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1.  Overview of three coordinated projects of our LHC program
                -  SU(3) color, fundamental rep, staggered Nf=4-20
                -  2-index symmetric representation with SU(3) color (not discussed)
                -  Running coupling   (talk by Kieran Holland)

2. Chiral symmetry breaking
            - Finite volume p-regime, delta-regime, epsilon-regime 
                - Goldstone spectra and staggered CHPT
                - New results at Nf=4,8,9,12 will be presented
3.  Inside and above the conformal window
            - Zero momentum dynamics at Nf=16,20         

4.  Conclusions and Outlook 
            - Prospects for model building ?               
                - Can lattice studies be transformational ?
                - Is peta-scale to exa scale power needed for ?

Outline



Talk is base on the published results: 

1.  Topology and higher dimensional representations.
          Published in JHEP 0908:084,2009. 
          e-Print: arXiv:0905.3586 [hep-lat]

2.  Nearly conformal gauge theories in finite volume.
           Phys.Lett.B681:353-361,2009. 
           e-Print: arXiv:0907.4562 [hep-lat]

3.  Chiral properties of SU(3) sextet fermions
           e-Print: arXiv:0908.2466 [hep-lat]

4.  Chiral  symmetry breaking in nearly conformal gauge theories
           e-Print: arXiv:0911.xxx [hep-lat]  to be posted next week

and some unpublished analysis



Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector
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Phase diagram of TWO projects as nearly conformal 
gauge theories in flavor-color space ?

Project 1:
Fundamental rep Nf=4,8-12,14,16,20 
flavors and three colors with 
staggered fermions. 

Project 2:
2-index symmetric rep with Nf=2 
flavors and three colors with overlap 
chiral fermions              staggered 
(will not be discussed here, but 
quenched results are published)

Our unified GPU/MPI code ready

near the conformal window (walking):  
Higgs phenomenology with nearly 
vanishing beta function 

Phenomenology goal: nearly conformal gauge 
theory with minimal realization of the 
composite Higgs mechanism 
consistent with ElectroWeak Precision Data ? 

They are fun lattice field theories anyway!

Unparticle world
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Project 3: Important to complement the search for chirally broken 
phase with running coupling and beta function

Talk by Kieran Holland 

like QCD far below 
conformal window

How to reach walking scale 
which is required by 
ElectroWeak Precision Tests?

would be Banks-Zaks FP

Fundamental rep with 
Nf=4,8,9 should be similar

Nf=10,11,12 under continued 
study 

Nf=12 controversial

Is 2-index symmetric rep 
nearly conformal?

DeGrand et al. (conformal?)
our staggered code is running
testing our tool set

important in model building

Nf=16 inside 
weak coupling



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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Theory space and conformal windows

Project 2: 2-index 
symmetric rep (sextet)
N=3 colors and Nf=2 flavors
dynamical overlap

Banks-Zaks Fixed Point

BZ FP

We only run with N=3 colors 

Project 1: in fundamental rep 
with N=3 colors with 
Nf=4,8,9,10,11,12,14,16,20 flavors
dynamical staggered

Predictions from Schwinger-

Dyson approximations   
not reliable

adjoint rep

2-index antisymmetric

Running on CPU clusters
and GPU clusters
Very demanding
Unified code 

Important early work by Bardeen, 
Leung, Love on Schwinger-Dyson    



GPU Hardware
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Flops: single 1 Tflop, double 80 Gflops

Memory 4GB, Bandwidth 102 GBs-1

230 Watts, $1200
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Goldstone dynamics is different in each regime 
We study            -regimes (RMT) 
and p-regime (probing chiral loops)
complement each other 
interpretation of rotator levels in          limit:

Chiral regimes to identify in theory space:

δ  and ε

mq → 0

Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 1: The potential V (φ) for an unbroken
symmetry.

Figure 2: The potential V (φ) for a sponta-
neously broken symmetry. The arrow indi-
cates a possible choice of vacuum.

Since QCD describes a very large collection of phenomena at high energies extremely well, there
must thus be another way to include this symmetry in the real world. This was found by Goldstone [28]
and is often called the Nambu-Goldstone mode, while a direct realization is referred to as the Wigner
or Wigner-Eckart mode. Nambu’s papers for this are Ref. [29].

Let us first describe this mode for a simpler model. A complex scalar field with Lagrangian

L = ∂µφ∗∂µφ − V (φ) . (22)

We first look at a potential of the type shown in Fig. 1 with a standard form of the type

V (φ) = µ2φ∗φ + λ (φ∗φ)2 . (23)

We choose here λ > 0 to have a stable theory. This Lagrangian has a U(1) symmetry under the
phasetransformation

φ → e−iαφ . (24)

This transformation is rotation around the z-axis in Figs. 1 and 2.
If we choose µ2 > 0, the potential V (φ) has the form shown in Fig. 1, where the horizontal axes

are the real and imaginary part of φ while the vertical axis are V (φ). In order to have a full theory
we have to determine first the vacuum, or lowest energy state, of the system. The contribution of the
kinetic term, ∂µφ∗∂µ, is minimized by a constant and spatially homogenous field φ0. From the form of
the potential, we can see that the total energy is thus minimized for a value of φ0 = 0. I.e. 〈φ〉 = 0.
Excitations around the vacuum, which give the particle spectrum, have only massive modes with a mass
m = µ. Things to remark here: The vacuum is unique, i.e. there is only one possible choice of 〈φ〉.
There are two massive real modes in the spectrum corresponding to the real and imaginary part of φ.
The interactions of these particles are simply the four boson vertex directly present in the Lagrangian
(22). This mode corresponds to the most standard realization of symmetries like the realization of
rotation symmetries in standard quantum mechanics. States thus fall in multiplets of the symmetry
group and amplitudes obey the relations of the Wigner-Eckart theorem.

