Conformality Lost

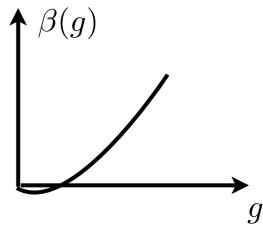
With David B. Kaplan, Jong-Wan Lee, Misha Stephanov arxiv:0905.4752

Motivation

Consider large N_c , large $N_f \, \mathrm{QCD}$

 N_f/N_c can be changed continuously \uparrow

$$rac{N_f}{N_c} = rac{11}{2} - \epsilon$$
 Banks-Zaks fixed point, CFT
 $eta(g) = -\epsilon g^3 + \# g^5$

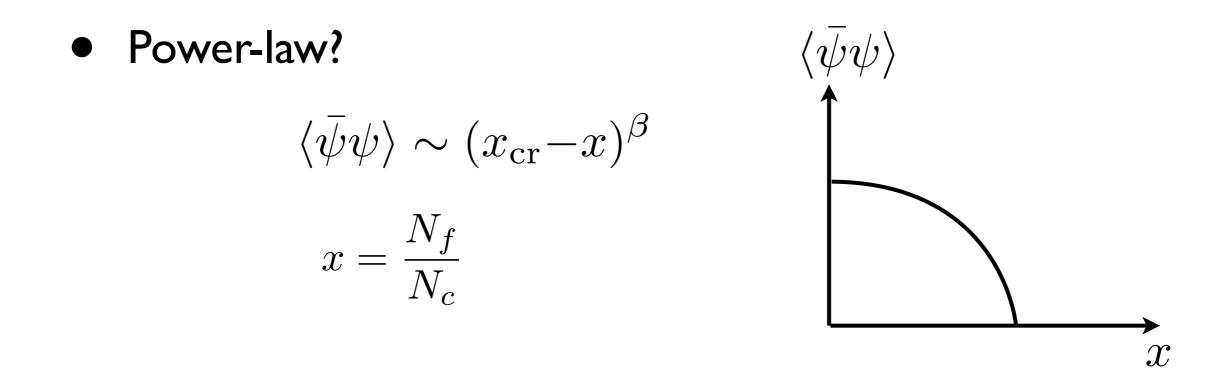


 $\frac{N_f}{N_c}$ small Confinement, chiral symmetry breaking

There exists a critical N_f/N_c where transition happens

$$\begin{array}{c|c} \langle \bar{\psi}\psi\rangle \neq 0 & \text{conformal window} \\ \hline 0 & x_{\rm cr} & 11/2 & N_f/N_c \end{array}$$

Possibilities:



typical of a 2nd order phase transition

But: in a 2nd order pt, conformal symmetry only at the phase transition

Here the system should be conformal for any $x > x_{cr}$

•Another possibility:

a Berezinskii-Kosterlitz-Thouless phase transition

BKT scaling:

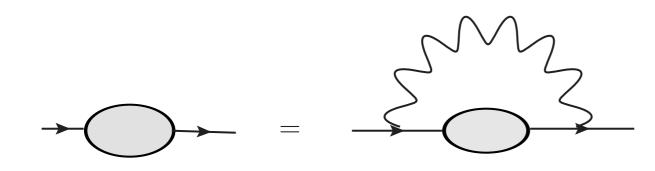
$$\xi^{-1}(T) = \begin{cases} \exp\left(-\frac{\#}{\sqrt{T - T_{\rm cr}}}\right) & T > T_{\rm cr} \\ 0 & T < T_{\rm cr} \end{cases}$$

If this is the case: chiral condensate goes to zero exponentially, with all derivatives vanishing as $x \to x_{\rm cr}$

physics: vortex condensation

But the BKT phase transition is very specific for 2D, while QCD is a 4D theory

Nevertheless: Schwinger-Dyson approach gives BKT scaling



Miransky 1985

Appelquist, Terning, Wijerwardhana 1996

Uncontrolled: Critical N_f/N_c is unreliable

May the scaling be right?

