

QCD with 8 and 12 flavors Albert Deuzeman, Elisabetta Pallante, Maria Paola Lombardo LGT for LHC Boston, November 6-7 2009

HISTORY : THE BANKS ZACS scenario

• With the N_f fermions in the fundamental representation , QCD is asymptotically free if:

$$N_f < \frac{11}{2}N$$
 Nf

• At two loops, the theory has an infrared stable, non-trivial fixed point α^* if

$$\frac{34N^3}{13N^2+3} < N_f < \frac{11}{2}N$$

- If a zero, α*, of the β function exists at two loops, it exists to any order in perturbation theory.
- For any N_f chiral symmetry is broken at large lattice coupling

gL

THE DISCOVERY OF THE CONFORMAL WINDOW OF QCD

Appelquist et al. 1997

Mirasnky Yamawaki 1998 - Lattice phase diagram

- GOAL:
 - MAP OUT THE PHASE DIAGRAM
 - ESTABLISH CONTINUUM PROPERTIES
- CAVEAT :
 - SIMILARITIES BETWEEN THE CONFORMAL WINDOW AND A (COLD) PLASMA

$$N_f = 12$$

CHIRAL SYMMETRY

- Bulk transition
- Symmetry restored
- Focus on g = 1.22, 1.24 ($\beta = 3.9, 4.0$): Control of FV, thermalization.
- Use lattice QED as a paradigma for the symmetric phase

MpL - Boston - LGT for LHC 2009

- At the critical point g_c $\langle \bar{\psi}\psi \rangle = am^{1/\delta}$
- In the symmetric phase Conformality perturbatively broken by Coulomb forces:

$$\langle \bar{\psi}\psi \rangle = am^a$$

- Only when conformal invariance is exact: d = 1.
- d measured in QED (Kogut et al. 1985) $1/\delta < d < 1$

- $\langle \bar{\psi}\psi
 angle = am^d$ Symmetric Phase
- $\langle \bar{\psi}\psi \rangle = am + b$ Broken Phase -Contrast χ^2 of different fits -

- $Y = a + bX^{c}$: Chiral Symmetry Broken if $a \neq 0$ $(\chi^{2}/ndf) = 0.5$, a = -0.0003(5) b = 2.68(2) c = 0.962(4)
- $Y = bX^{c}$: Chiral Symmetry : Favored $(\chi^{2}/ndf) = 0.4$, b = 2.697(2) c = 0.9642(3)
- Y = a + bX: Chiral Symmetry Broken if $a \neq 0$ $(\chi^2/ndf) = 3.9$, a = 0.004(2) b = 2.907(5)

DATA FAVOR CHIRAL SYMMETRY

Red Symbols : Chiral breaking

 $\begin{array}{l} \beta=3.9, \mbox{L}\ 20\\ \mbox{Power law with an intercept a = -0.0039(6): } (\chi^2/ndf) = 0.60\\ \mbox{Linear fit:} (\chi^2/ndf) = 4.4.\\ \beta=3.9, \mbox{L}\ 24\\ \mbox{Pure power law:} (\chi^2/ndf) = 0.64 \mbox{ with exponent } 0.9642(3)\\ \mbox{Linear fit:} (\chi^2/ndf) = 3.9 \end{array}$

 $\beta = 4.0, L 20$ Power law with an intercept a = -0.0011(9): $(\chi^2/ndf) = 0.78$ Linear fit: $(\chi^2/ndf) = 3.1$ $\beta = 4.0, L 24$ Pure power law: $(\chi^2/ndf) = 0.87$ with an exponent of 0.965(1)
Linear fit: $(\chi^2/ndf) = 3.8$

SPECTRUM

MASS RATIO : π/ρ

$m_{\pi}/m_{\rho}(m,g_L)$ = Constant Defines isolines in the m,g_L plane

- Qualitative trend indicates that the bare mass should *increase* when g_L decreases to keep the m_ρ/m_π ratio constant
- Same trend should be observed in m_{σ}/m_{π} in the symmetric phase Kogut et al. 1985–
- The above points suggest that the lattice spacing increases with g_L
- This is the behaviour expected of a one parameter β function with a postive sign, again consistent with being in a QED phase.
- Same trend observed in QCD with Nf=16 Damgaard et al. 1996

APPROACHING g = 0: NO SIGN OF FURTHER PHASE TRANSITIONS

Perturbative running of plaquette: N_f = 12

$N_f = 8$ and non-zero temperature

 $1/100 = 1 \text{ phys} + a(g^{-2})$

High T always restores chiral symmetry at $g = g_T$

 $\lim_{N_t \to \infty} g_T^2 = g_c^2$ in the symmetric phase

 $\lim_{N_t\to\infty} g_T^2 = 0$ according to asymptotic scaling in the broken phase **Conformal phase = limit** $T \to 0$ of QGP Phase

 $N_t = 6$

 N_s : 12 (), 20 (), 24 ()

 $N_t = 12$

Thermal transition for $N_f = 8$

$$T_c = \frac{1}{a(\beta_c)N_t}$$

Satisfies asymptotic scaling within 2 %

$$\frac{6}{12} = \frac{a(\beta_c, N_t = 12)}{a(\beta_c, N_t = 6)}$$

PHASE DIAGRAM OF QCD IN THE T, N_f PLANE

Braun, Gies 2007

 $N_f = 8$ new point on the critical line

 $N_f = 12$, if in the broken phase, might well have an extremely low critical temperature. This will make very difficult to distinguish a conformal phase from a quark gluon plasma phase.

RUNNING IN THE COLD - WALKING IN THE HEAT. The running coupling from *quenched* QCD.

Kaczmarek e Zantow 2005

SUMMARY

- $N_f = 8$ in the broken phase
- $N_f = 12$
 - Strong indications of chiral symmetry restoration.
 - Chiral symmetry seems to persist till $g_L = 0$: No sign of further phase transitions.
 - Consistent with the realization of conformal scenario
 - However : issue not settled yet. Many talks addressing this.

 $N_f = 12$, if in the broken phase, might well have an extremely low critical temperature. This most likely makes the quark gluon plasma phase very similar to a conformal phase.

 N_f^c = 12 (3) World Average. How crucial it is to push the error to zero?