However, when we choose the potential with the same form but take µ2 < 0 the potential looks
differently as depicted in Fig. 2. The potential is still invariant under the symmetry (24), but now we
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Figure 3: The potential V (φ) for a spontaneously broken symmetry in the presence of a
small explicit symmetry breaking term. The arrow indicates now the only possible choice of
vacuum.

The linear term in η can be removed by a small additional shift. This happened because the lowest

energy state is slightly shifted compared to the value v =
√

−µ2/λ. But more importantly, when we
expand the exponentials, we now find that the π(x)-field has gotten a small mass, small compared to
the mass of the η-field, and no longer has only derivative interactions. The π mass

m2
π ≈

2
√

2β

v
. (33)

is small and can be expanded in the small symmetry breaking parameter β. The particle corresponding
to it, is now called a pseudo-Goldstone boson. As long as the explicit symmetry breaking is small, we
can still use Goldstone’s theorem as a first approximation and then add the corrections systematically.
This is precisely what we do in ChPT when the light quark masses are explicitly included.

2.5 Spontaneous symmetry breaking in QCD

We already argued in Sect. 2.3 that the chiral symmetry of QCD cannot be realized in nature since
the predicted parity doublets do not occur. We thus expect the chiral symmetry to be realized in the
Nambu-Goldstone mode. What theoretical evidence do we have directly for this?

Most of the remainder of this paper is about the Goldstone bosons from the spontaneous chiral
symmetry breakdown and their properties. In this way, all those properties are strong indications that
the picture described below is correct. However let us first give the full theoretical arguments.

• It has been proven that the chiral symmetry is spontaneously broken in the limit of a large number
of colours and assuming confinement [31].

• The vector symmetries remain unbroken in a vectorlike symmetry as QCD [32].

• Assuming confinement, the anomalies in the effective low-energy theory must match those for the
underlying QCD theory. For two flavours, this can be done but not for three or more flavours.
We thus need spontaneous symmetry breaking in order to have a correct anomaly matching for
three or more flavours [33].

We thus believe that the flavour symmetry SU(nF )× SU(nF ) is spontaneously broken down to the
diagonal subgroup SU(nF )V = SU(nF )L+R also for the realistic case of three flavours. There are eight
broken generators and we thus expect eight Goldstone boson degrees of freedom. If we look at the
hadron spectrum there are eight natural candidates for this. The three pions, π0, π±, four kaons, K±,

11

mq = 0

Veff: chiral condensate in flavor space
arbitrary orientation of condensate

mq ≠ 0

tilted condensate

Not to misidentify rotator gaps
as evidence of chirally symmetric 
phase !!



One-loop expansion in our analysis of p-regime:

chiral p-regime
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by

M2
π = M2

[
1 − M2

8π2Nf F2 ln
(
Λ3

M

)]
, (11)

Fπ = F
[
1 +

Nf M2

16π2F2 ln
(
Λ4

M

)]
, (12)

where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
per unit flavor [53]. It is important to note that the one-loop cor-
rection to the pion coupling constant Fπ is enhanced by a factor
N2

f compared to M2
π. The chiral expansion for large Nf will

break down for Fπ much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the

p-regime by

Mπ(Ls, η) = Mπ
[
1 +

1
2Nf

M2

16π2F2 · g̃1(λ, η)
]
, (13)

Fπ(Ls, η) = Fπ
[
1 − Nf

2
M2

16π2F2 · g̃1(λ, η)
]
, (14)

where g̃1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of g̃1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.

2.3. δ-regime and ε-regime
At fixed Ls and in cylindrical geometry Lt/Ls # 1, a

crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs $ 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs $ 1, the
system will be driven into the ε-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and ε-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The ε-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the ε-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the ε-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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For arbitrary Nf , in the continuum and in infinite volume,
the one-loop chiral corrections to Mπ and Fπ of the degenerate
Goldstone pions are given by
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π = M2

[
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(
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)]
, (11)

Fπ = F
[
1 +

Nf M2

16π2F2 ln
(
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)]
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where M2 = 2B · mq and F, B,Λ3,Λ4 are four fundamental pa-
rameters of the chiral Lagrangian and the small quark mass mq
explicitly breaks the symmetry [52]. The chiral parameters F, B
appear in the leading part of the Lagrangian in Eq. (2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR re-
lation Σcond = BF2 in the mq → 0 limit for the chiral condensate
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rection to the pion coupling constant Fπ is enhanced by a factor
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where g̃1(λ, η) describes the finite volume corrections with λ =
M · Ls and aspect ratio η = Lt/Ls. The form of g̃1(λ, η) is a
complicated infinite sum which contains Bessel functions and
requires numerical evaluation [51]. Eqs. (11-14) provide the
foundation of the p-regime fits in our simulations.
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crossover occurs from the p-regime to the δ-regime when mq →
0, as shown in Fig. 1. The dynamics is dominated by the rotator
states of the chiral condensate in this limit [54] which is charac-
terized by the conditions FLs > 1 and MLs $ 1. The densely
spaced rotator spectrum scales with gaps of the order ∼ 1/F2L3

s ,
and at mq = 0 the chiral symmetry is apparently restored. How-
ever, the rotator spectrum, even at mq = 0 in the finite volume,
will signal that the infinite system is in the chirally broken phase
for the particular parameter set of the Lagrangian. This is of-
ten misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at
fixed Ls in the mq → 0 limit is not a signal for chiral symmetry
restoration of the infinite system [36].

