QCD with 8 and 12 Flavors

Lattice Gauge Theory for LHC Physics Boston University November 6, 2009

> Robert Mawhinney Columbia University

Results of simulations with naive staggered fermions and the DBW2 gauge action at T = 0 and T \neq 0. A variety of hadron observables have been measured, $f_{\pi}, m_{\pi}, m_{\varrho}, \sigma, \langle \overline{\psi}\psi \rangle$

Done in collaboration with Xiao-Yong Jin

Xiao-Yong Jin and R.M., arXiv:0812.0413, 8 flavors, Lattice 2008 Xiao-Yong Jin and R.M., arXiv:0910.3216, 8 and 12 flavors, Lattice 2009

Fig. 1. 2 zero β function.

T = 0 QCD versus β

- Need $\beta > \beta_{crossover}$ to be continuously connected to continuum physics
- Irrelevant (in continuum) operators can play a large role $\beta < \beta_{crossover}$
- Strong to weak coupling may be discontinuous
- Steepness of crossover region may be hard to distinguish from walking.

• T = 0 simulations at a few lattice spacings show $m_{\pi}^2 = 2Bm_f$

- At weaker coupling, change from $N_t = 32$ to $N_t = 8$. No Goldsone boson
- Clear evidence that the system has a chirally broken phase at T = 0 and a phase with chiral symmetry restored for large T for $N_f = 8$ and 12.
- Will now look at Polyakov loop, lattice artifact transitions, algorithm issues, massless extrapolation, many other observables, finite volume effects and taste breaking

Bulk Transition Signal for $N_f = 8$ (1992)

- Brown, et. al. (PRD 46 (1992) 5655)
- Naive staggered fermions with Wilson gauge action, $m_q = 0.015$
- Inexact R algorithm, $16^3 \times 32$ volume
- Bulk phase transition seen argue that system has χSB on both sides
- Extrapolating in step size says transtion at $\beta = 4.58(1)$ with $\Delta \tau = 0.0$
- Look for this with exact RHMC

Bulk Transition Signal for $N_f = 8$ (2008)

- Naive staggered fermions with Wilson gauge action, $m_q = 0.015$
- Inexact R algorithm and exact RHMC, $16^3 \times 32$ volume
- R algorithm transition at $\beta = 4.60$ disappears with RHMC
- RHMC sees bulk, first order transition at $\beta = 4.59$. Smaller discontinuity
- Unexpected conclusion: R algorithm, with conventional step size, makes it easier to see bulk transition, as it exists for a wider range of β .
- No bulk transition seen with DBW2, so far.

Taking Massless Limit

- Want statements about theories with $m_f = 0$, but simulate at finite m_f .
- Extrapolate to $m_f = 0$.
- What about chiral perturbation theory? There are logs in continuum result

$$m_{\pi}^{2} = 2Bm_{f} \left(1 + \frac{2}{N_{f}} \frac{2Bm_{f}}{(4\pi f)^{2}} \ln \left[\frac{2Bm_{f}}{\Lambda_{\chi}^{2}} \right] \right)$$
$$f_{\pi} = f \left(1 - N_{f} \frac{2Bm_{f}}{(4\pi f)^{2}} \ln \left[\frac{2Bm_{f}}{\Lambda_{\chi}^{2}} \right] \right)$$

- Coefficients have explicit N_f dependence, as well as implicit dependence, via f and B. Convergence may be poor
- Flavor breaking of staggered fermions will also modify logs.
- Will use simple linear extrapolations in m_f here. For high precision 2+1 flavor QCD work, logs are ~ 10 percent correction for physical m_a

Complete NNLO ChPT May Not Help

- 2+1 flavor DWF QCD (RBC and UKQCD) arXiv:0910.3194, Lat 09
- 2 a's, 5 dynamical m₁, 84 partially quenched values for m_{π} and f_{π}
- NLO gives $f_{\pi} = 122.2 + -3.4_{stat} + -7.3_{ChPT}$
- NNLO adds 13 additional parameters and gives $f_{\pi} = 133 + -13_{stat}$
- NNLO looks linear to physical m_l . For $m_f \rightarrow 0$, logs may be a small correction. Analytic expansion may be reasonable guide, but no proof

Extrapolation of Chiral Condensate

- N_f = 4 and 8 extrapolate linearly to non-zero values.
- $N_f = 12$ at strong coupling shows χSB in massless limit
- $N_f = 12$ at weak coupling shows a rapid change in the system.

Extrapolation of m_{π}^2 for $N_f = 4$ and 12

They look very similar

Extrapolation of f_{π}

- Extrapolated f_{π} for $N_f = 8$ shows 2× change across the region of rapid evolution.
- Extrapolated f_{π} for $N_f = 12$ shows ~10× change across the region of rapid evolution.
- Extrapolated, weak coupling f_{π} for $N_f = 12$ is non-zero.

Extrapolation of Chiral Condensate, again

Extrapolation of m_o

- Extrapolated m_{ϱ} for Nf = 8 shows 2× change across the region of rapid evolution.
- Extrapolated m₀ for N_f = 12 shows ~6× change across the region of rapid evolution, less than the 10x seen in f_{π}
- Look at other particles to see what is happening with m_o

Parity Doubling

- If chiral symmetry is not broken, particle spectrum is parity doubled
- Spectrum for Nf = 8 shows mass of ϱ and a^1 not degenerate when $m_f = 0$.
- Spectrum for Nf = 12 shows parity doubling.
- What happened to χSB ?

