Chiral Symmetry Breaking in Nearly Conformal Gauge Theories

Julius Kuti

Boston University Workshop

November 6-7, 2009

With Lattice Higgs Collaboration members: Z. Fodor, K. Holland, D. Nogradi, C. Schroeder

Outline

1. Overview of three coordinated projects of our LHC program

- SU(3) color, fundamental rep, staggered Nf=4-20
- 2-index symmetric representation with SU(3) color (not discussed)
- Running coupling (talk by Kieran Holland)

2. Chiral symmetry breaking

- Finite volume p-regime, delta-regime, epsilon-regime
- Goldstone spectra and staggered CHPT
- New results at Nf=4,8,9,12 will be presented
- 3. Inside and above the conformal window

- Zero momentum dynamics at Nf=16,20

4. Conclusions and Outlook

- Prospects for model building ?
- Can lattice studies be transformational ?
- Is peta-scale to exa scale power needed for ?

Talk is base on the published results:

- L. Topology and higher dimensional representations. Published in JHEP 0908:084,2009. e-Print: arXiv:0905.3586 [hep-lat]
- 2. Nearly conformal gauge theories in finite volume. Phys.Lett.B681:353-361,2009. e-Print: arXiv:0907.4562 [hep-lat]
- **3.** Chiral properties of SU(3) sextet fermions e-Print: arXiv:0908.2466 [hep-lat]
- 4. Chiral symmetry breaking in nearly conformal gauge theories e-Print: arXiv:0911.xxx [hep-lat] to be posted next week

and some unpublished analysis

Phase diagram of TWO projects as nearly conformal gauge theories in flavor-color space ?

Higgs phenomenology with nearly vanishing beta function

Project 3: Important to complement the search for chirally broken phase with running coupling and beta function

Talk by Kieran Holland

Theory space and conformal windows

20

Important early work by Bardeen, Leung, Love on Schwinger-Dyson

Project 1: in fundamental rep with N=3 colors with Nf=4,8,9,10,11,12,14,16,20 flavors **dynamical staggered**

Project 2: 2-index
symmetric rep (sextet)
N=3 colors and Nf=2 flavors
dynamical overlap

¹⁰ Running on CPU clusters
 ¹⁰ and GPU clusters
 ¹⁰ Very demanding
 ¹¹ Unified code

We are supported by the Wuppertal hardware/software infrastructure

Zoltan Fodor Kalman Szabo Sandor Katz

GPU HARDWARE

CUDA code: Kalman Szabo Sandor Katz

GTX 280 Flops: single 1 Tflop, double 80 Gflops Memory 1GB, Bandwidth 141 GBs⁻¹ 230 Watts, \$350

UCSD Tesla cluster ARRA funded by DOE waiting for Fermi cards

also USQCD CPU cluster support

Tesla 1060 Flops: single 1 Tflop, double 80 Gflops Memory 4GB, Bandwidth 102 GBs⁻¹ 230 Watts, \$1200

Tesla 1070 Flops: single 4 Tflops, double 320 Gflops Memory 16GB, Bandwidth 408 GBs⁻¹ 900 Watts, \$8000

Chiral regimes to identify in theory space:

One-loop expansion in our analysis of p-

We use staggered action with stout smearing Taste breaking included in staggered perturbation theory! structure changing as Nf grows

Nf=4 NLO chiral analysis in p-regime:

$$\mathcal{L}_{\chi}^{(4)} = \frac{F^2}{4} \operatorname{Tr}(\partial_{\mu} \Sigma \partial_{\mu} \Sigma^{\dagger}) - \frac{1}{2} B m_q F^2 \operatorname{Tr}(\Sigma + \Sigma^{\dagger}) + V_{\chi}^{(6)}$$
$$M_{\pi}(T_a)^2 = 2Bm_q + a^2 \Delta(T_a) + O(a^2 m_q) + O(a^4)$$

$$\begin{split} \Delta(\xi_5) &= 0, \\ \Delta(\xi_{\mu}) &= \frac{8}{F^2} (C_1 + C_2 + C_3 + 3C_4 + C_5 + 3C_6), \\ \Delta(\xi_{\mu 5}) &= \frac{8}{F^2} (C_1 + C_2 + 3C_3 + C_4 - C_5 + 3C_6), \\ \Delta(\xi_{\mu\nu}) &= \frac{8}{F^2} (2C_3 + 2C_4 + 4C_6). \end{split}$$

Nf=8 NLO chiral analysis in p-regime:

Nf=9 NLO chiral analysis in p-regime:

Testing rooting (nothing unusual happens) (useful for rooted sextet code, complete and running with Nf=2) Provides additional independent info on chiral condensate trend

Nf=12 NLO chiral analysis in p-regime:

Similar pattern to Nf=8 case! more work is needed

Problem when F*Ls is not large enough? This can be quantified (delta and p regimes connected)

