with vanishing condensate within the error.

Some comments on these fit analyses based on the ChPT follow. If we adopt the fit

result with the mass range [0.04, 0.08] at β = 3.7, which is expected to be the most reliable
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FIG. 21. The several fit results on Fπ at β = 3.7 using the data on L = 30.

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0057(91) 1.82(32) 15.2(2.6) 1.35

[0] 1.62(3) 16.76(45) 0.88

fit 1 : [0.04, 0.1] -0.0209(48) 2.37(15) 10.6(1.1) 2.59

[0] 1.729(21) 14.99(25) 8.33

fit 1 : [0.04, 0.12] -0.0183(31) 2.28(87) 11.21(55) 1.90

[0] 1.780(17) 14.28(17) 10.29

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit.

[2] T. Akiba and T. Yanagida, Phys.Lett. B169, 432 (1986).

[3] T. W. Appelquist, D. Karabali, and L. Wijewardhana, Phys.Rev.Lett. 57, 957 (1986).

[4] B. Holdom, Phys.Lett. B150, 301 (1985).

[5] S. Weinberg, Phys.Rev. D13, 974 (1976).

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0190(52) 1.21(18) -2.2(1.5) 0.29

fit 1 : [0.04, 0.1] 0.0162(30) 1.31(85) -3.01(58) 0.37

fit 1 : [0.04, 0.12] 0.0231(18) 1.093(48) -1.51(29) 3.30

TABLE XII. The fit results on Fπ in infinite volume limit.
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ChPT fit (after infinite volume extrapolation) 

• 2nd order polynomial fit is reasonably good for small mass range & c0>0
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2. ChPT fit analysis

We analyze the fit using the second order polynomial function as

h(mf ) = c0 + c1mf + c2m
2
f (C5) {eq:action}

where c0,1,2 are free parameters. Using this simple polynomial functions we carry out the

fits for M2
π , Fπ and the chiral condensate by the function h(mf ) varying the fit range of

the fermion mass from mf = 0.04 to mf = 0.12. We denote the fit range of fermion mass

as [mmin
f , mmax

f ]. As the current data set of β = 3.7 simulation has physically lighter quark

mass, the property of the mass zero limit is captured better than those at β = 4. Therefore

we focus on the former.

The fit results for M2
π are shown in Fig. 20 and XI. Among these fits, the center values

of intercept c0 are negative for M2
π , while the fit with mmax

f = 0.08 are consistent with the

vanishing intercept. In Fig. 20 we also show the fit results with c0 being fixed to zero. In the

fit of each fermion mass range the value of χ2/dof become much larger than the one from the

fit with non-zero c0 except for the fit with mmax
f = 0.08. Furthermore, the contribution of

the higher order term with c2 is not small enough even in the fit result using the data with

the smallest mass range. There may be a possible reason that the fermion mass in the data

we have is too heavy to take a reliable chiral extrapolation with ChPT formula. Anyhow,

these are in contrast to our result in Nf = 4.

The similar analysis can be done in the case of Fπ. We take same fit ranges as in the case

of M2
π and the fit function as Fπ = h(mf ). The value of Fπ at the chiral limit is a important

signal of SCSB. The fit results are shown in Fig. 21 and table XII. This result gives O(1)

value of χ2/dof for the fit with smaller mass range. We obtain tiny non-zero value of Fπ in

the chiral limit.

The chiral condensate through the Gell-Mann−Oakes−Renner (GMOR) relation given

by (FπMπ)
2 /mf is also studied. We fit the data of (FπMπ)

2 /mf using above function. It is

found that the result is similar to the one obtained from the individual fits of two quantities

of M2
π and Fπ, where the intercept c0 of M2

π is fixed to be zero in the fit. Then the center

value of chiral condensate at the chiral limit is negative and tiny. We also find that the fit

result with small mass range is consistent with vanishing condensate within the error.

Some comments on these fit analyses based on the ChPT follow. If we adopt the fit

result with the mass range [0.04, 0.08] at β = 3.7, which is expected to be the most reliable
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FIG. 21. The several fit results on Fπ at β = 3.7 using the data on L = 30.

