Exploring for walking technicolor from QCD

Yasumichi Aoki [Kobayashi-Maskawa Institute(KMI), Nagoya University]

for the LatKMI collaboration

- Lattice meets experiment 2012 @ Boulder -

Oct. 27, 2012

LatKMI collaboration

"Higgs boson"

- Higgs like particle fund at LHC
- m_H = 126 GeV
- spin, parity, other properties are under investigation
- so far consistent with Standard Model Higgs (J^{PC}=0⁺⁺) fundamental scalar
- but it could be different
- one of the possibilities
 - walking technicolor
 - "Higgs" = pNGB due to breaking of the approximate scale invariance

requirements for model

- nearly conformal: walking
- γ_m ~ 1
- input: F = 246 / /N GeV
 - N: # weak doublet from new techni-sector
- could m_H (0++) be made light: ~126 GeV

models being studied:

• SU(3)

- fundamental: Nf=6, 8, 10, 12, 16
- sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

models being studied:

- SU(3)
 - fundamental: Nf=6,(8,)10,(12,(16))
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

models being studied:

- SU(3)
 - fundamental: Nf=6 8,10,12 16
 - sextet: Nf=2
- SU(2)
 - adjoint: Nf=2
 - fundamental: Nf=8
- SU(4)
 - decuplet: Nf=2

SU(N) Phase Diagram

$SU(3) + N_f = 12$ [fundamental]

[LatKMI collab. PRD86 (2012) 054506]

Hadron spectrum: mf-response in mass deformed theory

- IR conformal phase:
 - coupling runs for $\mu < m_f$: like $n_f=0$ QCD with $\Lambda_{QCD} \sim m_f$
 - multi particle state : $M_H \propto m_f^{1/(1+\gamma_m^*)}$; $F_\pi \propto m_f^{1/(1+\gamma_m^*)}$ (criticality @ IRFP)
 - ratio of the masses, decay constant is constant as function of mf
- S χ SB phase:
 - ChPT (but, large N_f , small F \Leftrightarrow real QCD)
 - hard to get to the chiral regime
 - at leading: $M_{\pi^2} \propto m_f$, ; $F_{\pi} = F + c m_f$

Simulation

- HISQ (Highly Improved Staggered Quarks)
 - being used for state-of-the-art QCD calculations / MILC,...
- tree level Symanzik gauge
- ➡HISQ/tree
- $\beta = 6/g^2 = 3.7$, V=L³xT: L/T=3/4; L=18, 24, 30, 0.04 \le m_f \le 0.2
- $\beta = 6/g^2 = 4.0$, $V = L^3 x T$: L/T = 3/4; L = 18, 24, 30, $0.05 \le m_f \le 0.24$
- $N_f=4$ HISQ for the reference of S χ SB for comparison

• using MILC code v7 with some modifications (non-rational HMC)

staggered flavor symmetry for $N_f=12$ HISQ

• comparing masses with different staggered operators f

• excellent staggered flavor symmetry, thanks to HISQ

 $N_f=12$: HISQ $N_f=4$: HISQ $\beta=3.7$

N_f=12: HISQ

N_f=4: HISQ β =3.7

• β=3.7: small mass: consistent with hyper-scaling

N_f=12: HISQ

N_f=4: HISQ β =3.7

• β=3.7: small mass: consistent with hyper-scaling

• β =4.0: volume to small ? unlikely in the hyper-scaling region

N_f=12: HISQ

• β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)

N_f=12: HISQ

• β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)

• mass dependence at the tail is due to non-universal mass correction to HS

- one may attempt to perform a matching
- assuming (am)² error is small

- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

- one may attempt to perform a matching
- assuming (am)² error is small

⇒
$$a(\beta=3.7) / (\beta=4.0) > 1$$

- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

- one may attempt to perform a matching
- assuming (am)² error is small

⇒
$$a(\beta=3.7) / (\beta=4.0) > 1$$

- movement: correct direction in asymptotically free domain !
- β =3.7 & 4.0: small mass (wider than F_{π}): consistent with hyper scaling (HS)
- mass dependence at the tail is due to non-universal mass correction to HS

conformal (finite size) scaling

- Scaling dimension at IR fixed point [Wilson-Fisher]; Hyper Scaling [Miransky]
- mass dependence is described by anomalous dimensions at IRFP
 - quark mass anomalous dimension γ^{*}
 - operator anomalous dimension
- hadron mass and pion decay constant obey same scaling

$$M_H \propto m_f^{\frac{1}{1+\gamma^*}} \qquad \qquad F_\pi \propto m_f^{\frac{1}{1+\gamma^*}}$$