If Lt ∼ Ls under the conditions FLs > 1 and MLs $ 1, the
system will be driven into the ε-regime which can be viewed
as the high temperature limit of the δ-regime quantum rotator.
Although the δ-regime and ε-regime have an overlapping re-
gion, there is an important difference in their dynamics. In the
δ-regime of the quantum rotator, the zero spatial momentum
of the pion field U(x) dominates with time-dependent quantum
dynamics. The ε-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.
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Figure 1: Schematic plot of the regions in which the three low energy chi-
ral expansions are valid. The vertical axis shows the finite temperature scale
(euclidean time in the path integral) which probes the rotator dynamics of the
δ-regime and the ε-regime. The first two low lying rotator levels are also shown
on the vertical axis for the simple case of N f = 2. The fourfold degenerate
lowest rotator excitation at mq = 0 will split into an isotriplet state (lowest en-
ergy level), which evolves into the p-regime pion as mq increases, and into an
isosinglet state representing a multi-pion state in the p-regime. Higher rotator
excitations have similar interpretations.
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Figure 2: The crossover from the p-regime to the δ-regime is shown for the π
and πi5 states at N f = 4.

We report simulation results of all three regimes in the chi-
rally broken phase of the technicolor models we investigate.
The analysis of the three regimes complement each other and
provide cross-checks for the correct identification of the phases.
First, we will probe Eqs.(11-14) in the p-regime, and follow
with the study of Dirac spectra and RMT eigenvalue distribu-
tions in the ε-regime. The spectrum in the δ-regime is used as a
signal to monitor p-regime spectra as mq decreases. Fig. 2 is an
illustrative example for this crossover in our simulations.

3. Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in
our simulations. The link variables in the staggered fermion
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Note Nf scaling!

λ = MLs

We use staggered action with stout smearing
Taste breaking included in staggered perturbation  theory!
structure changing as Nf grows

Leutwyer, Gasser, P. Hasenfratz, 
Niedermayer, Hansen, Neuberger, ...



fundamental SU(3) color representation using finite volume
analysis. The staggered fermions are deployed with a special
6-step exponential (stout) smearing procedure [47] in the lattice
action to reduce well-known cutoff effects with taste breaking
in the Goldstone spectrum. The presence of taste breaking re-
quires a brief explanation of how staggered chiral perturbation
theory is applied in our analysis. The important work of Lee,
Sharpe, Aubin and Bernard [48–50] is closely followed in the
discussion.

2.1. Staggered chiral perturbation theory

Starting with the Nf = 4 example [48], the spontaneous
breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to
15 Goldstone modes, described by fields φi. These can be orga-
nized into an S U(4) matrix

Σ(x) = exp
(
i
φ√
2F

)
, φ =

15∑

a=1

φaTa , (1)

where F is the Goldstone decay constant in the chiral limit and
the normalization Ta =

{
ξµ, iξµ5, iξµν, ξ5

}
is used for the flavor

generators. The leading order chiral Lagrangian is given by

L(4)
χ =

F2

4
Tr(∂µΣ∂µΣ†) −

1
2

B mq F2Tr(Σ +Σ †) , (2)

with the fundamental parameters F and B measured on the tech-
nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-
panding the chiral Lagrangian in powers of φ one finds 15 de-
generate pions with masses given by

M2
π = 2Bmq

[
1 + O(mq/ΛTC)

]
. (3)

The leading order term is the tree-level result, while the cor-
rections come from loop diagrams and from higher order terms
in the chiral Lagrangian. The addition of a2L(6)

χ breaks chiral
symmetry and lifts the degeneracy of the Goldstone pions. Cor-
rection terms are added to Eq. (3) which becomes

M2
π = C(Ta) ·a2Λ4

TC+2Bmq
[
1 + O(mq/ΛTC) + O(a2Λ2

TC)
]

(4)

where the representation dependent C(Ta) is a constant of order
unity. Contributions proportional to a2 are due to L(6)

χ , and lead
to massive Goldstone pions even in the mq → 0 chiral limit.
The only exception is the pion with flavor ξ5 which remains
massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)
χ without deriva-

tives, defining the potentialV(6)
χ , is invariant under flavor S O(4)

transformations and gives rise to the a2 term in M2
π. Terms in

L(6)
χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a2m and a4. The taste breaking potential is given by

−V(6)
χ = C1Tr(ξ5Σξ5Σ†)

+C2
1
2

[
Tr(Σ2) − Tr(ξ5Σξ5Σ) + h.c.

]

+C3
1
2

∑

ν

[
Tr(ξνΣξνΣ) + h.c.

]

+C4
1
2

∑

ν

[
Tr(ξν5Σξ5νΣ) + h.c.

]

+C5
1
2

∑

ν

[
Tr(ξνΣξνΣ†) − Tr(ξν5Σξ5νΣ†)

]

+C6

∑

µ<ν

Tr(ξµνΣξνµΣ†) . (5)

The six unknown coefficients Ci are all of size Λ6
TC.

In the continuum, the pions form a 15-plet of flavor S U(4),
and are degenerate. On the lattice, states are classified by the
symmetries of the transfer matrix and the Goldstone pions fall
into 7 irreducible representations: four 3-dimensional represen-
tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional
representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion
masses are given by

Mπ(Ta)2 = 2Bmq + a2∆(Ta) + O(a2mq) + O(a4) , (6)

with ∆(Ta) ∼ Λ4
TC arising fromV(6)

χ . SinceV(6)
χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)

∆(ξµ) =
8

F2 (C1 +C2 +C3 + 3C4 +C5 + 3C6) , (8)

∆(ξµ5) =
8

F2 (C1 +C2 + 3C3 +C4 −C5 + 3C6) , (9)

∆(ξµν) =
8

F2 (2C3 + 2C4 + 4C6) . (10)

In the chiral limit at finite lattice spacing the lattice irreducible
representations with flavors ξi and ξ4 are degenerate, those with
flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-
erate as well. No predictions can be made for the ordering or
splittings of the mass shifts. We also cannot predict the sign
of the shifts, although our simulations indicate that they are
all positive with the exponentially smeared staggered action we
use. This makes the existence of an Aoki phase [48] unlikely.

