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Consider large Nc , large Nf QCD

Banks-Zaks fixed point, CFT

Nf

Nc
small Confinement, chiral symmetry breaking

There exists a critical Nf/Nc where transition happens

xcr

conformal window

Nf/Nc0 11/2

can be changed continuouslyNf/Nc

Motivation

�ψ̄ψ� �= 0

Nf

Nc
=

11
2
− �

β(g)

g
β(g) = −�g3 + #g5



• Power-law?

Possibilities:

�ψ̄ψ� ∼ (xcr−x)β

x =
Nf

Nc

typical of a 2nd order phase transition

x

�ψ̄ψ�

But: in a 2nd order pt, conformal symmetry only at the 
phase transition

Here the system should be conformal for any x > xcr



•Another possibility:

a Berezinskii-Kosterlitz-Thouless phase transition

BKT scaling:

ξ−1(T ) =

�
exp

�
− #√

T−Tcr

�
T > Tcr

0 T < Tcr

If this is the case: chiral condensate goes to zero exponentially, 
with all derivatives vanishing as x→ xcr

But the BKT phase transition is very specific for 2D, while QCD 
is a 4D theory

physics: vortex condensation



Nevertheless: Schwinger-Dyson approach gives BKT scaling

=

Critical Nf/Nc is unreliable

May the scaling be right?

Miransky 1985

Appelquist, Terning,  Wijerwardhana 1996

Uncontrolled:
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1/r2 potentialQuantum mechanics with
Schrödinger equation −ψ�� − 2
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α

r2
ψ(r) = Eψ(r)
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r
r0

Let us put an infinite repulsive core for r < r0

Short-distance behavior:

ψ(r) ∼ 1
rν

ν =
1
2
(1±

√
1 + 4α)

conformal QMα > −1/4
nonconformal: cutoff neededα < −1/4

The potential always has bound state, and the energy is

BKT scaling again!exp

�
− 2π�

−1/4− α

�
1

mr2
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• Three transitions have the same scaling:

• The BKT phase transition

• The transition in QM with 1/r2 potential

• Chiral phase transition in SD approach

• Pure coincidence, or there is a deeper reason?



In the language of renormalization group, 
conformality may be lost due to

• Fixed point moving to zero   SQCD Nf /Nc = 3

• Fixed point moving to infinity   SQCD Nf /Nc = 3/2 ?

• Fixed point merger and annihilation

Α�Α�
Α�Α�
Α�Α�

g� g� g�
g

Β�g, Α�
β(g;α) =

∂g

∂t
= (α− α∗)− (g − g∗)2



g�

tIR tUV

gUV
t

g

Running of coupling for α = α∗ − �

ΛIR

ΛUV
= exp [tIR − tUV] = exp

�� gIR

gUV

dg

β(g;α)

�
� e−π/

√
(α∗−α)

β

g

This may be the explanation!



If that picture is correct: two fixed points for α>α*

AdS/CFT correspondence:

: two different boundary theories

Lost of conformality: m2 drops below the BF bound

∆(∆− d) = m2R2

∆+ + ∆− = d

Operator Field⇔

−d2/4 < m2 < −d2/4 + 1

Breitenlohner-Freedman bound m2 > −d2/4

Klebanov, Witten

∆+ −∆− < 1
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RG for quantum mechanics with 1/r2 potential

V (r)

r
−g/r2
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Regularize potential by a 
square-well core
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physics
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What are the two fixed points?

IR fixed point

UV fixed point

The Schrödinger equation

−ψ�� − 2
r
ψ� +

α

r2
ψ = Eψ

has two solutions at small r: ψ =
c+

rν+
+

c−
rν−

ν =
1
2
(1±

√
1 + 4α)

c+/c− depends on the short-range part of the potential

Choosing c+ = 0 or c− = 0 conformal theory 

Generic short range potential “flows” to c+ = 0

Fine-tuning required to achieve c− = 0



Operator dimensions at fixed points
If AdS/CFT intuition is correct: there is an operator that has different 
dimensions at two fixed points 

Nonrelativistic conformal symmetry: 

dimensions of 
primary operators

Eigenstates in harmonic potentials,  
in unit of oscillator frequency ω=

In our case:  the operator ψψ
corresponds to ground state of 2 particles in 
harmonic potential

ψ(x,y) =
e−ω(x2+y2)/2

|x− y|ν±

∆+ + ∆− = d + 2

space NR time

∆± =
E±
ω

=
d + 2

2
±
√

α− α∗

Nishida, DTS



BKT phase transition
Can be interpreted as the merging of fixed points

wΤ�0

wΤ�0

wΤ�0

Τ

Β�Τ, wΤ�



Back to QCD

• Imagine that the four-fermi coupling c runs

at some value of gauge coupling there is no fixed 
point

• This would give rise to BKT scaling

β(c) = (2− γ)c− c2 − αsNc

One-gluon exchange 
generates four-fermi 

coupling
dimension Iterating 4-fermi 

interaction



• Consequence: near the lower end of the 
conformal window, there is a UV fixed point in 
addition to the usual IR fixed point

• It would be nice (though not guaranteed) if this 
fixed point can be found in theweak coupling 
regime 

• We begin gently: can one find a perturbative fixed 
point where one fermion bilinear changes 
dimension?