Short-distance behavior:

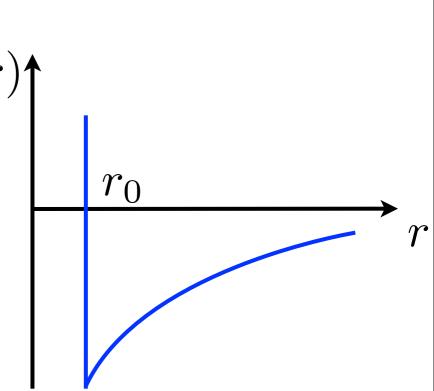
$$\psi(r) \sim rac{1}{r^{
u}} \qquad
u = rac{1}{2}(1 \pm \sqrt{1 + 4\alpha})$$

 $lpha > -1/4 \;\; {\rm conformal \,\, QM} \ lpha < -1/4 \;\; {\rm nonconformal: \, cutoff \,\, needed}$

Short-distance behavior:

 $\psi(r) \sim \frac{1}{r^{\nu}} \qquad \nu = \frac{1}{2}(1 \pm \sqrt{1 + 4\alpha})$

 $\alpha > -1/4 \;\; {\rm conformal \,\, QM} \;$ $\alpha < -1/4 \;\; {\rm nonconformal: \, cutoff \,\, needed}$



Let us put an infinite repulsive core for $r < r_0$

 r_0

Short-distance behavior:

 $\psi(r) \sim \frac{1}{r^{\nu}} \qquad \nu = \frac{1}{2}(1 \pm \sqrt{1+4\alpha})$

 $\alpha > -1/4 \;\; {\rm conformal \,\, QM} \;$ $\alpha < -1/4 \;\; {\rm nonconformal: \, cutoff \,\, needed}$

Let us put an infinite repulsive core for $r < r_0$

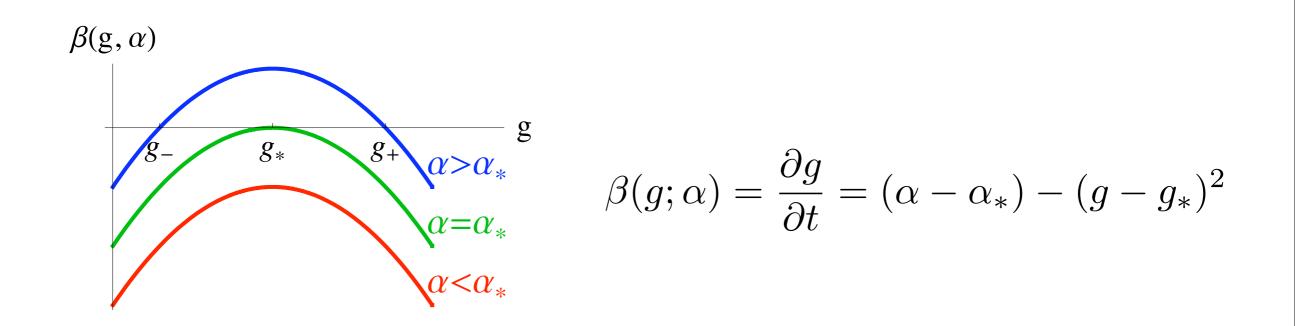
The potential always has bound state, and the energy is

$$\frac{1}{mr_0^2} \exp\left(-\frac{2\pi}{\sqrt{-1/4-\alpha}}\right) \quad \text{BKT scaling again!}$$

