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Conformality or confinement:

Mechanisms of confinement and conformality:  
What distinguishes  two  theories, one   just below  the conformal boundary and confines,  and  the 
other slightly  above the conformal window boundary? In other words, why does a confining gauge 
theory confine and why does an IR-CFT, with an almost identical microscopic matter  content,  
flows to a CFT?

Lower boundary of conformal window:  What is the physics determining the boundary of 
conformal window?

Conceptually, two problems of out-standing importance in gauge theories: 

Phases of non-abelian gauge theories
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A broad-brush overview of some very  
recent progress. 

R4 Locally 4d. R3 × S1

 Take advantage of  circle  (as control parameter) AF. 

Traditional: thermal compactification

R4

R3 × S1

R3
Phase transition: Bad for our goal.

Useful: circle compactification with p.b.c. for 
fermions or center-stabilizing deformations.
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1) Twisted Partition Function 
 --circle compactifications-- 

2) Deformation theory

a small step in the desired direction: One of the two 
always  guarantees that small and large  circle   physics 
are connected in the sense of  center symmetry and 
confinement.  

“NEW” METHODS
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why bother? 

various “deformations” of 4d field theories have been useful to study
aspects of nonperturbative dynamics.

especially true in supersymmetry, where consistency with all
calculable deformations play an important role, e.g.:
- circle compactification of N=2 4d SYM
(Seiberg, Witten, 96)
- circle compactification of N=1 4d SYM
(Aharony, Intriligator, Hanany, Seiberg, Strassler, 97; 
Dorey, Hollowood, Khoze, Mattis, 99)
in the supersymmetric case, using holomorphy, one argues that
with supersymmetric b.c. there is a smooth 4d limit

for nonsupersymmetric theories, its utility is understood recently. 

CIRCLE COMPACTIFICATION
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Raison d'être  of deformation theory at finite N  

One can show the mass gap and linear confinement (similar 
to Seiberg-Witten and Polyakov solutions).  Although the 
region of validity does not extend to large circle,  it is 
continuously connected to it with no gauge invariant order 
parameter distinguishing the two regimes. 

*

0

β=1/Τ

 
 

1/Λ

R4

Deformation 

confined 

B−path

deconfined 

A−path

      YM Smooth connection to the target 
theory.  A new method to avoid 
singularities.  
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deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

orbifold
equivalence

combined
deformation−orbifold

∞

c

∞

0

L

0

L

equivalence

At large N, volume independence is an exact property, a theorem.    
Solution of small volume theory implies the solution of the theory on R4.  
First working example of EK-reduction (25 years after the birth of idea) 
QCD(Adj) with pbc:  The most insightful/friendly QCD-like theory. 

80’s:  EK, QEK, TEK...
Eguchi-Kawai,  EK,
Gonzalez-Arroyo, Okawa,   TEK,
Bhanot, Heller, Neuberger,  QEK,
Gross-Kitazawa
Parisi et.al.
Tan et.al

Last few years: 
QCD(adj), deformations: 

Pavel Kovtun, MU,  Yaffe, 
Shifman,MU.
Barak Bringoltz, Sharpe,
D’elia et.al,
Bedaque et.al.

Raison d'être  of deformation theory at infinite N

QCD(adj)QCD(S/AS)
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SU(N) QCD(adj)

S =
∫

R3×S1

1
g2

tr
[
1
4
F 2

MN + iλ̄I σ̄MDMλI

]
short distance

 Center                
(SU(nf )× Z2Ncnf )/ZnfChiral

ZNc

Solve it by using twisted partition function.

techicolor:  minimal walking for 4 flavors? 
AF-boundary:  5.5 flavors
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With deformation or pbc for adjoint fermions, 
eigenvalues repel. Minimum at 

At weak coupling, the fluctuations are small,  a  “Higgs regime”

Spatial Wilson line/non-thermal Polyakov loop

U = Diag(1, ei2π/N , . . . , ei2π(N−1)/N )

〈trU〉 = 0

Georgi-Glashow model  with compact adjoint Higgs field. 