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0057(91) 1.82(32) 15.2(2.6) 1.35

[0] 1.62(3) 16.76(45) 0.88

fit 1 : [0.04, 0.1] -0.0209(48) 2.37(15) 10.6(1.1) 2.59

[0] 1.729(21) 14.99(25) 8.33

fit 1 : [0.04, 0.12] -0.0183(31) 2.28(87) 11.21(55) 1.90

[0] 1.780(17) 14.28(17) 10.29

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit.

[2] T. Akiba and T. Yanagida, Phys.Lett. B169, 432 (1986).

[3] T. W. Appelquist, D. Karabali, and L. Wijewardhana, Phys.Rev.Lett. 57, 957 (1986).

[4] B. Holdom, Phys.Lett. B150, 301 (1985).

[5] S. Weinberg, Phys.Rev. D13, 974 (1976).

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0190(52) 1.21(18) -2.2(1.5) 0.29

fit 1 : [0.04, 0.1] 0.0162(30) 1.31(85) -3.01(58) 0.37

fit 1 : [0.04, 0.12] 0.0231(18) 1.093(48) -1.51(29) 3.30

TABLE XII. The fit results on Fπ in infinite volume limit.
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ChPT fit (after infinite volume extrapolation) 
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2. ChPT fit analysis

We analyze the fit using the second order polynomial function as

h(mf ) = c0 + c1mf + c2m
2
f (C5) {eq:action}

where c0,1,2 are free parameters. Using this simple polynomial functions we carry out the

fits for M2
π , Fπ and the chiral condensate by the function h(mf ) varying the fit range of

the fermion mass from mf = 0.04 to mf = 0.12. We denote the fit range of fermion mass

as [mmin
f , mmax

f ]. As the current data set of β = 3.7 simulation has physically lighter quark

mass, the property of the mass zero limit is captured better than those at β = 4. Therefore

we focus on the former.

The fit results for M2
π are shown in Fig. 20 and XI. Among these fits, the center values

of intercept c0 are negative for M2
π , while the fit with mmax

f = 0.08 are consistent with the

vanishing intercept. In Fig. 20 we also show the fit results with c0 being fixed to zero. In the

fit of each fermion mass range the value of χ2/dof become much larger than the one from the

fit with non-zero c0 except for the fit with mmax
f = 0.08. Furthermore, the contribution of

the higher order term with c2 is not small enough even in the fit result using the data with

the smallest mass range. There may be a possible reason that the fermion mass in the data

we have is too heavy to take a reliable chiral extrapolation with ChPT formula. Anyhow,

these are in contrast to our result in Nf = 4.

The similar analysis can be done in the case of Fπ. We take same fit ranges as in the case

of M2
π and the fit function as Fπ = h(mf ). The value of Fπ at the chiral limit is a important

signal of SCSB. The fit results are shown in Fig. 21 and table XII. This result gives O(1)

value of χ2/dof for the fit with smaller mass range. We obtain tiny non-zero value of Fπ in

the chiral limit.

The chiral condensate through the Gell-Mann−Oakes−Renner (GMOR) relation given

by (FπMπ)
2 /mf is also studied. We fit the data of (FπMπ)

2 /mf using above function. It is

found that the result is similar to the one obtained from the individual fits of two quantities

of M2
π and Fπ, where the intercept c0 of M2

π is fixed to be zero in the fit. Then the center

value of chiral condensate at the chiral limit is negative and tiny. We also find that the fit

result with small mass range is consistent with vanishing condensate within the error.

Some comments on these fit analyses based on the ChPT follow. If we adopt the fit

result with the mass range [0.04, 0.08] at β = 3.7, which is expected to be the most reliable
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FIG. 21. The several fit results on Fπ at β = 3.7 using the data on L = 30.

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0057(91) 1.82(32) 15.2(2.6) 1.35

[0] 1.62(3) 16.76(45) 0.88

fit 1 : [0.04, 0.1] -0.0209(48) 2.37(15) 10.6(1.1) 2.59

[0] 1.729(21) 14.99(25) 8.33

fit 1 : [0.04, 0.12] -0.0183(31) 2.28(87) 11.21(55) 1.90

[0] 1.780(17) 14.28(17) 10.29

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit.