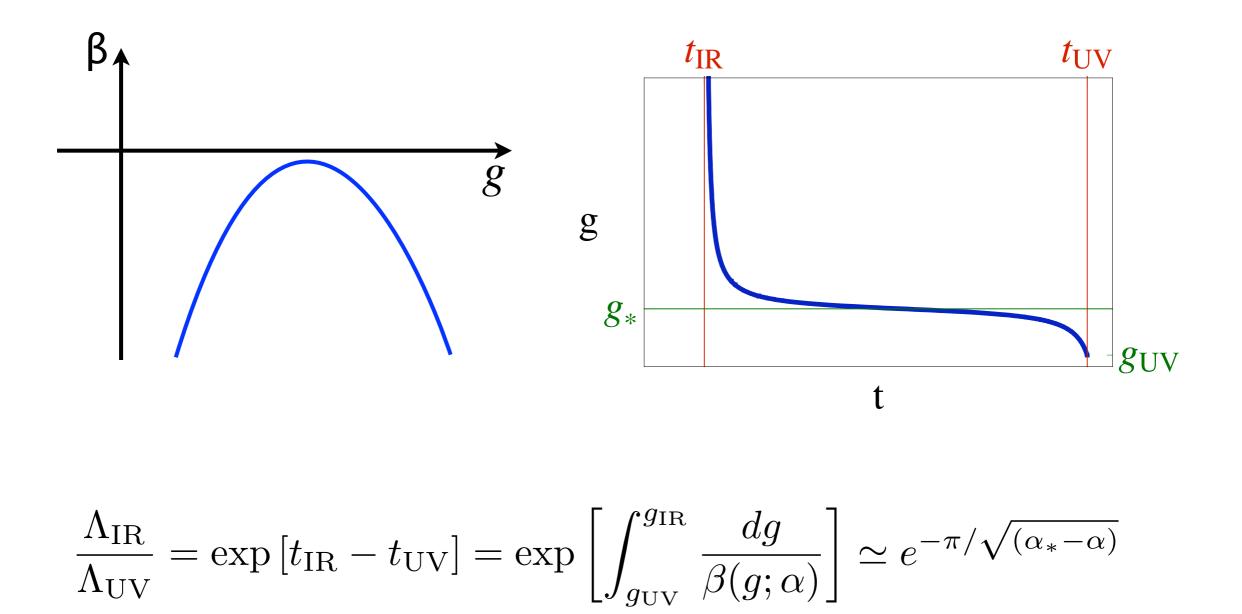
- Three transitions have the same scaling:
 - The BKT phase transition
 - The transition in QM with $1/r^2$ potential
 - Chiral phase transition in SD approach
- Pure coincidence, or there is a deeper reason?

In the language of renormalization group, conformality may be lost due to

- Fixed point moving to zero $\frac{\text{SQCD } N_f}{N_c} = 3$
- Fixed point moving to infinity SQCD $N_f / N_c = 3/2$?
- Fixed point merger and annihilation



Running of coupling for $\alpha = \alpha_* - \epsilon$



This may be the explanation!

If that picture is correct: two fixed points for $\alpha > \alpha *$

AdS/CFT correspondence:

Operator \Leftrightarrow Field

 $\Delta(\Delta-d)=m^2R^2$ Breitenlohner-Freedman bound $m^2>-d^2/4$

 $-d^2/4 < m^2 < -d^2/4 + 1$: two different boundary theories Klebanov, Witten

$$\Delta_+ + \Delta_- = d$$

 $\Delta_+ - \Delta_- < 1$

Lost of conformality: m² drops below the BF bound

RG for quantum mechanics with $1/r^2$ potential

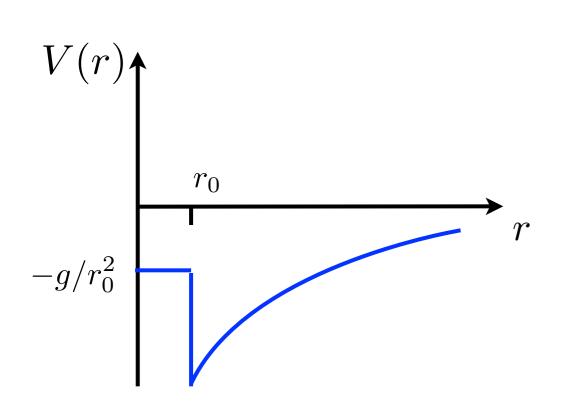


Regularize potential by a square-well core

Change g and r_0 , preserving low-energy physics

Get beta function

RG for quantum mechanics with $1/r^2$ potential



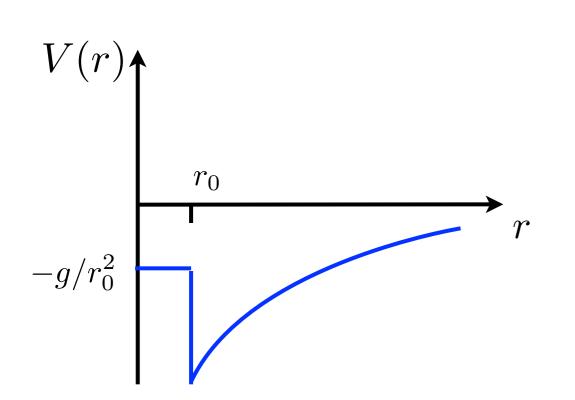
Regularize potential by a square-well core

Change g and r₀, preserving low-energy physics

Get beta function

$$\beta(g) = \frac{2\sqrt{g} \left(\alpha + \sqrt{g} \cot \sqrt{g} - g \cot^2 \sqrt{g}\right)}{-\cot \sqrt{g} + \sqrt{g} \csc^2 \sqrt{g}}$$

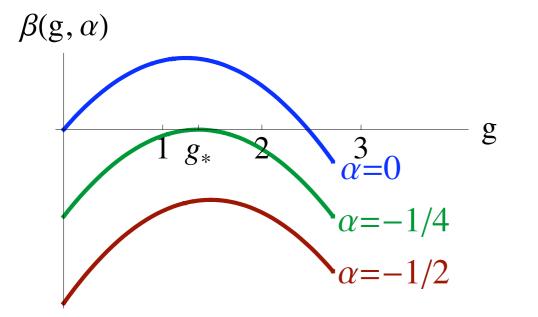
RG for quantum mechanics with $1/r^2$ potential



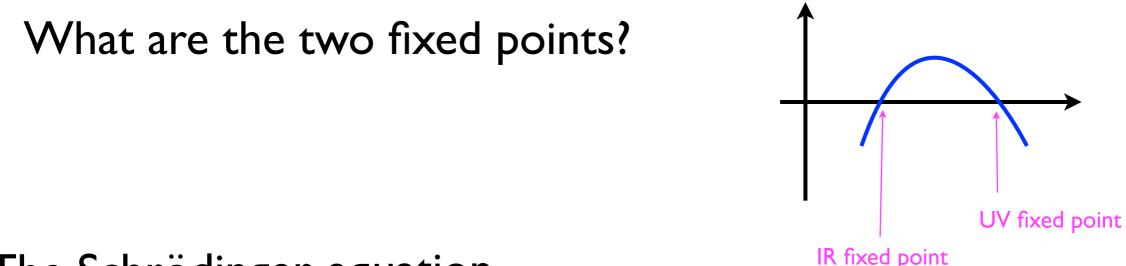
Regularize potential by a square-well core

Change g and r₀, preserving low-energy physics

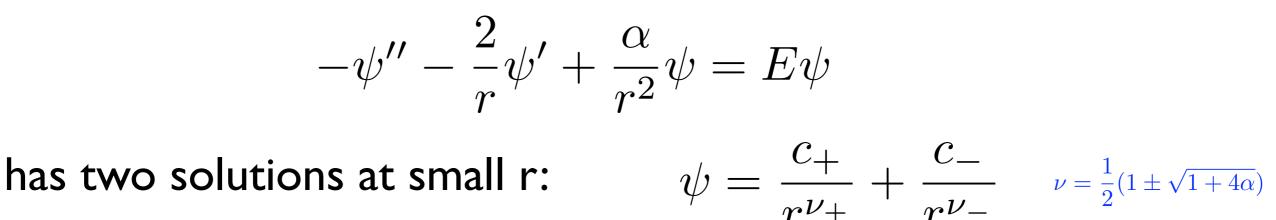
Get beta function



$$\beta(g) = \frac{2\sqrt{g} \left(\alpha + \sqrt{g} \cot \sqrt{g} - g \cot^2 \sqrt{g}\right)}{-\cot \sqrt{g} + \sqrt{g} \csc^2 \sqrt{g}}$$