The method of [48] has been generalized in a nontrivial way
to the Nf > 4 case [49, 50] which we adopted in our calcula-
tions with help from Bernard and Sharpe. The procedure cannot
be reviewed here but it will be used in the interpretation of our
Nf = 8 simulations.

2.2. Finite volume analysis in the p-regime
Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra
and correlators. For a lattice size L3

s × Lt in euclidean space and
in the limit Lt & Ls, the conditions FπLs > 1 and MπLs > 1
select the the p-regime, in analogy with low momentum count-
ing [51, 52].
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fundamental SU(3) color representation using finite volume
analysis. The staggered fermions are deployed with a special
6-step exponential (stout) smearing procedure [46] in the lattice
action to reduce well-known cutoff effects with taste breaking
in the Goldstone spectrum. The presence of taste breaking re-
quires a brief explanation of how staggered chiral perturbation
theory is applied in our analysis. The ground breaking work of
Lee, Sharpe, Aubin and Bernard [47–49] is closely followed in
the discussion.

2.1. Staggered chiral perturbation theory

Starting with the Nf = 4 example [47], the spontaneous
breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to
15 Goldstone modes, described by fields φi. These can be orga-
nized into an S U(4) matrix

Σ(x) = exp
(
i
φ√
2F

)
, φ =

15∑

a=1

φaTa , (1)

where F is the Goldstone decay constant in the chiral limit and
the normalization Ta =

{
ξµ, iξµ5, iξµν, ξ5

}
is used for the flavor

generators. The leading order chiral Lagrangian is given by

L(4)
χ =

F2

4
Tr(∂µΣ∂µΣ†) −

1
2

B mq F2Tr(Σ +Σ †) , (2)

with the fundamental parameters F and B measured on the tech-
nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-
panding the chiral Lagrangian in powers of φ one finds 15 de-
generate pions with masses given by

M2
π = 2Bmq

[
1 + O(mq/ΛTC)

]
. (3)

The leading order term is the tree-level result, while the cor-
rections come from loop diagrams and from higher order terms
in the chiral Lagrangian. The addition of a2L(6)

χ breaks chiral
symmetry and lifts the degeneracy of the Goldstone pions. Cor-
rection terms are added to Eq. (3) which becomes

M2
π = C(Ta) ·a2Λ4

TC+2Bmq
[
1 + O(mq/ΛTC) + O(a2Λ2

TC)
]

(4)

where the representation dependent C(Ta) is a constant of order
unity. Contributions proportional to a2 are due to L(6)

χ , and lead
to massive Goldstone pions even in the mq → 0 chiral limit.
The only exception is the pion with flavor ξ5 which remains
massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)
χ without deriva-

tives, defining the potentialV(6)
χ , is invariant under flavor S O(4)

transformations and gives rise to the a2 term in M2
π. Terms in

L(6)
χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a2m and a4. The taste breaking potential is given by

−V(6)
χ = C1Tr(ξ5Σξ5Σ†)

+C2
1
2

[
Tr(Σ2) − Tr(ξ5Σξ5Σ) + h.c.

]

+C3
1
2

∑

ν

[
Tr(ξνΣξνΣ) + h.c.

]

+C4
1
2

∑

ν

[
Tr(ξν5Σξ5νΣ) + h.c.

]

+C5
1
2

∑

ν

[
Tr(ξνΣξνΣ†) − Tr(ξν5Σξ5νΣ†)

]

+C6

∑

µ<ν

Tr(ξµνΣξνµΣ†) . (5)

The six unknown coefficients Ci are all of size Λ6
TC.

In the continuum, the pions form a 15-plet of flavor S U(4),
and are degenerate. On the lattice, states are classified by the
symmetries of the transfer matrix and the Goldstone pions fall
into 7 irreducible representations: four 3-dimensional represen-
tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional
representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion
masses are given by

Mπ(Ta)2 = 2Bmq + a2∆(Ta) + O(a2mq) + O(a4) , (6)

with ∆(Ta) ∼ Λ4
TC arising fromV(6)

χ . SinceV(6)
χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)

∆(ξµ) =
16
f 2 (C1 +C2 +C3 + 3C4 +C5 + 3C6) , (8)

∆(ξµ5) =
16
f 2 (C1 +C2 + 3C3 +C4 −C5 + 3C6) , (9)

∆(ξµν) =
16
f 2 (2C3 + 2C4 + 4C6) . (10)

In the chiral limit at finite lattice spacing the lattice irreducible
representations with flavors ξi and ξ4 are degenerate, those with
flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-
erate as well. No predictions can be made for the ordering or
splittings of the mass shifts. We also cannot predict the sign
of the shifts, although our simulations indicate that they are
all positive with the exponentially smeared staggered action we
use. This makes the existence of an Aoki phase [47] unlikely.

The method of [47] has been generalized in a nontrivial way
to the Nf > 4 case [48, 49] which we adopted in our calcula-
tions with help from Bernard and Sharpe. The procedure cannot
be reviewed here but it will be used in the interpretation of our
Nf = 8 simulations.