[2] T. Akiba and T. Yanagida, Phys.Lett. B169, 432 (1986).

[3] T. W. Appelquist, D. Karabali, and L. Wijewardhana, Phys.Rev.Lett. 57, 957 (1986).

[4] B. Holdom, Phys.Lett. B150, 301 (1985).

[5] S. Weinberg, Phys.Rev. D13, 974 (1976).

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0190(52) 1.21(18) -2.2(1.5) 0.29

fit 1 : [0.04, 0.1] 0.0162(30) 1.31(85) -3.01(58) 0.37

fit 1 : [0.04, 0.12] 0.0231(18) 1.093(48) -1.51(29) 3.30

TABLE XII. The fit results on Fπ in infinite volume limit.
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ChPT fit (after infinite volume extrapolation) 

• consistent with c0=0 for the smallest mass range
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2. ChPT fit analysis

We analyze the fit using the second order polynomial function as

h(mf ) = c0 + c1mf + c2m
2
f (C5) {eq:action}

where c0,1,2 are free parameters. Using this simple polynomial functions we carry out the

fits for M2
π , Fπ and the chiral condensate by the function h(mf ) varying the fit range of

the fermion mass from mf = 0.04 to mf = 0.12. We denote the fit range of fermion mass

as [mmin
f , mmax

f ]. As the current data set of β = 3.7 simulation has physically lighter quark

mass, the property of the mass zero limit is captured better than those at β = 4. Therefore

we focus on the former.

The fit results for M2
π are shown in Fig. 20 and XI. Among these fits, the center values

of intercept c0 are negative for M2
π , while the fit with mmax

f = 0.08 are consistent with the

vanishing intercept. In Fig. 20 we also show the fit results with c0 being fixed to zero. In the

fit of each fermion mass range the value of χ2/dof become much larger than the one from the

fit with non-zero c0 except for the fit with mmax
f = 0.08. Furthermore, the contribution of

the higher order term with c2 is not small enough even in the fit result using the data with

the smallest mass range. There may be a possible reason that the fermion mass in the data

we have is too heavy to take a reliable chiral extrapolation with ChPT formula. Anyhow,

these are in contrast to our result in Nf = 4.

The similar analysis can be done in the case of Fπ. We take same fit ranges as in the case

of M2
π and the fit function as Fπ = h(mf ). The value of Fπ at the chiral limit is a important

signal of SCSB. The fit results are shown in Fig. 21 and table XII. This result gives O(1)

value of χ2/dof for the fit with smaller mass range. We obtain tiny non-zero value of Fπ in

the chiral limit.

The chiral condensate through the Gell-Mann−Oakes−Renner (GMOR) relation given

by (FπMπ)
2 /mf is also studied. We fit the data of (FπMπ)

2 /mf using above function. It is

found that the result is similar to the one obtained from the individual fits of two quantities

of M2
π and Fπ, where the intercept c0 of M2

π is fixed to be zero in the fit. Then the center

value of chiral condensate at the chiral limit is negative and tiny. We also find that the fit

result with small mass range is consistent with vanishing condensate within the error.

Some comments on these fit analyses based on the ChPT follow. If we adopt the fit

result with the mass range [0.04, 0.08] at β = 3.7, which is expected to be the most reliable
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fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0057(91) 1.82(32) 15.2(2.6) 1.35

[0] 1.62(3) 16.76(45) 0.88

fit 1 : [0.04, 0.1] -0.0209(48) 2.37(15) 10.6(1.1) 2.59

[0] 1.729(21) 14.99(25) 8.33

fit 1 : [0.04, 0.12] -0.0183(31) 2.28(87) 11.21(55) 1.90

[0] 1.780(17) 14.28(17) 10.29

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit.

[2] T. Akiba and T. Yanagida, Phys.Lett. B169, 432 (1986).

[3] T. W. Appelquist, D. Karabali, and L. Wijewardhana, Phys.Rev.Lett. 57, 957 (1986).