The Schrödinger equation

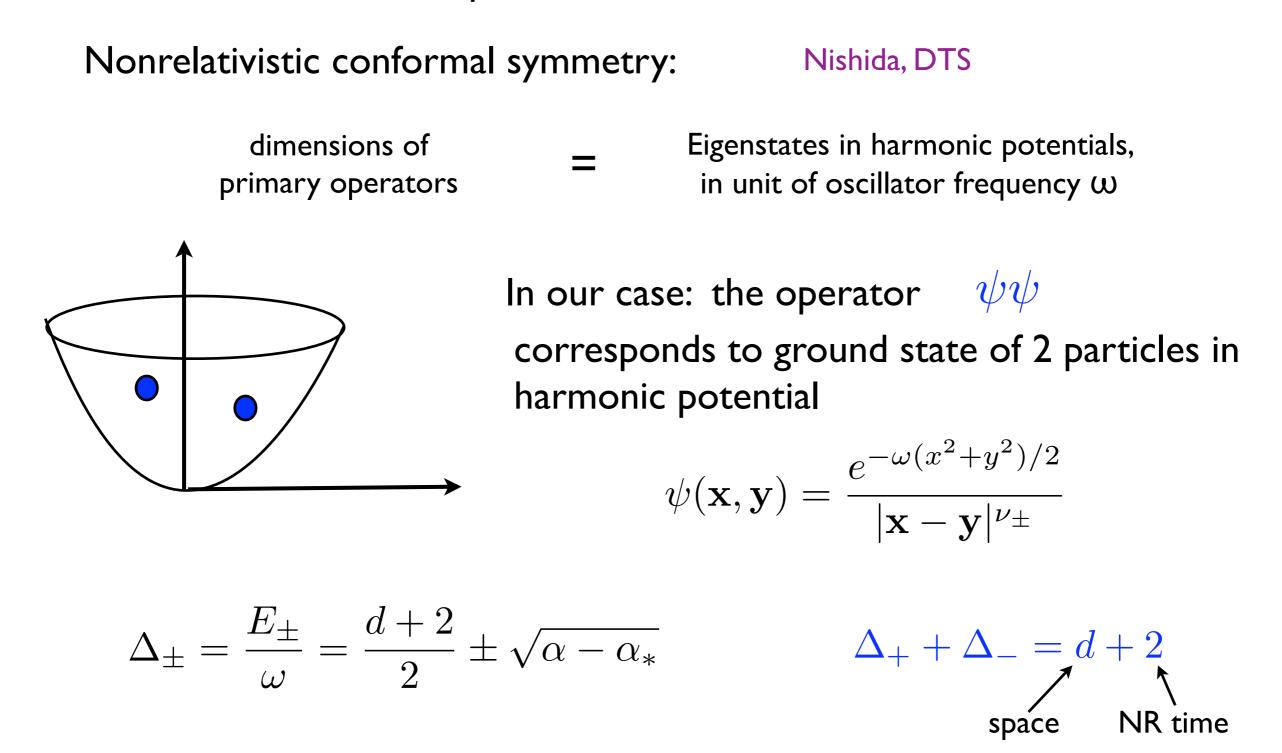


 c_+/c_- depends on the short-range part of the potential Choosing $c_+=0$ or $c_-=0$ conformal theory

Generic short range potential "flows" to $c_{+} = 0$ Fine-tuning required to achieve $c_{-} = 0$