 $E_l = \frac{1}{2\theta} l(l+2)$ with l = 0, 1, 2, ... rotator spectrum for SU(2)

with $\theta = F^2 L_s^3 (1 + \frac{C(N_f = 2)}{F^2 L_s^2} + O(1/F^4 L_s^4))$ (P. Hasenfratz and F. Niedermayer) there is overall factor $\frac{N_f^2 - 1}{N_f}$ for arbitrary N_f

 $C(N_f = 2) = 0.45$ expected to grow with N_f

At $FL_s = 0.8$ the correction is 70% and grows with N_f

When expansion collapses in δ – regime, the p-regime analysis also becomes suspect

•••• 0.12 $\Phi \ \Phi \ \Phi$ dom Matrix Theory tests in epsilon regime: 0. 0.08

ΦΦ O O

0.14

0.06

 $N_f = 4$ β = 3.80 3 ⁽²⁾ 0.06 I I a m_q = 0.001 3 ⁽²⁾ 24⁴ (0.05 æ ® I I 0.04 3 ⁽²⁾ æ æ 0.03 3 ⁽²⁾ ౕ € 0.02 Ē 0.01 0 2 6 8 10 12 14 16 18 20 4 n

0.07

integrated distribution a m_q = 0.001 20⁴ 0.6 0.4 0.2 0 0.02 0.04 0.06 0.12 0.14 0.16 0.08 0.1 0 aλ

Dirac spectrum Integrated eigenvalue distrubutions of RMT --> quartet degeneracy --> RMT

Inside the conformal window Nf=16 case study

Nf=16 is most accessible to analysis

What is the finite volume spectrum?

How does the running coupling $g^2(L)$ evolve with L?

From 2-loop beta function $g^{*2} \approx 0.5$

$$g^2(L) \to g^{*2}$$
, as $L \to \infty$

Nontrivial small volume dynamics in QCD turns into large volume dynamics around weak coupling fixed point of conformal window

At small $g^2(L)$ the zero momentum components of the gauge field dominate the dynamics: Born-Oppenheimer approximation

Originally it was applied to pure-gauge system Luscher, van Baal

SU(3) pure-gauge model: 27 inequivalent vacua

Low excitations of Hamiltonian (Transfer Matrix) scale with $\sim g^{2/3}(L)/L$ will evolve into glueball states for large L

Three scales of dynamics on smallest scale WF is localized on one vacuum tunneling accross vacua on second scale over the barrier: confinement scale (third)

 $A_i(\mathbf{x}) = T^a C_i^a / L$ <-- zero momentum mode of gauge field For $SU(3), T_1 = \lambda_3/2$ and $T_2 = \lambda_8/2$

Quantum vacuum is at minimum of Veff(C) when massless fermions are turned on early work by van Baal, Kripfganz and Michael Fermions develop a gap $\sim \pi$ /L in the spectrum

$$\mu_b^{(n)} \mathbf{C}^b = 2\pi \mathbf{l}/N \pmod{2\pi}$$
$$V_{\text{eff}}^{\mathbf{k}} = -N_f \tilde{NV}(2\pi \mathbf{l}/N + \pi \mathbf{k})$$
$$0.5 \quad 1 \quad 1.5$$

k=(1,1,1) antiperiodic minimal when l=0 (mod 2π) A=0

k=(0,0,0) periodic minimal when $\vec{l} \neq 0$ nontrivial vacua

Polyakov loop distributions probe the vacua

$$P_{j} = \frac{1}{N} \operatorname{tr} \left(\exp(iC_{j}^{b}T_{b}) \right) = \frac{1}{N} \sum_{n} \exp(i\mu_{b}^{(n)}C_{j}^{b}) = \exp(2\pi i l_{j}/N)$$

$$k=(0,0,0) \text{ antiperiodic} \qquad A = 0 \ (P_{j} = 1)$$

$$k=(0,0,0) \text{ periodic} \qquad P_{j} = \exp(\pm 2\pi i/3)$$

$$16^{4} \text{ lattice simulation at } \beta = 18$$

If there is strong coupling inside the conformal window, transition over the barrier into third regime (confinement in QCD) where this picture qualitatively changes

Nf=16 inside conformal window femto volume and tunneling volume

3-stout, $N_f=16$, $12^3 \times 36$, beta=18.0, m=0.001, apbc

Conclusions and Outlook

- Our focus is shifted to Nf=10-16 range (and beyond?)
 primary focus: Nf=12 chiral symmetry breaking (?)
- Zero-mode -->Low lying glueball spectrum relative to mesons!
- Nf=12 might be close enough to realize walking technicolor
- What is the fate of the Nf=2 sextet model?
- Reliable lattice studies will be very demanding on computing
- Reliable EW precision quantities (S/T/U) will be real hard