[4] B. Holdom, Phys.Lett. B150, 301 (1985).

[5] S. Weinberg, Phys.Rev. D13, 974 (1976).

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0190(52) 1.21(18) -2.2(1.5) 0.29

fit 1 : [0.04, 0.1] 0.0162(30) 1.31(85) -3.01(58) 0.37

fit 1 : [0.04, 0.12] 0.0231(18) 1.093(48) -1.51(29) 3.30

TABLE XII. The fit results on Fπ in infinite volume limit.
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ChPT fit (after infinite volume extrapolation) 

• consistent with c0=0 for the smallest mass range

• But:    Nf[Mπ/(4πF)]2~40   at lightest point → difficult to tell real chiral behavior
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2. ChPT fit analysis

We analyze the fit using the second order polynomial function as

h(mf ) = c0 + c1mf + c2m
2
f (C5) {eq:action}

where c0,1,2 are free parameters. Using this simple polynomial functions we carry out the

fits for M2
π , Fπ and the chiral condensate by the function h(mf ) varying the fit range of

the fermion mass from mf = 0.04 to mf = 0.12. We denote the fit range of fermion mass

as [mmin
f , mmax

f ]. As the current data set of β = 3.7 simulation has physically lighter quark

mass, the property of the mass zero limit is captured better than those at β = 4. Therefore

we focus on the former.

The fit results for M2
π are shown in Fig. 20 and XI. Among these fits, the center values

of intercept c0 are negative for M2
π , while the fit with mmax

f = 0.08 are consistent with the

vanishing intercept. In Fig. 20 we also show the fit results with c0 being fixed to zero. In the

fit of each fermion mass range the value of χ2/dof become much larger than the one from the

fit with non-zero c0 except for the fit with mmax
f = 0.08. Furthermore, the contribution of

the higher order term with c2 is not small enough even in the fit result using the data with

the smallest mass range. There may be a possible reason that the fermion mass in the data

we have is too heavy to take a reliable chiral extrapolation with ChPT formula. Anyhow,

these are in contrast to our result in Nf = 4.

The similar analysis can be done in the case of Fπ. We take same fit ranges as in the case

of M2
π and the fit function as Fπ = h(mf ). The value of Fπ at the chiral limit is a important

signal of SCSB. The fit results are shown in Fig. 21 and table XII. This result gives O(1)

value of χ2/dof for the fit with smaller mass range. We obtain tiny non-zero value of Fπ in

the chiral limit.

The chiral condensate through the Gell-Mann−Oakes−Renner (GMOR) relation given

by (FπMπ)
2 /mf is also studied. We fit the data of (FπMπ)

2 /mf using above function. It is

found that the result is similar to the one obtained from the individual fits of two quantities

of M2
π and Fπ, where the intercept c0 of M2

π is fixed to be zero in the fit. Then the center

value of chiral condensate at the chiral limit is negative and tiny. We also find that the fit

result with small mass range is consistent with vanishing condensate within the error.

Some comments on these fit analyses based on the ChPT follow. If we adopt the fit

result with the mass range [0.04, 0.08] at β = 3.7, which is expected to be the most reliable
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fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0057(91) 1.82(32) 15.2(2.6) 1.35
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TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit.

[2] T. Akiba and T. Yanagida, Phys.Lett. B169, 432 (1986).

[3] T. W. Appelquist, D. Karabali, and L. Wijewardhana, Phys.Rev.Lett. 57, 957 (1986).

[4] B. Holdom, Phys.Lett. B150, 301 (1985).

[5] S. Weinberg, Phys.Rev. D13, 974 (1976).

fit range c0 c1 c2 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0190(52) 1.21(18) -2.2(1.5) 0.29

fit 1 : [0.04, 0.1] 0.0162(30) 1.31(85) -3.01(58) 0.37

fit 1 : [0.04, 0.12] 0.0231(18) 1.093(48) -1.51(29) 3.30

TABLE XII. The fit results on Fπ in infinite volume limit.
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Nf=12 Summary
  for details, see LatKMI collaboration, PRD86 (2012) 054506 [arXiv:1207.3060].