2.2. Finite volume analysis in the p-regime
Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra
and correlators. For a lattice size L3

s × Lt in euclidean space and
in the limit Lt & Ls, the conditions FπLs > 1 and MπLs > 1
select the the p-regime, in analogy with low momentum count-
ing [50, 51].
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fundamental SU(3) color representation using finite volume
analysis. The staggered fermions are deployed with a special
6-step exponential (stout) smearing procedure [46] in the lattice
action to reduce well-known cutoff effects with taste breaking
in the Goldstone spectrum. The presence of taste breaking re-
quires a brief explanation of how staggered chiral perturbation
theory is applied in our analysis. The ground breaking work of
Lee, Sharpe, Aubin and Bernard [47–49] is closely followed in
the discussion.

2.1. Staggered chiral perturbation theory

Starting with the Nf = 4 example [47], the spontaneous
breakdown of S U(4)L × S U(4)R to vector S U(4) gives rise to
15 Goldstone modes, described by fields φi. These can be orga-
nized into an S U(4) matrix

Σ(x) = exp
(
i
φ√
2F

)
, φ =

15∑

a=1

φaTa , (1)

where F is the Goldstone decay constant in the chiral limit and
the normalization Ta =

{
ξµ, iξµ5, iξµν, ξ5

}
is used for the flavor

generators. The leading order chiral Lagrangian is given by

L(4)
χ =

F2

4
Tr(∂µΣ∂µΣ†) −

1
2

B mq F2Tr(Σ +Σ †) , (2)

with the fundamental parameters F and B measured on the tech-
nicolor scale ΛTC which replaced ΛQCD in the new theory. Ex-
panding the chiral Lagrangian in powers of φ one finds 15 de-
generate pions with masses given by

M2
π = 2Bmq

[
1 + O(mq/ΛTC)

]
. (3)

The leading order term is the tree-level result, while the cor-
rections come from loop diagrams and from higher order terms
in the chiral Lagrangian. The addition of a2L(6)

χ breaks chiral
symmetry and lifts the degeneracy of the Goldstone pions. Cor-
rection terms are added to Eq. (3) which becomes

M2
π = C(Ta) ·a2Λ4

TC+2Bmq
[
1 + O(mq/ΛTC) + O(a2Λ2

TC)
]

(4)

where the representation dependent C(Ta) is a constant of order
unity. Contributions proportional to a2 are due to L(6)

χ , and lead
to massive Goldstone pions even in the mq → 0 chiral limit.
The only exception is the pion with flavor ξ5 which remains
massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)
χ without deriva-

tives, defining the potentialV(6)
χ , is invariant under flavor S O(4)

transformations and gives rise to the a2 term in M2
π. Terms in

L(6)
χ involving derivatives break S O(4) further down to the lat-

tice symmetry group and give rise to non-leading terms propor-

tional to a2m and a4. The taste breaking potential is given by

−V(6)
χ = C1Tr(ξ5Σξ5Σ†)

+C2
1
2

[
Tr(Σ2) − Tr(ξ5Σξ5Σ) + h.c.

]

+C3
1
2

∑

ν

[
Tr(ξνΣξνΣ) + h.c.

]

+C4
1
2

∑

ν

[
Tr(ξν5Σξ5νΣ) + h.c.

]

+C5
1
2

∑

ν

[
Tr(ξνΣξνΣ†) − Tr(ξν5Σξ5νΣ†)

]

+C6

∑

µ<ν

Tr(ξµνΣξνµΣ†) . (5)

The six unknown coefficients Ci are all of size Λ6
TC.

In the continuum, the pions form a 15-plet of flavor S U(4),
and are degenerate. On the lattice, states are classified by the
symmetries of the transfer matrix and the Goldstone pions fall
into 7 irreducible representations: four 3-dimensional represen-
tations with flavors ξi, ξi5, ξi j and ξi4, and three 1-dimensional
representations with flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion
masses are given by

Mπ(Ta)2 = 2Bmq + a2∆(Ta) + O(a2mq) + O(a4) , (6)

with ∆(Ta) ∼ Λ4
TC arising fromV(6)

χ . SinceV(6)
χ respects flavor

S O(4), the 15 Goldstone pions fall into S O(4) representations:

∆(ξ5) = 0 , (7)

∆(ξµ) =
16
f 2 (C1 +C2 +C3 + 3C4 +C5 + 3C6) , (8)

∆(ξµ5) =
16
f 2 (C1 +C2 + 3C3 +C4 −C5 + 3C6) , (9)

∆(ξµν) =
16
f 2 (2C3 + 2C4 + 4C6) . (10)

In the chiral limit at finite lattice spacing the lattice irreducible
representations with flavors ξi and ξ4 are degenerate, those with
flavors ξi5 and ξ45, and those with flavors ξi j and ξi4 are degen-
erate as well. No predictions can be made for the ordering or
splittings of the mass shifts. We also cannot predict the sign
of the shifts, although our simulations indicate that they are
all positive with the exponentially smeared staggered action we
use. This makes the existence of an Aoki phase [47] unlikely.

The method of [47] has been generalized in a nontrivial way
to the Nf > 4 case [48, 49] which we adopted in our calcula-
tions with help from Bernard and Sharpe. The procedure cannot
be reviewed here but it will be used in the interpretation of our
Nf = 8 simulations.