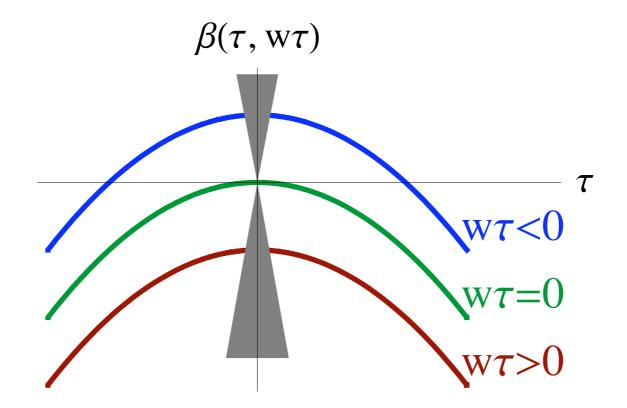
Operator dimensions at fixed points

If AdS/CFT intuition is correct: there is an operator that has different dimensions at two fixed points



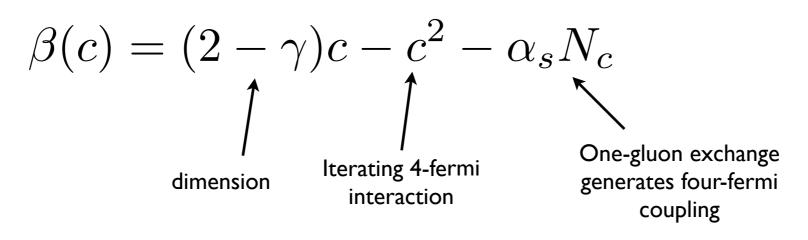
BKT phase transition

Can be interpreted as the merging of fixed points



Back to QCD

• Imagine that the four-fermi coupling c runs



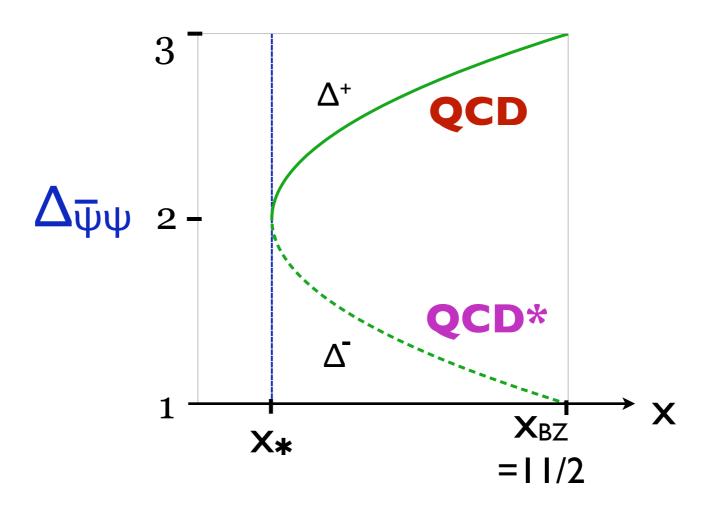
at some value of gauge coupling there is no fixed point

This would give rise to BKT scaling

 Consequence: near the lower end of the conformal window, there is a UV fixed point in addition to the usual IR fixed point

 $\Delta[\bar{\psi}\psi]|_{\rm UVfp} \neq \Delta[\bar{\psi}\psi]|_{\rm IRfp}$

- It would be nice (though not guaranteed) if this fixed point can be found in the weak coupling regime $N_f/N_c = 11/2 - \epsilon$
- We begin gently: can one find a perturbative fixed point where one fermion bilinear changes dimension?