• β=3.7,  4.0:  consistent with being in the asymptotically free regime

• Mπ, Fπ, Mρ: consistent with the finite size hyper scaling for conformal theory

• resulting γ* from different quantities, lattice spacings are consistent except

• Fπ at β=4.0 (mf likely too heavy for universal mass dep. to dominate)

• careful continuum scaling required to get more accurate than 0.4<γ*<0.5

• real / remnant (approximate) conformal property definitely exists

• could not exclude SχSB with very small breaking scale

• even if SχSB, γm too small for walking theory of phenomenological interest

• Nf<12 should be examined for the quest of the walking technicolor theory
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SU(3) + Nf=8   [fundamental]
              
               examined with same setup / method
               candidate of the walking technicolor ?
               [preliminary]

[LatKMI collab., Lattice2011/2012]
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hyperscaling test mπ
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hyperscaling test mπ

good alignment

γ=0.5
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hyperscaling test fπ
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hyperscaling test fπ

good alignmentγ=1
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P (γ) analysis
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

However, such trends are not observed for the Mρ at β = 4, where one expects the similar

x and L range dependence. As the number of samples have gotten reduced for the fixed

range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The

21
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FIG. 13. The γ dependence of the evaluation function P for Mπ, Fπ, and Mρ at β = 3.7 is

plotted. The vertical axis shows the values of P at each of γ where the three volumes and full

range of x for the data are considered. The solid and dashed curves show the results of P (γ) with

the interpolation functions f(x) by the linear and quadratic functions, respectively.

However, such trends are not observed for the Mρ at β = 4, where one expects the similar

x and L range dependence. As the number of samples have gotten reduced for the fixed

range analysis, a statistical instability might have spoiled the result.

The similar trend for the x-range dependence as for Mρ at β = 3.7 is observed for Fπ at

β = 3.7, too. The direction of the movement is correct, but it does not get close enough to

the value of γ(Mπ). Moreover, the L range dependence is too weak to conclude that it will get

close to γ(Mπ). These results may be understood from the fact that in Sec. III, the scaling

is observed only in the very small mass range. For Fπ at β = 4, the L dependence appears to

be opposite to the expectation, which can be understood as the result of unobserved scaling

in the analysis in Sec. III.

As we cannot completely resolve these trends in the mass dependence, we regard these

variations of γ with respect to the change of the window as the systematic error on the

central value of γ obtained with “all” data. We put the asymmetric error for both x and

L directions separately estimated by the maximum variations from the central value. The
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Nf=8 [preliminary] Summary
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Nf=8 [preliminary] Summary

• likely: fπ≠0, mρ≠0  for mf→0

• no common optimal γ → suggesting no exact conformality

• γ (expected to be approximate) larger than Nf=12,  promising.
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Nf=8 [preliminary] Summary

• likely: fπ≠0, mρ≠0  for mf→0

• no common optimal γ → suggesting no exact conformality

• γ (expected to be approximate) larger than Nf=12,  promising.

• candidate of walking ?
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Nf=8 [preliminary] Summary

• likely: fπ≠0, mρ≠0  for mf→0

• no common optimal γ → suggesting no exact conformality

• γ (expected to be approximate) larger than Nf=12,  promising.

• candidate of walking ?

• needs further study!
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0++               glueball spectrum

                     [VERY preliminary]
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0++ glueball
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0++ glueball

• could a WTC model produce light 0++ ?
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0++ glueball

• could a WTC model produce light 0++ ?

• promising results from a model in the conformal window: SU(2) + 2 adjs
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0++ glueball

• could a WTC model produce light 0++ ?

• promising results from a model in the conformal window: SU(2) + 2 adjs

• Del Debbio et al [PRD82 (2010) 014510]: mf≠0,  0++ glueball lighter than pion

we do not take into account the corresponding values of
am0þþ in the following analysis.

