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(This is a preliminary report of work in progress with Richard Woloshyn.)
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Recall that the standard SU(2)-Higgs model, with one scalar doublet,
has two regions of parameter space that are analytically connected.
(No gauge-invariant vev, no broken symmetry.)
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This phase diagram is easily mapped out by monitoring a quantity such as the

gauge-invariant link ≡
〈

Φ†(x)Uµ(x)Φ(x + µ) + h.c.

〉
.
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Notice the effect of additional scalar doublets.

(These are identical doublets interacting only
through gauge couplings.)
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Two-doublet models have been studied extensively by many authors
using perturbative methods (continuum).

We want to understand the symmetries and symmetry breakings
from a nonperturbative method (lattice).
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We consider an action that maintains a discrete symmetry for each scalar doublet:

S =
β

2

∑
x

4∑
µ=1

4∑
ν=1

[
1− 1

2
ReTrUµ(x)Uν(x + µ)U †µ(x + ν)U †ν(x)

]

−
∑
x

2∑
n=1

4∑
µ=1

κn
[
Φ†n(x)Uµ(x)Φn(x + µ) + h.c.

]
+
∑
x

2∑
n=1

[
Φ†n(x)Φn(x) + λn

(
Φ†n(x)Φn(x)− 1

)2
]

+
∑
x

[
ξΦ†1(x)Φ1(x)Φ†2(x)Φ2(x) + ζ

∣∣∣Φ†1(x)Φ2(x)
∣∣∣2]

It is sometimes useful to change from doublet notation, Φn(x), to matrix notation,

ϕn(x) =

(
iτ2Φ∗n(x) Φn(x)

)
Heatbath algorithms, with additional accept-reject steps where necessary, are used for
gauge updates and for scalar updates.
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SU(2) gauge invariance:

Φ1(x)→ R(x)Φ1(x), Φ2(x)→ R(x)Φ2(x), and Uµ(x)→ R(x)Uµ(x)R†(x+µ)

SU(2) global symmetry for scalar doublet #1:

ϕ1(x)→ ϕ1(x)R(1)

SU(2) global symmetry for scalar doublet #2:

ϕ2(x)→ ϕ2(x)R(2)

In the special case where the action and all constraints are functions of Φ†1Φ1 + Φ†2Φ2

rather than being functions of Φ†1Φ1 and Φ†2Φ2 separately, we also have a global U(2)
symmetry, (

Φ1(x)
Φ2(x)

)
→ Rflavor

(
Φ1(x)
Φ2(x)

)
but this is partially redundant. Only a U(1)×U(1) global symmetry is new.
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To test for spontaneous symmetry breaking of SU(2)×SU(2),
add a small explicit breaking term:

δS =
η

2
Tr
[
ϕ†1(x)ϕ2(x)

]
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An order parameter after extrapolation to η = 0.
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summary

We have mapped out the phase diagram of a two-doublet Higgs model through lattice
simulations.

The simulations provide evidence of spontaneously broken global symmetries (in contrast
to the one-doublet Higgs model).

The lattice formulation is gauge invariant, and the gauge symmetry is not broken in this
formulation (which is also true in the one-doublet lattice Higgs model).