Compactness  implies N types of monopoles, rather than N-1. 

SU(N)→ [U(1)]N−1
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Reminder:  Abelian duality and Polyakov model

Free Maxwell theory is dual to the free scalar theory.

F = ∗dσ

U(1)flux : σ → σ − β

The masslessness of the dual scalar  is protected  by  a continuous shift symmetry

 Noether current of dual theory:   

Jµ = ∂µσ = 1
2εµνρFνρ = Fµ

∂µJµ = ∂µFµ = 0

 Its conservation implies the absence of magnetic monopoles in original theory

Topological current vanishes by Bianchi 
identity. 
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∂µJµ = ∂µFµ = ρm(x)

The presence of the monopoles in the original theory implies reduction of the   
continuous shift symmetry into a discrete one.  Polyakov mechanism.  

L = 1
2 (∂σ)2 − e−S0(eiσ + e−iσ)

The dual theory 

Discrete shift symmetry: σ → σ + 2π

U(1)flux if present, forbids (magnetic) flux carrying operators.  

Physics of Debye mechanism

Proliferation of monopoles
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BPS KK

BPS KK
(2,0) (!2, 0)

(1, 1/2) (!1, 1/2)

(!1, !1/2) (1, !1/2)

Magnetic 
Bions

Magnetic 
Monopoles 

e−S0eiσ detI,J ψIψJ ,

e−S0eiσ detI,J ψ̄I ψ̄J

e−2S0(e2iσ + e−2iσ)

(∫
S2 F,

∫
R3×S1 FF̃

)

Discrete shift symmetry : σ → σ + π

 fermionic zero modes 

ψI → ei 2π
8 ψI

(Z2)∗

Topological  excitations in QCD(adj)

relevant index theorems
Callias  78

Nye-A.M.Singer,  00
E.  Weinberg 80
Poppitz, MU 08

Atiyah-M.I.Singer 75

Crucial earlier work:  van Baal et.al. and Lu, Yi, 97
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LdQCD =
1
2
(∂σ)2 − b e−2S0 cos 2σ + iψ̄Iγµ∂µψI + c e−S0 cos σ(det

I,J
ψIψJ + c.c.)

magnetic bions magnetic monopoles

Same mechanism in N=1 SYM.  

Dual Formulation of QCD(adj) 

Also see Hollowood, Khoze, ... 99  

Earlier in  N=1 SYM,   the bosonic potential was derived using 
supersymmetry and  SW-curves, F,  M theories,  field theory methods. 
However, the physical origin of it remained elusive till this work.  

Proliferation of magnetic bions

Self-dualNon-selfdual

mσ ∼
1
L

e−S0(L) =
1
L

e
− 8π2

g2(L)N = Λ(ΛL)(8−2NW
f )/3 ,

Increasing for Nf<4
Decreasing for 4<Nf<5.5
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Theory Confinement
mechanism
on R3 × S1

Index for monopoles
[I1, I2, . . . , IN ]

Index for instanton Iinst. (Mass Gap)2

YM monopoles [0, . . . , 0] 0 e−S0

QCD(F) monopoles [2, 0, . . . , 0] 2 e−S0

SYM/QCD(Adj) magnetic
bions

[2, 2, . . . , 2] 2N e−2S0

QCD(BF) magnetic
bions

[2, 2, . . . , 2] 2N e−2S0

QCD(AS) bions and
monopoles

[2, 2, . . . , 2, 0, 0] 2N − 4 e−2S0 , e−S0

QCD(S) bions and
triplets

[2, 2, . . . , 2, 4, 4] 2N + 4 e−2S0 , e−3S0

SU(2) YM I = 3
2 magnetic

quintets
[4, 6] 10 e−5S0

chiral [SU(N)]K magnetic
bions

[2, 2, , . . . , 2] 2N e−2S0

AS + (N − 4)F bions and a
monopole

[1, 1, , . . . , 1, 0, 0] +
[0, 0, . . . , 0, N − 4, 0]