2.2. Finite volume analysis in the p-regime
Three different regimes can be selected in simulations to

identify the chirally broken phase from finite volume spectra
and correlators. For a lattice size L3

s × Lt in euclidean space and
in the limit Lt & Ls, the conditions FπLs > 1 and MπLs > 1
select the the p-regime, in analogy with low momentum count-
ing [50, 51].
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Nf=4 NLO chiral analysis in p-regime:
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We take the the unrooted, mass-degenerate case, with NF staggered fields.
(So the “4+4” case is NF = 2.) In the taste-vector (V ) channel, there are
NF − 1 degenerate pions with mass mπV

, and a single η′

V with mass

m2
η′

V
= m2

πV
+ NF a2δ′V , (1)

The taste-axial-vector (A) case is just V → A. Similarly, in the taste-singlet
channel, we have NF − 1 degenerate pions with mass mπI

, and a single η′

I

with mass

m2
η′

I
= m2

πI
+ NF

4m2
0

3
, (2)

where I use the definition of m0 given in the Lagrangian of eq. (17) of Ref. [1].
Then eq. (75) Ref. [1] becomes

(m1−loop

π+
5

)2

2m
= µ

{

1 +
1

16π2f 2

(

2

NF

[

$(m2
η′

V
) − $(m2

πV
)
]

+
2

NF

[

$(m2
η′

A
) − $(m2

πA
)
]

+
1

2NF

$(m2
πI

)

)

+
16µ

f 2
(2L8 − L5) (2m) +

32µ

f 2
(2L6 − L4) (4NFm) + a2C

}

. (3)

The analytic 2L6−L4 term gives sea-quark dependence (coming from a trace
over the mass matrix), and the 4NF counts the number of sea quarks. Of
course, all LECs also have hidden NF dependence. The rooted 3-flavor case,
(eq. (75) or (76) of Ref. [1] in the degenerate limit) can be obtained by
NF → 3/4, where the factor of 1/4 is just the replica trick for rooting.

For fπ, eq. (27) in Ref. [2] becomes

f 1−loop

π+
5

= f

{

1 +
1

16π2f 2

[

−4NF

(

1

16

∑

B

$(m2
πB

)

)

−

2

NF

(

$(m2
η′

V
) − $(m2

πV
)

)

−

2

NF

(

$(m2
η′

A
) − $(m2

πA
)

)

+
16µ

f 2
(4NFm) L4 +

8µ

f 2
(2m)L5 + a2F

}

, (4)

where the 1
16

∑

B is the average over tastes. This term comes from a mixed
meson (valence-sea) loop, and the 4NF factor in front again just counts the

1

Nf=8 staggered NLO 
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Nf=8 NLO chiral analysis in p-regime:
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Nf=9 NLO chiral analysis in p-regime:
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Testing rooting (nothing unusual happens)
(useful for rooted sextet code, complete and running with Nf=2) 
Provides additional independent info on chiral condensate trend



Nf=12 NLO chiral analysis in p-regime:
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Similar pattern to Nf=8 case!
more work is needed



Some features of Nf=4,8,9,12 runs:

Nearly degenerate Goldstone spectra
stout action performs very well

Chiral condensate measured in F unit
is enhanced as Nf increases
Nf=4    B/F = 53(6)    
Nf=8    B/F = 157(17)
Nf=9    B/F = 125(19)
Nf=12   B/F = 209(64)
large errors, preliminary,limited to 32^4!

rho - A1 splitting
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Random Matrix Theory tests in epsilon regime:
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Figure 4: From simulations at N f = 4 the first row shows the approach to quartet degeneracy of the spectrum as β increases. The second row shows the integrated
distribution of the two lowest quartets averaged. The solid line compares this procedure to RMT with N f = 4.

of the lowest eigenvalues are identical to those of random ma-
trix theory, a theory of large matrices obeying certain symme-
tries [57–59]. To connect with RMT, the eigenvalues and quark
mass are rescaled as z = λΣcondV and µ = mqΣcondV , and the
eigenvalue distributions also depend on the topological charge
ν and the number of quark flavors Nf . RMT is a very useful tool
to calculate analytically all of the eigenvalue distributions. The
eigenvalue distributions in various topological sectors are mea-
sured via lattice simulations, and via comparison with RMT, the
value of the condensate Σcond can be extracted.

After we generate large thermalized ensembles, we calculate
the lowest twenty eigenvalues of the Dirac operator using the
PRIMME package [60]. In the continuum limit, the staggered
eigenvalues form degenerate quartets, with restored taste sym-
metry. The first row of Fig. 4 shows the change in the eigen-
value structure for Nf = 4 as the coupling constant is varied. At
β = 3.6 grouping into quartets is not seen, the pions are notice-
ably split, and staggered perturbation theory is just beginning to
kick in. At β = 3.8 doublet pairing appears and at β = 4.0 the
quartets are nearly degenerate. The Dirac spectrum is collapsed
as required by the Banks-Casher relation. In the second row we
show the integrated distributions of the two lowest eigenvalue
quartet averages,

∫ λ

0
pk(λ′)dλ′, k = 1, 2 (15)

which is only justified close to quartet degeneracy. All low
eigenvalues are selected with zero topology. To compare with
RMT, we vary µ = mqΣcondV until we satisfy

〈λ1〉sim

m
=
〈z1〉RMT

µ
, (16)

where 〈λ1〉sim is the lowest quartet average from simulations and

the RMT average 〈z〉RMT depends implicitly on µ and Nf . With
this optimal value of µ, we can predict the shapes of pk(λ) and
their integrated distributions, and compare to the simulations.
The agreement with the two lowest integrated RMT eigenvalue
shapes is excellent for the larger β values.
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Figure 5: The solid lines compare the integrated distribution of the two lowest
quartet averages to RMT predictions with N f = 8.

