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those damn Yankees STILL suck

even with 27 World Series titles



outline

Kieran Holland Running coupling

running coupling role

method

test: pure gauge theory

first results fundamental fermions

conclusions



lattice stimulus package
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2 antisym: blue
2 sym: red
adjoint: green

yes/no question: is a theory conformal?
Nf
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gray: fundamental
blue: 2-index antisymmetric
red: 2-index symmetric
green: adjoint

hard question
Dietrich & Sannino

conformal windows
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(Walking) technicolor

(Sannino)

Fundamental: gray
2 antisym: blue
2 sym: red
adjoint: green

yes/no question: is a theory conformal?
Nf

Nc

gray: fundamental
blue: 2-index antisymmetric
red: 2-index symmetric
green: adjoint

Dietrich & Sannino

hard question, but answerable - just give us more money, computers, ...

conformal windows



consistency

Kieran Holland Running coupling

more than 1 signal for conformal/non-conformal behavior

p-regime and techni-hadron spectrum

epsilon-regime and lowest Dirac eigenvalues

finite temperature transitions

running coupling (Schrodinger functional, Wilson loops)

...

Julius Kuti
Friday]



RG flow
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lattice in 2 minutes

Kieran Holland

∫
DU →

∑
typical U

partition function

non-local determinant: slow computation

Z =

∫
DU {Det(D[U ])}Nf exp(−Sgauge[U ])

discretize space-time: lattice spacing

Uµ = exp(iaAµ)gauge links

Monte Carlo sampling

Running coupling



running coupling

Kieran Holland

also Bilgici et al 0902.3768

to probe the running coupling inside the conformal window is a
pilot study to more comprehensive investigations of weak and
strong coupling conformal dynamics.

5.2. Running coupling and beta function
Consider Wilson loops W(R,T, L), where R and T are the

space-like and time-like extents of the loop, and the lattice vol-
ume is L4 (all dimensionful quantities are expressed in units of
the lattice spacing a). A renormalized coupling can be defined
by

g2(R/L, L) = − R2

k(R/L)
∂2

∂R∂T
ln〈W(R,T, L)〉 |T=R , (19)

where for convenience the definition will be restricted to Wil-
son loops with T = R, and 〈...〉 is the expectation value of some
quantity over the full path integral. This definition can be moti-
vated by perturbation theory, where the leading term is simply
the bare coupling g2

0. The renormalization scheme is defined by
holding R/L to some fixed value. The quantity k(R/L) is a ge-
ometric factor which can be determined by calculating the Wil-
son loop expectation values in lattice perturbation theory. The
role of lattice simulations will be to measure non-perturbatively
the expectation values. On the lattice, derivatives are replaced
by finite differences, so the renormalized coupling is defined to
be

g2((R + 1/2)/L, L) =
1

k(R/L)
(R + 1/2)2χ(R + 1/2, L) ,

χ(R + 1/2, L) = − ln
[
W(R + 1,T + 1, L)W(R,T, L)
W(R + 1,T, L)W(R,T + 1, L)

]
|T=R ,

where χ is the Creutz ratio [67], and the renormalization
scheme is defined by holding the value of r = (R + 1/2)/L
fixed.

With this definition, the renormalized coupling g2 is a func-
tion of the lattice size L and the fixed value of r. The coupling is
non-perturbatively defined, as the expectation values are calcu-
lated via lattice simulations, which integrate over the full phase
space of the theory. By measuring g2(r, L) non-perturbatively
for fixed r and various L values, the running of the renormal-
ized coupling is mapped out. In a QCD-like theory, g2 increases
with increasing L as we flow in the infrared direction. In a con-
formal theory, g2 flows towards some non-trivial infrared fixed
point as L increases, whereas in a trivial theory, g2 decreases
with L. The advantage of this method is that no other energy
scale is required to find the renormalization group flow. The
renormalized coupling g2 is also a function of the bare cou-
pling g2

0, which is related to the lattice spacing a. Keeping the
lattice spacing fixed, the running of g2(r, L) is affected by the
lattice cut-off. The running has to be calculated in the con-
tinuum limit, extrapolating to zero lattice spacing. A similar
method was developed independently in [68].