The mass of the 2þþ glueball as a function of am0 is
shown in Fig. 10. These results have been obtained using
operators transforming according to the E representation of
the cubic group. Our analysis in the T channel gives
compatible results in all cases. Our data show that the
2þþ glueball is heavier than the 0þþ in the symmetric
phase, but dramatically decreases to very low values of the
mass (well below the mass of the 0þþ) at the onset of the
A phase. Deeper in the A phase, the two states appear to be
degenerate. As the figure shows, no good control over
finite-size effects can be reached on our lattices for the
2þþ mass. For the sake of completeness, we still provide
an estimate for its mass at infinite volume, but this is likely
to be quite rough. Hence, the 2þþ glueball will play a
marginal role in the interpretation of our results.

Our numerical estimates of aM0þþ and aM2þþ in the
infinite-volume limit are reported in Table V. The degen-
eracy between the two states at m ¼ #1:05 together with
the impossibility of establishing whether the system is in
the S phase (see Table II) would suggest to disregard
glueball masses at this value of the bare mass. However,
since this point was part of our analysis in Ref. [57], where
the lower statistics masked the issue, in order to facilitate a
comparison with our previous work, we chose to keep it
also in our current analysis. The reader should bear this in
mind for the discussion of our results.

VIII. HYPERSCALING SCENARIO AND LOCKING
SCALE

Our infinite-volume estimates for the PS (at each value
of the bare mass, we choose the PS mass computed on the
largest volume in [58]), the 0þþ and the 2þþ glueball
masses, and !1=2 as a function of the partially conserved
axial current (PCAC) mass am (see Refs. [19,58] for a
definition of this quantity) are reported in Fig. 11. As
noticed in Ref. [57], the data show a clear hierarchy in
the spectrum, with the mesonic scale well above the
gluonic scale. Since over the range of investigated masses
a!1=2 changes by a factor of 5, the effect of the fermion

determinant as the mass is decreased is an essential com-
ponent of the dynamics in this theory. Hence, the simple
quenched scenario, according to which the theory would be
QCD like and the hierarchy in the spectrum is due to large
fermion masses, can be excluded. In fact, the spectrum
looks similar to the hyperscaling scenario at high locking
mass Mlock sketched in Fig. 1 (right panel). In this section
we shall show that indeed that scenario provides the right
description of the spectrum of this theory.
Up to subleading corrections, the hyperscaling scenario

implies the independence of ratios of physical quantities
from the fermion mass in the scaling region. In Fig. 12 we
plot the ratio MPS=!

1=2. This quantity shows a plateau
MPS=!

1=2 ’ 7:5 for aMPS $ 1:25, supporting the idea
that gluonic and fermionic masses are not parametrically
independent in this region but are both proportional to the
RG-invariant fermion mass M (again, this is what we are
calling locking). The independence from M of the ratio of

TABLE V. Infinite-volume estimates of aM0þþ and aM2þþ .
Values extracted on a 16% 83 lattice have been used for am0 >
#0:95 and values extracted on a 24% 123 lattice for am0 $
#0:95.

#am0 aM0þþ aM2þþ

#0:25 1.159(98) 2.18(22)
0.25 1.108(97) 1.92(22)
0.5 1.045(70) 1.93(19)
0.75 0.919(63) 1.27(12)
0.9 0.666(44) 0.874(77)
0.95 0.793(41) 1.129(85)
1 0.658(56) 0.886(73)
1.05 0.510(33) 0.513(35) 0.0 0.2 0.4 0.6 0.8 1.0
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FIG. 11 (color online). The spectrum of the theory as a func-
tion of the PCAC mass am. The mass of the vector is not shown,
since on the scale of the figure this state appears to be degenerate
with the PS.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
a MPS

0

1

2

3

4

5

6

7

8

9

10

M
P

S
 / 

σ1/
2

FIG. 12. The ratio MPS=!
1=2 as a function of MPS.
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0++ glueball

• could a WTC model produce light 0++ ?