The main qualitative features of the RMT spectrum are very
similar in our Nf = 8 simulations as shown in Fig. 5. One
marked quantitative difference is a noticeable slowdown in re-
sponse to change in the coupling constant. As β grows the
recovery of the quartet degeneracy is considerably delayed in
comparison with the onset of p-regime Goldstone dynamics.
Overall, for the Nf = 4, 8 models we find consistency between
the p-regime analysis and the RMT tests. Earlier, using Asqtad
fermions at a particular β value, we found agreement with RMT
even at Nf = 12 which indicated a chirally broken phase [20].
Strong taste breaking with Asqtad fermion leaves the quartet
averaging in question and the bulk pronounced crossover of the
Asqtad action as β grows is also an issue. Currently we are
investigating the RMT picture for Nf = 9, 10, 11, 12 with our
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Figure 4: From simulations at N f = 4 the first row shows the approach to quartet degeneracy of the spectrum as β increases. The second row shows the integrated
distribution of the two lowest quartets averaged. The solid line compares this procedure to RMT with N f = 4.

of the lowest eigenvalues are identical to those of random ma-
trix theory, a theory of large matrices obeying certain symme-
tries [57–59]. To connect with RMT, the eigenvalues and quark
mass are rescaled as z = λΣcondV and µ = mqΣcondV , and the
eigenvalue distributions also depend on the topological charge
ν and the number of quark flavors Nf . RMT is a very useful tool
to calculate analytically all of the eigenvalue distributions. The
eigenvalue distributions in various topological sectors are mea-
sured via lattice simulations, and via comparison with RMT, the
value of the condensate Σcond can be extracted.

After we generate large thermalized ensembles, we calculate
the lowest twenty eigenvalues of the Dirac operator using the
PRIMME package [60]. In the continuum limit, the staggered
eigenvalues form degenerate quartets, with restored taste sym-
metry. The first row of Fig. 4 shows the change in the eigen-
value structure for Nf = 4 as the coupling constant is varied. At
β = 3.6 grouping into quartets is not seen, the pions are notice-
ably split, and staggered perturbation theory is just beginning to
kick in. At β = 3.8 doublet pairing appears and at β = 4.0 the
quartets are nearly degenerate. The Dirac spectrum is collapsed
as required by the Banks-Casher relation. In the second row we
show the integrated distributions of the two lowest eigenvalue
quartet averages,

∫ λ

0
pk(λ′)dλ′, k = 1, 2 (15)

which is only justified close to quartet degeneracy. All low
eigenvalues are selected with zero topology. To compare with
RMT, we vary µ = mqΣcondV until we satisfy

〈λ1〉sim

m
=
〈z1〉RMT

µ
, (16)

where 〈λ1〉sim is the lowest quartet average from simulations and

the RMT average 〈z〉RMT depends implicitly on µ and Nf . With
this optimal value of µ, we can predict the shapes of pk(λ) and
their integrated distributions, and compare to the simulations.
The agreement with the two lowest integrated RMT eigenvalue
shapes is excellent for the larger β values.
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Figure 5: The solid lines compare the integrated distribution of the two lowest
quartet averages to RMT predictions with N f = 8.

The main qualitative features of the RMT spectrum are very
similar in our Nf = 8 simulations as shown in Fig. 5. One
marked quantitative difference is a noticeable slowdown in re-
sponse to change in the coupling constant. As β grows the
recovery of the quartet degeneracy is considerably delayed in
comparison with the onset of p-regime Goldstone dynamics.
Overall, for the Nf = 4, 8 models we find consistency between
the p-regime analysis and the RMT tests. Earlier, using Asqtad
fermions at a particular β value, we found agreement with RMT
even at Nf = 12 which indicated a chirally broken phase [20].
Strong taste breaking with Asqtad fermion leaves the quartet
averaging in question and the bulk pronounced crossover of the
Asqtad action as β grows is also an issue. Currently we are
investigating the RMT picture for Nf = 9, 10, 11, 12 with our
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 Inside the conformal window   Nf=16 case study 

Nf=16 is most accessible to analysis

What is the finite volume spectrum?

How does the running coupling        evolve with L?

From 2-loop beta function

 

Nontrivial small volume dynamics in QCD turns into large volume
dynamics around weak coupling fixed point of conformal window

At small        the zero momentum components of the gauge field
dominate the dynamics: Born-Oppenheimer approximation

Originally it was applied to pure-gauge system   Luscher, van Baal

g2 (L)

g*2 ≈ 0.5

g2 (L)→ g*2 ,  as L→∞

g2 (L)



SU(3) pure-gauge model: 27 inequivalent vacua

Low excitations of Hamiltonian (Transfer Matrix) scale with 
will evolve into glueball states for large L

Three scales of dynamics   on smallest scale WF is localized on one vacuum
                                tunneling accross vacua on second scale
                                 over the barrier: confinement scale (third)                                

much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by

Vk
eff(Cb) =

∑

i> j

V(Cb[µ(i)
b − µ

( j)
b ])− Nf

∑

i

V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.

main center elements at the new vacuum configurations with
complex values

Pj =
1
N

tr
(
exp(iCb

j Tb)
)
=

1
N

∑

n

exp(iµ(n)
b Cb

j ) = exp(2πil j/N),

(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by

Vk
eff(Cb) =

∑
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V(Cb[µ(i)
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∑
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V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
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∑
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j ) = exp(2πil j/N),

(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by

Vk
eff(Cb) =

∑

i> j

V(Cb[µ(i)
b − µ

( j)
b ])− Nf
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with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/
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12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

-1.5 -1 -0.5  0  0.5  1  1.5

Im
a
g
in

a
ry

Real

Spatial
Temporal

Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
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(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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V(Cb[µ(i)
b − µ

( j)
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∑

i

V(Cbµ(i)
b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
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We start our investigation and simulations of the conformal
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from the scheme independent two-loop beta function [61].
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grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluc-
tuations. With Nf flavors of massless fermion fields
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rect quantum vacuum is found at the minimum of this effective
potential which is dramatically changed by the fermion loop
contributions. The Polyakov loop observables remain center el-
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for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
to probe the running coupling inside the conformal window is a
pilot study to more comprehensive investigations of weak and
strong coupling conformal dynamics.

