Latest results from the LSD collaboration

Pavlos Vranas for the LSD collaboration

The Lattice Strong Dynamics collaboration

T. Appelquist (Yale U.), A. Avakian (Boston U.) R. Babich (Boston U.), R. Brower (Boston U.), M. Cheng (LLNL), M. Clark (Harvard U.), S. Cohen (Jlab, BU), G. Fleming (Yale U.), J. Kiskis (UCD), M. Lin (Yale), E. Neil (Yale U.), J. Osborn (ANL), C. Rebbi (Boston U.), D. Schaich (Boston U.), R. Soltz (LLNL), P. Vranas (LLNL).

LHC TeV physics

Our first thoughts

How do the properties of gauge theory change with N_f, N_c and R ?

- * Chiral condensate enhancement $\frac{\langle \overline{\psi}\psi \rangle}{F^3}$
- * S parameter
- ***** Particle spectrum
- ***** Dirac operator eigenvalue spectrum

How should we proceed?

Choices

ETC is complicated enough:

stay with fundamental reps

Start from something we know:

lattice QCD -- SU(3) color

- Hove slowly away from QCD and not too close to N_{fc}:
 first do 6 flavors
- **#** Chiral and flavor symmetries are crucial:

use DWF

To be able to observe enhancement:

use large cutoff (small a)

To be able to make direct comparisons:

Do a 2-flavor simulation at the same cutoff

Higher demands

□ Computing cost increases as N_f^{3/2}

□ The lattice must have cutoff much larger than the confinement scale to take advantage of slower running. Larger lattice needed as we approach the IRFP.

We do not know the answer

Current landscape

Simulations

- ★ Lattice Volume is 32³ x 64
- ✤ Iwasaki gauge action with DWF at L_s = 16
- Input fermion masses m_f = 0.005 to 0.03
- ★ $m_{res} \sim 8 \times 10^{-4}$ (6f), 3×10^{-5} (2f) → $m = m_{f} + m_{res}$

- # HMC, multi-level simplectic integrator
 - mass preconditioning
 - chronological inversion

CPS

- ★ 6-flavor β = 2.1 ←→ 2-flavor β = 2.7
- About 1,000 configurations per point

P. Vranas, LLNL

Reasonable distance from cutoff with M_{ρ} ~ cutoff / 5

Chiral perturbation theory

$$M_m^2 = \frac{2m\langle \bar{\psi}\psi \rangle}{F^2} \left\{ 1 + zm \left[\alpha_M + \frac{1}{N_f} \log(zm) \right] \right\}$$
$$F_m = F \left\{ 1 + zm \left[\alpha_F - \frac{N_f}{2} \log(zm) \right] \right\}$$
$$\bar{\psi}\psi\rangle_m = \langle \bar{\psi}\psi \rangle \left\{ 1 + zm \left[\alpha_C - \frac{N_f^2 - 1}{N_f} \log(zm) \right] \right\}$$

 \bigstar Log coefficients of $F_m, \langle \bar{\psi}\psi\rangle_m \sim N_f$

★ $\alpha_C \sim 1/a^2 \rightarrow \langle \bar{\psi}\psi \rangle_m$ difficult to measure ★ Instead measure (GMOR) $\frac{M_m^2}{2mF_m} \rightarrow \frac{\langle \bar{\psi}\psi \rangle}{F^3}$ at $m \rightarrow 0$

6-flavor vs. 2-flavor enhancement

xPT fits and bound

- * 2f give a reasonable combined fit for $M_m^2/2mF_m, \ F_m, \ \langle \bar{\psi}\psi \rangle_m$
- * 2f agree with phenomenology: $\langle \bar{\psi}\psi \rangle / F^3 = 47.1(17.6)_{\text{latt}} = 36.2(6.5)_{\overline{\text{MS}}}$
- ★ 6f because of larger slope need smaller masses (→ larger lattices)
- ★ Linear fits on the 6-flavor data give a bound:

28% increase: $[=47.1(17.6)]_{2f}$ $[>60.0(8.0)]_{6f}$

absence of enhancement excluded at 73% confidence level

Hadron spectrum

Hadron spectrum

Salient features: Topology

At small lattice spacing the barriers between TC sectors are large

At small m DWF HMC encounter barriers in changing global topology Q

At large volume Q is irrelevant but for us it is a finite size effect

For $0.01 \le m$, Q evolves sufficiently: for m = 0.005 it does not

Topology (preliminary)

flavors, beta = 2.10 topological charge

Topology (preliminary)

6 flavors, beta = 2.10 topological charge

P. Vranas, LLNL

Topology (preliminary)

2 flavors, beta = 2.70 topological charge

150 million core hours on LLNL BG/L

Near term LSD plans

- * 9-flavors SU(3)_c fundamental at the same lattice spacing
- ***** Measure S at 2, 6 and 9 flavors
- ***** Measure Dirac spectrum at 2, 6 and 9 flavors
- ✤ Fundamental SU(2)_c

Conclusions

\mathbb{H} 2 and 6 flavors SU(3)_c fundamental at same lattice spacing

Condensate enhancement larger than 50% Excluded no-enhancement at 73% confidence level

Hadron spectrum deviations