(N − 2)AS + (N − 4)F e−2S0 , e−S0 ,

S + (N + 4)F bions and
triplets

[1, 1, , . . . , 1, 2, 2] +
[0, 0, . . . , 0, N + 4, 0]

(N + 2)AS + (N + 4)F e−2S0 , e−3S0 ,

Table 1: Topological excitations which determine the mass gap for gauge fluc-
tuations and chiral symmetry realization in vectorlike and chiral gauge theories
on R3 × S1.

To the surprise of the past

Nye-Singer, E. Poppitz, MU Atiyah-Singer

More refined data
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α2α1

a) Magnetic monopoles 

c) Magnetic triplets 

b)Magnetic bion 

−α2α3

α2α1

−α3 −α3 −α3 −α3

α1

[I1, I2, I3] = [4, 4, 2], Iinst =
3∑

i=1

Ii ,

QCD(S) topological excitations/confinement 

The mechanism of confinement in sextet QCD
Testable towards the chiral limit of the lattice theory
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Conformality or confinement:

Mechanisms of confinement and conformality:  
What distinguishes  two  theories, one   just below  the conformal boundary and confines,  and  the 
other slightly  above the conformal window boundary? In other words, why does a confining gauge 
theory confine and why does an IR-CFT, with an almost identical microscopic matter  content,  flows to 
a CFT?

Lower boundary of conformal window:  What is the physics determining the boundary of 
conformal window?

Conceptually, two problem of out-standing importance in gauge theories: 

m−1
gauge fluc.(R

4) =
{

finite Nf < N∗
f confined

∞ N∗
f < Nf < NAF

f IR− CFT

Map the problem to the mass gap for gauge fluctuations:

A priori, not a smart strategy.
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Mass gap for gauge fluctuations  
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                        of  bions (or monopoles) 

*      QCD (R)

 
 

*

       Nf

      Nf

 
1/(ΝΛ)

CFTConfined

      Nf=2

relevance irrelevance 

b)a)

 
 

*

       Nf

      Nf

 
1/(ΝΛ)

CFTConfined

      Nf=2

R4
      Nf AF       Nf

AF
L L

4R

χ

confined with     SB 

confined without     SB 

χ    

Main Idea of our proposal

Crucial data: Index theorem on R3*S1, the knowledge of mechanism of 
confinement, and one-loop beta function.
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QCD(F/S/AS/Adj):Estimates and comparisons 
Below, I will present the estimates based on this idea and 
compare it various other approaches. In particular: 

1) Truncated SD (ladder, rainbow) approximation.

QCD(F):  Appelquist, Lane, Mahanta, and Miransky
Two-index cases: Sannino, Dietrich. 

2) NSVZ-inspired  conjecture:  Sannino, Ryttov.

Crucial data for 1) and 2): Two-loop (or conjectured 
all orders) beta function, anomalous dimension of 
fermion bilinear.  

Caveat:  chiral gauge theories.

M.E.Peskin, Chiral Symmetry And Chiral Symmetry 
Breaking, Les Houches, 1982 (Up-to date review)

• •
〈ψ̄ψ〉#=0

Nf!!
IR−free〈ψ̄ψ〉=0 ∞

NAF
fN∗

f

3)World-line formalism:  Armoni.
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QCD(S/AS/Adj):Estimates and comparisons 
N Deformation theory (bions) Ladder (SD)-approx. NSVZ-inspired: γ = 2/γ = 1 NAF

f

3 2.40 2.50 1.65/2.2 3.30
4 2.66 2.78 1.83/2.44 3.66
5 2.85 2.97 1.96/2.62 3.92
10 3.33 3.47 2.29/3.05 4.58
∞ 4 4.15 2.75/3.66 5.5

Table 1: Estimates for lower boundary of conformal window in QCD(S), N∗
f <

ND
f < 5.5

(
1− 2

N+2

)
.