One way to measure the running of the renormalized cou-
pling in the continuum limit is via step-scaling. The bare lattice
coupling is defined in the usual way β = 6/g2

0 as it appears
in the lattice action. Some initial value of g2 is picked from
which the renormalization group flow is started. On a sequence
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Figure 3: The measured coupling g2(2L) for 2L = 20, 24, 28 and 32, where βi is tuned such that
g2(L) = 1.44. A linear continuum extrapolation gives g2(2L) = 1.636(23) (statistical error), with
χ2/dof = 0.57/2.
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Figure 8: The running coupling g2(L), combining analytic lattice perturbation theory and the
simulation results, as described in the text. The running starts at the point g2(L0) = 0.825. For
almost all couplings there is excellent agreement with continuum 2-loop running. At the strongest
coupling, the simulation results begin to break away from perturbation theory.
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Figure 7: The method and the main test result for pure-gauge theory are
shown in the figure. In the upper figure the extrapolation procedure
picks up the leading a2/L2 cutoff correction term in the step function.
It gives the fit to the continuum limit value of the step function. In
the lower figure, the running coupling g2(L) is shown. The blue points
are from results on Creutz ratios using analytic/numeric Wilson loop
lattice calculations in finite volumes with fixed value of r. In this pro-
cedure we start from the one-loop expansion of Wilson loops in finite
volumes based on the bare coupling [69]. The series is re-expanded
in the boosted coupling constant at the relevant scale of the the Creutz
ratio [70] to obtain realistic estimates of our running coupling with-
out direct simulations. The rest of the procedure for the blue points
follows what we described in the text. The green points are direct sim-
ulation results, following our procedure. The running starts at the point
g2(L0) = 0.825. For almost all couplings there is excellent agreement
with continuum 2-loop running. At the strongest coupling, the simula-
tion results begin to break away from perturbation theory.

of lattice sizes L1, L2, ..., Ln, the bare coupling is tuned on each
lattice so that exactly the same value g2(r, Li, βi) is measured
from simulations. Now a new set of simulations is performed,
on a sequence of lattice sizes 2L1, 2L2, ..., 2Ln, using the corre-
sponding tuned couplings β1, β2, ..., βn. From the simulations,
one measures g2(r, 2Li, βi), which will vary with the bare cou-
pling viz. the lattice spacing. These data can be extrapolated to
the continuum as a function of 1/Li. This gives one blocking
step L→ 2L in the continuum renormalization group flow. The
whole procedure is then iterated. The chain of measurements
gives the flow g2(r, L) → g2(r, 2L) → g2(r, 4L) → g2(r, 8L) →
..., as far as is feasible (Fig. 7). One is free to choose a different
blocking factor, say L → (3/2)L, in which case more blocking
steps are required to cover the same energy range.

We applied the above procedure to the running coupling in-
side the conformal window with Nf = 16 flavors. The shortcut
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of lattice sizes L1, L2, ..., Ln, the bare coupling is tuned on each
lattice so that exactly the same value g2(r, Li, βi) is measured
from simulations. Now a new set of simulations is performed,
on a sequence of lattice sizes 2L1, 2L2, ..., 2Ln, using the corre-
sponding tuned couplings β1, β2, ..., βn. From the simulations,
one measures g2(r, 2Li, βi), which will vary with the bare cou-
pling viz. the lattice spacing. These data can be extrapolated to
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step L→ 2L in the continuum renormalization group flow. The
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..., as far as is feasible (Fig. 7). One is free to choose a different
blocking factor, say L → (3/2)L, in which case more blocking
steps are required to cover the same energy range.