Parity Doubling for 4 flavors

- Parity doubling disappears for larger volume system
- System still has χ SB, but parity doubling is a sensitive indicator of finite volume effects

String Tension

- String tension is small for $N_f = 12$, making it easy to measure
- Our Coulomb gauge fixing method has larger finite volume errors than other methods
- For non-zero quark mass, system exhibits confinement

String Tension versus m_f

- String tension for $N_f = 8$ drops by 4× across rapid evolution region
- For $N_f = 12$, $\sigma(\beta = 0.48, m_f = 0) = 0.0043(15)$
- For $N_f = 12$, $\sigma(m_f = 0)$ is consistent with 100× change across region of rapid evolution of system.

Evolution of Chiral Condensate at $N_t = 8$

- For $N_f = 8$, at T = 0 we find v = 0.02555(23) by linear extrapolation, very close to the observed shift in v (at non-zero quark mass) when going from $N_t = 32$ to $N_t = 8$.
- For $N_f = 12$, $\beta = 0.49$, we find the shift in v (at non-zero quark mass) from $N_t = 32$ to $N_t = 8$ to be larger than the v when $m_f \rightarrow 0$ for T=0. However, we are not sure we are on the weak coupling side of the rapid evolution region at this β , so our T = 0 v is not very reliable.

Unrenormalized Polyakov Loop

Clearly $\langle P \rangle \neq 0$ at $N_{\tau} = 8$

Staggered Flavor (taste) Breaking

- MILC Phys.Rev.D70:114501,2004
- 2+1 flavor ASQTAD, a = 0.12 fm
- Visible splitting when $m_q = 0$
- Same slope for all tastes
- $m_{Q} \sim 0.5$ in lattice units

- Fodor, et.al., PLB 681, 353 (2009)
- 6 stout smearing steps
- $m_0 \sim 0.3$ in lattice units
- Slope varies with taste
- Small splittings when $m_q = 0$

Staggered Flavor (taste) Breaking: DBW2 action

- Measurements for $\beta = 0.56$, 24³ × 32 volumes
- Different slopes for all tastes
- Small splittings when $m_q = 0$
- $m_{\pi}^2 \sim m_q$ for all tastes
- $m_{Q} \sim 0.4$ in lattice units
- Measurements for $\beta = 0.49$, $16^3 \times 32$, $32^3 \times 32$ volumes
- Small splittings when $m_q \le 0.01$
- Only Goldstone has $m_{\pi}^2 \sim m_q$
- $m_0 \sim 0.1$ in lattice units

12 flavors results comparison with Deuzeman *et al.*, 2009 arXiv:0904.4662v1

• Bulk transition observed.

12 flavors results comparison with Deuzeman *et al.*, 2009 arXiv:0904.4662v1

- Very small $\langle \bar{\psi}\psi \rangle$ at chiral limit.
- Our simulations run in smaller m_q 's.
- We studied more observables.

Summary

- Direct calculation of hadronic observables shows that $N_f = 8$ and 12 QCD with the DBW2 gauge action and naive staggered fermions
 - a. Is in a chirally-broken phase at zero temperature, with $m_{\pi}^2 \sim m_f$
 - b. Has a chirally symmetric phase for high temperature, with no Goldstone boson
 - c. Exhibits a region of rapid evolution of the system, with respect to the bare lattice coupling β , which is more pronounced for N_f = 12.
- The extrapolations to the massless limit that were used here are simple linear extrapolations. ChPT may not be helpful to improve this, since convergence may be poor due to explicit N_f factors, large B and small f.
- The weak coupling side of $N_f = 12$ region has very small QCD scales, in lattice units. This requires simulations in large volumes. Have some data on finite V effects and they are measureable, but perhaps not dominating.
- Our conclusions differ from Appelquist, Fleming and Neil (PRL 100 171607 (2008)), who measure β -functions and claim N_f = 12 is conformal

T = 0 QCD versus β

- Discontinuities can exist in strong to weak coupling region.
 - * Likely lattice artifacts
 - * Can be small or large, depending on irrelevant operators
- β for strong-to-weak transition strongly mass dependent for N_f = 12.
- What is β_{\min} for Schrödinger functional and RG methods?

Outlook

- Have measured staggered fermion flavor breaking in meson spectrum for $N_f = 8$ and 12
 - * Found $m_q = 0$ splittings surprisingly small.
 - * Pronounced differences in slope of m_{π}^{2} with m_{a}
 - * What arguments can one use to decide whether flavor breaking is relevant to phase of system?
- Considering further large volume runs for $N_f = 12$ at weak coupling. Difficult to make sure we are completely through the crossover.
- Further increases in N_f would make hadronic signal even smaller and require large volumes. Vanishing signal/noise
- Likely need better observables if simulations with larger N_f are done.

Acknowledgements

- Simulations done on the Columbia and RBRC QCDOC computers, and NYBlue at BNL
- We have used the existing CPS software for our simulations
- Thanks to members of the RBC collaboration, and particularly Norman Christ, for helpful discussions.