N Deformation theory (bions) Ladder (SD)-approx. NSVZ-inspired: γ = 2/γ = 1 NAF
f

4 8 8.10 5.50/7.33 11
5 6.66 6.80 4.58/6.00 9.16
6 6 6.15 4.12/5.5 8.25
10 5 5.15 3.43/4.58 6.87
∞ 4 4.15 2.75/3.66 5.50

Table 2: Estimates for lower boundary of conformal window in QCD(AS), N∗
f <

ND
f < 5.5

(
1 + 2

N−2

)
.

N Deformation theory (bions) Ladder (SD)-approx. NSVZ-inspired: γ = 2/ γ = 1 NAF
f

any N 4 4.15 2.75/3.66 5.5

Table 3: Estimates for lower boundary of conformal window in QCD(adj), N∗
f <

NW
f < 5.5. In QCD(adj), we count the number of Weyl fermions as opposed to

Dirac, since the adjoint representation is real.

20Saturday, November 7, 2009



QCD(F) 

The above estimates from DT are for class a and a+c, respectively. 

N D.T. 1a/1c Ladder (SD)-approx. Functional RG NSVZ-inspired: γ = 2/γ = 1 NAF
f

2 5/8 7.85 8.25 5.5/7.33 11
3 7.5/12 11.91 10 8.25/11 16.5
4 10/16 15.93 13.5 11/14.66 22
5 12.5/20 19.95 16.25 13.75/18.33 27.5
10 25/40 39.97 n/a 27.5/36.66 55
∞ 2.5N/4N 4N ∼ (2.75− 3.25)N 2.75N/3.66N 5.5N

Table 1: Estimates for lower boundary of conformal window for QCD(F), N∗
f <

ND
f < 5.5N
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QCD(F)

QCD(adj)
QCD(S)

Dashed line:  Truncated SD (ladder, rainbow) approximation.

QCD(F):  Appelquist, Lane, Mahanta, Miransky.....
Two-index:  Sannino et.al. 

Estimates of the conformal window from deformation theory 

BUT WHY?

2 3 4 5 6 7 80

2

4

6

8

10

12

14

16

18

N

Nf

QCD(AS)
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γ(g2) =
3
2

(g2N)
8π2

[1 + O(g2N)]. Anomalous dimension of 
fermion bilinear

If γ(L) < 1, no χSB

Monopole action: S0(L) =
8π2

g2(L)N

γ(L)! 1⇒ S0(L)# 1⇒ e−S0 ! 1, dilute gas of monopoles and bions
γ(L) ∼ 1 ⇒ S0(L) ∼ 1 ⇒ e−S0 ∼ 1, non− dilute

γ(ψψ)S0 = γ(g2(L))S0(g2(L)) ∼ 1
Needs refinement, but it seems to be on the right path.

means non-abelian confinement 
cannot set-in. 

How can we relate perturbation theory to non-pert. physics?  
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• There is now a window through which we can look into non-abelian gauge 
theories and understand their internal goings-on.  Whether the theory is 
chiral, pure glue, or supersymmetric is immaterial.  We always gain a  semi-
classical window (in some theories  smoothly connected to R4 physics.)

• Deformation theory  is complementary to lattice gauge theory. Sometimes 
lattice is more powerful, and sometime otherwise.   Currently, DT is the 
only dynamical framework  for chiral gauge theories. It may also be more 
useful in the strict chiral limit of vector-like theories.   

• Most important:  We learned the existence of a large class of new non-self 
dual topological excitations through this program in the last two years.  

• Shed light into the mechanisms of conformality and confinement in gauge 
theories. This is tied with the (IR)relevance of topological excitations.

Conclusions
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