- finite size scaling in a L⁴ box (DeGrand; Del Debbio et al)
 - scaling variable: $x = Lm_f^{rac{1}{1+\gamma^*}}$

$$L \cdot M_H = f_H(x)$$
 $L \cdot F_\pi = f_F(x)$

Х

x

γ=0.5

 $0^{\mathsf{L}}_{\mathsf{O}}$

Х

γ=0.8

 $0^{\mathsf{L}}_{\mathsf{O}}$

2012年10月27日土曜日

0<u></u>

Х

x

γ=0.2

$N_f=4$ see if data align at some γ

• γ of optimal alignment will minimize:

$$P_p(\gamma) = \frac{1}{\mathcal{N}} \sum_{K} \sum_{j \notin K} \frac{|\xi_p^j - f_p^{(K)}(x_j)|^2}{\delta^2 \xi_p^j}$$

- $\xi_p = LM_p$ for $p = \pi$, ρ ; $\xi_F = LF_{\pi}$
- f_p(x): interpolation linear
 - (quadratic for a systematic error)
- if ξ^j is away from f(x_i) by $\delta \xi^j$ as average $\rightarrow P=1$
- \bullet optimal γ from the minimum of P
- similar definition of the measure: DeGrand, Giedt & Weinberg

• γ of optimal alignment will minimize:

0.4

0.5

0.6

γ

0.7

0.8

• similar definition of the measure: DeGrand, Giedt & Weinberg

• γ of optimal alignment will minimize:

- similar definition of the measure: DeGrand, Giedt & Weinberg
- systematic error due to small L, large m estimated by examining the x and L range dependence

quantity	eta	all	
M_{π}	3.7	0.434(4)	
F_{π}	3.7	0.516(12)	
$M_{ ho}$	3.7	0.459(8)	
		10000	$ \begin{array}{c} & M_{\pi} (\text{linear}) \\ & M_{\pi} (\text{quadratic}) \\ & F_{\pi} (\text{linear}) \\ & F_{\pi} (\text{quadratic}) \\ & M_{\rho} (\text{linear}) \\ & M_{\mu} (\text{unadratic}) \end{array} $
		<u> </u>	M _p (quadratic)

TABLE VII. Summary of the optimal values of γ . See the text for details.

TABLE VII. Summary of the optimal values of γ . See the text for details.

TABLE VII. Summary of the optimal values of γ . See the text for details.

TABLE VII. Summary of the optimal values of γ . See the text for details.
			r			 		
quantity	eta	all	range 1	range 2	range 3	(18,24)	(18,30)	(24, 30)
M_{π}	3.7	0.434(4)	0.425(9)	0.436(6)	0.437(4)	0.438(6)	0.433(4)	0.429(8)
M_{π}	4	0.414(5)	0.420(7)	0.418(6)	0.411(5)	0.397(7)	0.414(4)	0.447(9)
F_{π}	3.7	0.516(12)	0.481(19)	0.512(19)	0.544(14)	0.526(18)	0.514(11)	0.505(24)
F_{π}	4	0.580(15)	0.552(21)	0.602(20)	0.605(19)	0.544(27)	0.577(14)	0.645(32)
$M_{ ho}$	3.7	0.459(8)	0.411(17)	0.461(10)	0.473(8)	0.491(15)	0.457(8)	0.414(18)
$M_{ ho}$	4	0.460(9)			<i>(</i> - N	N	- · · · - / - X	(15)
• β=3.7	: sma	aller m :		M		T		
• β=3.7	larg	er V:		$- M_{\pi} (\text{inear})$ - $- M_{\pi} (\text{quadratic})$ - $- F_{-} (\text{linear})$				
• β=4.0	: not	conclu		$ \begin{array}{c} & & \\ - & & \\ - & & \\ - & & \\ M_{\rho} (linear) \\ \dots & & \\ M_{\rho} (quadratic) \end{array} $				
		Ч						
10月27日土曜日			F N	\sim / $\overline{/}$		7		

TABLE VII. Summary of the optimal values of γ . See the text for details.