Nf/Nc = 11/2− �

∆[ψ̄ψ]|UVfp �= ∆[ψ̄ψ]|IRfp



x✱

xxBZ

=11/2

QCD

Δψψ

3

2

1

QCD*

Δ+

Δ-



Model A

Start with perturbative Banks-Zaks fixed point, 

∆(ψ̄ψ) = 3−#λ

In the UV fixed point:  we should have a scalar with Δ=1+#λ, 
almost a free scalar

This suggests how to construct such a theory

between zIR and zUV, gives rise to a massless particle instead of a tachyon. (Strictly speaking,

this is an lower bound for the IR scale). The equation for the scalar is

φ��
+

d− 1

z
φ�

+ m2φ = 0 (65)

For this not to have a tachyon, we need

ln
zIR

zUV
<

#�
m2

BF −m2
(66)

If the scale zIR appears dynamically due to the instability, then typically the IR scale is

of the order of magnitude which is required for the tachyon not to appear. We recover

Miransky’s scaling.

(can one construct a model where the IR scale appears dynamically? Gravity + scalar +

a potential for scalar?)

VII. QCD AT LARGE Nc AND Nf .

Consider now QCD at large Nc and Nf . Denote x = Nf/Nc. We assume x < 11/2.

Our picture is that in a range of x, xcr < x < 11/2, there are two CFTs. One CFT

corresponds to the usual Bank-Zaks fixed point [8]. The other theory can be roughly thought

of a QCD with an additional four-fermi interaction, fine-tuned to a critical value. When

x = xcr these two fixed points merge. There is no fixed point at all when x < xcr. Although

we do not know how to do calculations near xcr, one can hope to be able to identify the

other theory in the weak coupling regime.

A. Model A

The simplest model is (model A)

L = LQCD +
1

2
(∂µφ)

2 − yψ̄ψφ− λ

24
φ4

(67)

One can think about this theory as a theory with an additional (nonlocal) four-fermi coupling

mediated by the field φ. The beta function for y is

βy =
y

16π2
(y2NfNc − 3g2Nc) (68)
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Fixed point for y and λ exists

Running of α unaffected



αs

m2
φ

model A

Banks-Zaks 
fixed point



Model C

Previous model does not have chiral symmetry: cannot be a 
candidate for the UV fixed point

To restore chiral symmetry: introduce O(Nf^2) scalars

hence is zero when y2 = 3g2Nc/Nf . At large Nf ∼ Nc the β-function for g remains un-

changed. The β-function for the φ4 coupling is

βλ =
1

16π2

�
1

8
λ2 − 1

2
NfNcy

4 + 2NfNcy
2

�
(69)

We find a fixed point:

y2
∗ = · · · , λ = · · · (70)

We now compute the dimension of the scalar operators:

∆[ψ̄ψ]BZ = 3− 3g2
∗Nc, ∆[φ]modelA = 1 + 3g2

∗Nc (71)

We see here a manifestation of a salient feature of the quantum mechanical model. Denote

these two values as ∆+ and ∆−, we see that ∆+ +∆− = 4. Drawing from the QM intuition,

we may expect that when ∆+ = ∆− = 2, the BZ fixed point and model A become identical.

B. Model B

Model B is similar to model A, except the scalar is complex. The Lagrangian preserve

vector SU(Nf ) and axial U(1)A (or the nonanomalous discrete subgroup of it).

C. Model C

Model A is not chirally symmetric. We may ask the following question: is there a chirally

symmetric generalization of model A?

We hence try the following Lagrangian

L = LQCD − y(ψ̄tAψφA + iψ̄tAγ5ψπA) + Tr∂µΦ†∂µΦ− λ1(TrΦ†Φ)2 − λ2Tr(Φ+Φ)2 (72)

whee Φ = (φA + iπA)tA, A = 0, . . . N2
f −1 are flavor Gell-Mann matrices, normalized so that

Tr(tAtB) = 1
2δ

AB. We need to find the fixed point of this theory. This fixed point should

have only one IR unstable direction corresponding to the mass term for φ.

The RG equations for g and y are [9–11]

(4π)2∂g

∂s
=

�
11

3
Nc −

2

3
Nf

�
g3 +

�
34

3
N2

c −
13

3
NcNf

�
g5

(4π)2
+

1

(4π)2
N2

f g3y2 (73)

(4π)2∂y

∂s
= 3g2Ncy − (Nc + Nf )y

3 (74)
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+ action for scalar

But now the running of α is affected: too many scalars

This model turns out not to have perturbative fixed point

Perhaps the UV fixed point exists only sufficiently close to the 
critical Nf/Nc?

This fixed point should be looked for on the lattice



x✱

xxBZ

=11/2

QCD

Δψψ

3

2

1

QCD*

Δ+

Δ-

Free fermions

UV fixed point starts at strong-ish coupling?

QCD* ?



Conclusions

• Merger and annihilation of fixed points explains the 
loss of conformality in a variety of systems

• The scaling of the IR scale near the phase transition 
coincides with that of a Berezinskii-Kosterlitz-
Thouless phase transition

• It is conceivable that the chiral phase transition in 
Nf/Nc also has BKT scaling

• a UV fixed point in QCD with fine-tuned four-fermi 
interaction

• Loss of conformality ~ violation of the 
Breitenlohner-Freedman bound in gravity dual

• implies exactly at the phase transition∆[ψ̄ψ] = 2