Model A

Start with perturbative Banks-Zaks fixed point,

$$\Delta(\bar{\psi}\psi) = 3 - \#\lambda$$

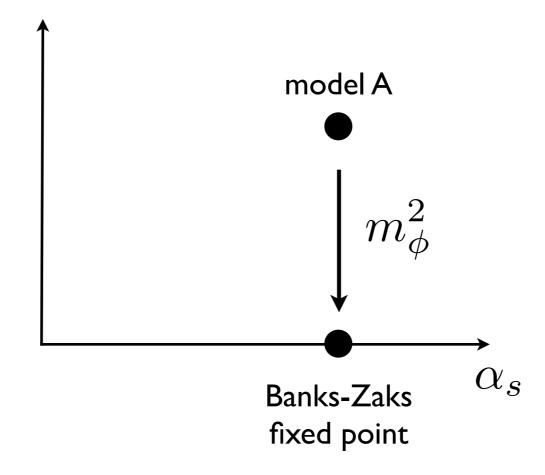
In the UV fixed point: we should have a scalar with $\Delta = I + \#\lambda$, almost a free scalar

This suggests how to construct such a theory

$$L = L_{\rm QCD} + \frac{1}{2} (\partial_{\mu}\phi)^2 - y\bar{\psi}\psi\phi - \frac{\lambda}{24}\phi^4$$

$$\beta_y = \frac{y}{16\pi^2} (y^2 N_f N_c - 3g^2 N_c)$$

Fixed point for y and λ exists Running of α unaffected



Model C

Previous model does not have chiral symmetry: cannot be a candidate for the UV fixed point

To restore chiral symmetry: introduce O(Nf^2) scalars

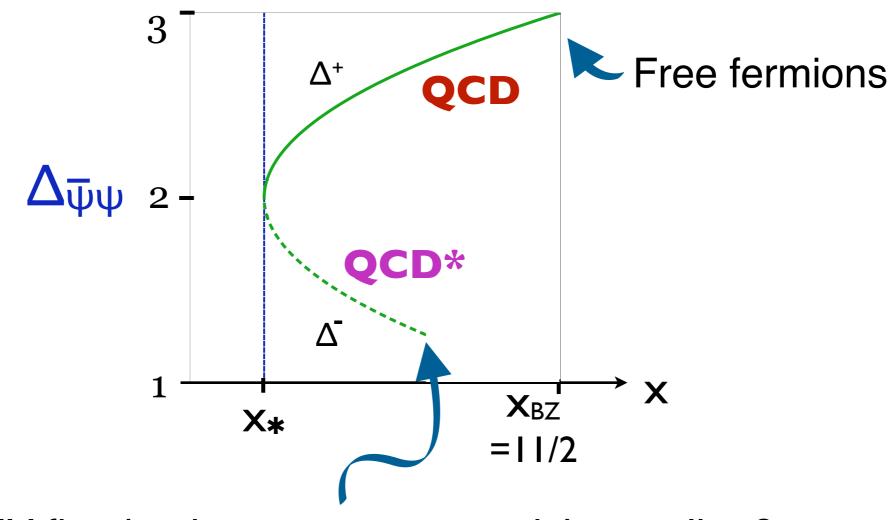
 $L = L_{\text{QCD}} - y(\bar{\psi}t^A\psi\phi^A + i\bar{\psi}t^A\gamma^5\psi\pi^A)$ + action for scalar

But now the running of α is affected: too many scalars

This model turns out not to have perturbative fixed point

Perhaps the UV fixed point exists only sufficiently close to the critical Nf/Nc?

This fixed point should be looked for on the lattice



UV fixed point starts at strong-ish coupling?

Conclusions

- Merger and annihilation of fixed points explains the loss of conformality in a variety of systems
- The scaling of the IR scale near the phase transition coincides with that of a Berezinskii-Kosterlitz-Thouless phase transition
- It is conceivable that the chiral phase transition in Nf/Nc also has BKT scaling
 - a UV fixed point in QCD with fine-tuned four-fermi interaction
- Loss of conformality ~ violation of the Breitenlohner-Freedman bound in gravity dual
 - implies $\Delta[\bar\psi\psi]=2$ exactly at the phase transition