We applied the above procedure to the running coupling in-
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continuum

lattice

(R + 1/2)/L fixed: keep coupling flows with L

Wilson loop

Running coupling

old idea: Campostrini et al. PLB349, 499 (1995)



step-scaling to continuum

Kieran Holland Running coupling

g2(L1, β1) = g2(L2, β2) = g2(L3, β3)

tune:

double:

g2(2L1, β1) g2(2L2, β2) g2(2L3, β3)

extrapolate RG step to continuum g2(L) → g2(2L)



test: pure gauge theory
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r = 0.25

4-dimensional SU(3)

example: 28
4 lattice

scheme:
r = (R + 1/2)/L = 0.25

accurate measurement
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test: pure gauge theory
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Figure 1: The renormalized coupling g2(L) for L = 14 and a range of β values. These runs are
used for tuning β to particular g2(L) values.

– 12 –

many runs on small 
lattices to tune coupling

example: 14
4

each point requires
separate simulation

AND
additional simulations on doubled lattices at tuned couplings



continuum extrapolation
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4 doubled lattices

g2(Li, βi) = 1.44tune:

2L = 20, 24, 28, 32

cut-off effects O(a2)

i.e. O(1/L2)



connect RG steps
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iterate procedure

tune g2(Li, βi) to
previous extrapolation

range of doubled lattices
2L = 20, ..., 44
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RG flow
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simulation: 4 RG steps

weak coupling: calculate 
Wilson loop in pert.theory

nice agreement with 
2-loop RG flow
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(with improvement - Julius)



Kieran Holland Running coupling

fundamental g
2

∗
≈ 0.5 2-loop

guaranteed(?) conformal

lattice: staggered fermions

no step-scaling

similar to Hietanen at al 0904.0864

consistent with flow to fixed point
SU(2), Nf = 2 adjoint,

SU(3), Nf = 16

fundamental fermions
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g2(β,ΛschemeL, a2/L2)

Del Debbio et al
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fundamental
3-loop Wilson-loop scheme

interesting & controversial

lattice: staggered

no step-scaling

no sign yet of IRFP

SU(3), Nf = 12

fundamental fermions
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controversy
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2-loop univ.

3-loop SF
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FIG. 6: Continuum running for Nf = 12. L0 is the scale corresponding to the starting value of

g2(L). Results shown for running from below the infrared fixed point (purple triangles) are based

on g2(L0) = 1.6. Also shown is continuum backwards running from above the fixed point (light

blue squares), based on g2(L0) = 9.0. Two-loop and three-loop perturbation theory curves are

shown for comparison.

C. Comparison with Other Lattice Work

1. Schrödinger functional studies

Lattice simulations for the SU(3) Schrödinger functional running coupling have been per-

formed for Nf = 16 [30], for the quenched theory [31], and for Nf = 2 [4]. For Nf = 16

[30], the perturbative infrared fixed point is very weak. In this case, the simulations were

done for values of the lattice coupling in the weak-coupling (chirally symmetric and decon-

fined) phase but leading to values of g2(L) well above the perturbative fixed point. Evidence

was presented that g2(L) decreases with increasing L, consistent with the approach to the

fixed point from above as expected with a continuum infrared fixed point. A continuum

extrapolation via the step-scaling procedure was, however, not implemented.

21

Julius Kuti: p- and epsilon-regime

Appelquist, Fleming, Neil
arXiv: 0712.0609, 0901.3766

Appelquist et al: different definition 
running coupling - flows to IRFP

also Deuzeman et al: conformal

12 flavor theory unresolved

Running coupling

new work: Hasenfratz; Jin & Mawhinney

12 flavor is chirally broken

Wilson-loop g(L) consistent with this



conclusions
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method works in pure gauge theory

fundamental                           looks conformal

no sign yet of IRFP for                            fundamental 

long-term: consistency with other signals

speculative theories + expensive computers = fun

SU(3), Nf = 16

SU(3), Nf = 12