• γ : consistent with 2 σ level except for F_{π} at β =4.0

• γ : consistent with 2 σ level except for F_{π} at β =4.0

• remember: F_{π} at β =4.0 speculated to be out of the scaling region

• γ : consistent with 2 σ level except for F_{π} at β =4.0

- remember: F_{π} at β =4.0 speculated to be out of the scaling region
- universal low energy behavior: good with 0.4< γ <0.5

Conformal type global fit $\xi_{\text{with finite volume correction}}^{\xi_{\text{with finite volume correction}}}$

ChPT fit (after infinite volume extrapolation)

• 2nd order polynomial fit is reasonably good for small mass range & $c_0>0$

ChPT fit (after infinite volume extrapolation)

• 2nd order polynomial fit is reasonably good for small mass range & $c_0>0$

• consistent with c₀=0 for the smallest mass range

- consistent with $c_0=0$ for the smallest mass range
- But: $N_f[M_{\pi}/(4\pi F)]^2 \sim 40$ at lightest point \rightarrow difficult to tell real chiral behavior

N_f=12 Summary

for details, see LatKMI collaboration, PRD86 (2012) 054506 [arXiv:1207.3060].

- β =3.7, 4.0: consistent with being in the asymptotically free regime
- M_{π} , F_{π} , M_{ρ} : consistent with the finite size hyper scaling for conformal theory
- resulting γ^* from different quantities, lattice spacings are consistent except
 - F_{π} at β =4.0 (m_f likely too heavy for universal mass dep. to dominate)
- careful continuum scaling required to get more accurate than $0.4 < \gamma^* < 0.5$
- real / remnant (approximate) conformal property definitely exists
- could not exclude S χ SB with very small breaking scale
- even if S χ SB, γ_m too small for walking theory of phenomenological interest
- N_f<12 should be examined for the quest of the walking technicolor theory

SU(3) + N_f=8 [fundamental]

examined with same setup / method candidate of the walking technicolor ? [preliminary]

[LatKMI collab., Lattice2011/2012]

hyperscaling test m_{π}

good alignment

hyperscaling test f_{π}

2012年10月27日土曜日

hyperscaling test f_{π}

 $P(\gamma)$ analysis

 $P(\gamma)$ analysis

2012年10月27日土曜日

 $P(\gamma)$ analysis

- likely: $f_{\pi} \neq 0$, $m_{\rho} \neq 0$ for $m_{f} \rightarrow 0$
- no common optimal $\gamma \rightarrow$ suggesting no exact conformality
- γ (expected to be approximate) larger than N_f=12, promising.

- likely: $f_{\pi} \neq 0$, $m_{\rho} \neq 0$ for $m_{f} \rightarrow 0$
- no common optimal $\gamma \rightarrow$ suggesting no exact conformality
- γ (expected to be approximate) larger than N_f=12, promising.
- candidate of walking ?

- likely: $f_{\pi} \neq 0$, $m_{\rho} \neq 0$ for $m_{f} \rightarrow 0$
- no common optimal $\gamma \rightarrow$ suggesting no exact conformality
- γ (expected to be approximate) larger than N_f=12, promising.
- candidate of walking ?
- needs further study!

0++ glueball spectrum

[VERY preliminary]

• could a WTC model produce light 0++ ?

- could a WTC model produce light 0++ ?
- promising results from a model in the conformal window: SU(2) + 2 adjs

- could a WTC model produce light 0++ ?
- promising results from a model in the conformal window: SU(2) + 2 adjs
 - Del Debbio et al [PRD82 (2010) 014510]: $m_f \neq 0$, 0++ glueball lighter than pion

- could a WTC model produce light 0++ ?
- promising results from a model in the conformal window: SU(2) + 2 adjs
 - Del Debbio et al [PRD82 (2010) 014510]: $m_f \neq 0$, 0++ glueball lighter than pion
- test for SU(3) n_f=12 (consistent with conformal) underway...

SU(3) N_f=12, 0⁺⁺ techni-glueball [preliminary]

• effective mass from variational method (e.g. E. Gregory et al arXiv:1208.1858)

- 0⁺⁺ techni-glueball is righter than techni-pion @ m_f=0.06
- but...

2012年10月27日土曜日

SU(3) N_f=12, 0⁺⁺ techni-glueball [preliminary]

SU(3) N_f=12, 0⁺⁺ techni-glueball [preliminary]

SU(3) N_f=12, 0⁺⁺ techni-glueball [preliminary]

• finite volume effect needs to be carefully studied...

Outlook

- continue for SU(3) N_f=8, 12
- \bullet underway / planned / wish list for both $N_f{=}12$ / 8
 - lighter mass
 - more hadrons
 - glueball: study of finite volume effects
 - isosinglet scaler
 - and more...

Thank you for your attention

ChPT inspired infinite volume limit (β =3.7)

ChPT type finite

1	r	0.2										
				I	I	1	0.2	Ι		I		
2012年10月27日土曜日	-	• 0.05				-		_	• 0.0	5		