5.2. Running coupling and beta-function
Consider Wilson loops W(R,T, L), where R and T are the
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume
A distinguished feature of the Nf = 16 conformal model is

how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluc-
tuations. With Nf flavors of massless fermion fields
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potential which is dramatically changed by the fermion loop
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for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
to probe the running coupling inside the conformal window is a
pilot study to more comprehensive investigations of weak and
strong coupling conformal dynamics.

5.2. Running coupling and beta-function
Consider Wilson loops W(R,T, L), where R and T are the
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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b + πk), (17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
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volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
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Figure 6: Polyakov loop distributions, blue in the time-like and red in the space-
like directions, from our N f = 16 simulation with 164 volume at β = 18 with
tree level Symanzik improve gauge action and staggered fermions with six stout
steps. The fermion boundary condition is anti-periodic in the time direction and
periodic in the spatial directions.
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j ) = exp(2πil j/N),

(18)
for S U(N). This implies that µ(n)

b Cb = 2πl/N (mod 2π), inde-
pendent of n, and Vk

eff = −Nf NV(2πl/N + πk). In the case of
anti-periodic boundary conditions, k = (1, 1, 1), this is mini-
mal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of peri-
odic boundary conditions, k = 0, the vacua have l ! 0, so
that Pj correspond to non-trivial center elements. For SU(3),
there are now 8 degenerate vacua characterized by eight dif-
ferent Polyakov loops, Pj = exp(±2πi/3). Since they are re-
lated by coordinate reflections, in a small volume parity (P) and
charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [65]. As shown in Fig. 6, our simula-
tions in the Nf = 16 model near the fixed point g∗2 confirm this
picture. In the weak coupling phase of the conformal window
the time-like Polyakov loop takes the real root, while the space-
like Polyakov loops always take the two other complex values,
as expected on the basis of the above picture. Our method next
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much improved action with four and six stout steps. This action
shows no artifact transitions and handles taste breaking much
more effectively. Firm conclusions on the Nf = 12 model will
require continued investigations.

5. Inside the conformal window

We start our investigation and simulations of the conformal
window at Nf = 16 which is the most accessible for analytic
methods. We are particularly interested in the qualitative behav-
ior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to
have a weak coupling fixed point around g∗2 ≈ 0.5, as estimated
from the scheme independent two-loop beta function [61].

5.1. Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is
how the renormalized coupling g2(L) runs with L, the linear
size of the spatial volume in a Hamiltonian or Transfer Matrix
description. On very small scales the running coupling g2(L)
grows with L as in any other asymptotically free theory. How-
ever, g2(L) will not grow large, and in the L → ∞ limit it will
converge to the fixed point g∗2 which is rather weak, within the
reach of perturbation theory. There is nontrivial small volume
dynamics which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum compo-
nents of the gauge field are known to dominate the dynam-
ics [62–64]. With S U(3) gauge group, there are twenty seven
degenerate vacuum states, separated by energy barriers which
are generated by the integrated effects of the non-zero momen-
tum components of the gauge field in the Born-Oppenheimer
approximation. The lowest energy excitations of the gauge field
Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states
and becoming independent of the volume as the coupling con-
stant grows with L. Nontrivial dynamics evolves through three
stages as L grows. In the first regime, in very small boxes, tun-
neling is suppressed between vacua which remain isolated. In
the second regime, for larger L, tunneling sets in and electric
flux states will not be exponentially suppressed. Both regimes
represent small worlds with zero momentum spectra separated
from higher momentum modes of the theory with energies on
the scale of 2π/L. At large enough L the gauge dynamics over-
comes the energy barrier, and wave functions spread over the
vacuum valley. This third regime is the crossover to confine-
ment where the electric fluxes collapse into thin string states
wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed
point at Nf = 16 will have only the first two regimes which
are common with QCD. Now the calculations have to include
fermion loops [65, 66]. The vacuum structure in small enough
volumes, for which the wave functional is sufficiently localized
around the vacuum configuration, remains calculable by adding
in one loop order the quantum effects of the fermion field fluctu-
ations. The spatially constant abelian gauge fields parametriz-
ing the vacuum valley are given by Ai(x) = T aCa

i /L where Ta
are the (N-1) generators for the Cartan subalgebra of S U(N).

For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
is given by
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with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic
boundary conditions on the fermion fields. The function V(C) is
the one-loop effective potential for Nf = 0 and the weight vec-
tors µ(i) are determined by the eigenvalues of the abelian gener-
ators. For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0).
The correct quantum vacuum is found at the minimum of
this effective potential which is dramatically changed by the
fermion loop contributions. The Polyakov loop observables re-
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tum components of the gauge field in the Born-Oppenheimer
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around the vacuum configuration, remains calculable by adding
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For S U(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of mass-
less fermion fields the effective potential of the constant mode
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If there is strong coupling inside the conformal window, transition over the barrier into 
third regime (confinement in QCD) where this picture qualitatively changes

164  lattice simulation at β = 18



Nf=16 inside conformal window 
femto volume and tunneling volume
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                     Conclusions and Outlook

- Our focus is shifted to Nf=10-16 range (and beyond?)
  primary focus: Nf=12 chiral symmetry breaking (?)

- Zero-mode -->Low lying glueball spectrum relative to mesons!

- Nf=12 might be close enough to realize walking technicolor 

- What is the fate of the Nf=2 sextet model? 

- Reliable lattice studies will be very demanding on computing

- Reliable EW precision quantities (S/T/U) will be real hard