• promising results from a model in the conformal window: SU(2) + 2 adjs

• Del Debbio et al [PRD82 (2010) 014510]: mf≠0,  0++ glueball lighter than pion

• test for SU(3) nf=12 (consistent with conformal) underway... 
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SU(3) Nf=12, 0++ techni-glueball [preliminary]

• effective mass from variational method (e.g. E. Gregory et al arXiv:1208.1858) 

• 0++ techni-glueball is righter than techni-pion @ mf=0.06

• but...
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SU(3) Nf=12, 0++ techni-glueball [preliminary]
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SU(3) Nf=12, 0++ techni-glueball [preliminary]
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SU(3) Nf=12, 0++ techni-glueball [preliminary]

• finite volume effect needs to be carefully studied...

0 1 2 3 4 5 6
t/a

0.001

0.01

0.1

1

C
(t

)/
C

(0
)

L=18
L=24

Scalar glueball normalized correlator:  β=4.0  am
f
=0.08

mf=0.08

15 20 25 30 35

L

0.4

0.6

0.8

1

M
π

0.05

0.06

0.08

0.1

0.12

0.16

0.2

2012年10月27日土曜日



Outlook  

• continue for SU(3) Nf=8, 12

• underway / planned / wish list for both Nf=12 / 8

• lighter mass

• more hadrons

• glueball: study of finite volume effects

• isosinglet scaler

• and more...
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Thank you for your attention
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ChPT inspired infinite volume limit  (β=3.7)

• ChPT type finite volume effect → chiral fit results not inconsistent with SχSB

A. The finite size dependence of the physical quantities

The finite volume corrections of the NG-boson mass and decay constant are also given

by the ChPT [42] or Luscher-type formula [43] using the ChPT relations which are

Mπ(L)−Mπ = +A
1

2Nf

K1(LMπ)

LMπ
+O(e−

√
2LMπ), (16)

Fπ(L)− Fπ = −A
Nf

2

K1(LMπ)

LMπ
+O(e−

√
2LMπ), (17)

where A is a constant described by Mπ and fπ and K1 is a Bessel function of the second

kind and its asymptotic behavior is K1(z) ∼
√
π/(2z)e−z. Mπ and Fπ are the NG-boson

mass and the decay constant in the infinite volume limit. We try to understand the volume

dependence based on the ChPT-like finite volume scaling. We use the following simplified

formula

Mπ(L)−Mπ = cMπ

e−LMπ

(LMπ)3/2
(18)

Fπ(L)− Fπ = cFπ

e−LMπ

(LMπ)3/2
, (19)

where we do not fix the parameters cMπ and cFπ . Our fitting procedure is as follows. First

we determine two parameters of cMπ and Mπ for each fermion masses by the fits using three

data points with L = 18, 24 and 30. Using the fit results of Mπ, we determine the two

parameters of cFπ and Fπ by the fits. Thus we obtain the results of Mπ and Fπ in infinite

volume limit. The fit results are shown in fig.16 and 17 and the fit parameters are given in

table IX and X.

As a result, in entire fermion mass region, our data are reasonably fitted. Furthermore

from the fit results, one can find that our data on L = 30 is still consistent with the result

in infinite volume limit. It is also noted that for our data of Fπ at β = 3.7 it is difficult for

the cases of Fπ to determine the sign of the constant terms cFπ (consistent with zero).

B. ChPT fit analysis

After taking the infinite volume limit, we analyze the fit using these data by the following

form as

h(mf ) = c0 + c1mf + c2m
2
f + c3m

3
f (20)
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FIG. 16. The results of the finite volume scaling fit for Mπ and fπ at β = 3.7 using a leading

correction in the equation. {fig:finite}
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FIG. 17. The results of the finite volume scaling fit for Mπ and fπ at β = 4 using a leading

correction in the equation. {fig:finite_b4}

where c0,1,2,3 are free parameters. This function corresponds to next leading order ChPT

function without log term. In M2
π case, it is noted that the constant term c0 should be zero.

Using these simple polynomial functions we carry out the fits for M2
π , Fπ and the chiral

condensate by the function h(mf ) varying the fit range of the fermion mass from mf = 0.04

to mf = 0.16. The fit functions h(mf ) of fit 1, 2 correspond as

h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

The fit results for M2
π are shown in Fig. 18 and table XI. As we see the data at β = 3.7

and 4.0, the center value of c0 obtained from the fit with polynomial function is negative for
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