Running coupling via Wilson loops and the lattice

Kieran Holland University of the Pacific November 7 2009

Lattice Higgs Collaboration Zoltan Fodor, Julius Kuti, Daniel Nogradi, Chris Schroeder arXiv: 0907.4562, PLB 681 (2009) 353

Running coupling via Wilson loops and the lattice

Kieran Holland University of the Pacific November 7 2009

Lattice Liggs Collaboration Zoltan Fodor, Julius Kuti, Daniel Nogradi, Chris Schroeder arXiv: 0907.4562, PLB 681 (2009) 353

even with 27 World Series titles

those damn Yankees STILL suck

outline

running coupling role method test: pure gauge theory first results fundamental fermions conclusions

Kieran Holland

lattice stimulus package

yes/no question: is a theory conformal? conformal windows gray: fundamental blue: 2-index antisymmetric

red: 2-index symmetric green: adjoint

Dietrich & Sannino

hard question

Kieran Holland

Running coupling

 N_{c}

lattice stimulus package

yes/no question: is a theory conformal? conformal windows N_f

gray: fundamental blue: 2-index antisymmetric red: 2-index symmetric green: adjoint

Dietrich & Sannino N_c

hard question, but answerable - just give us more money, computers, ...

Kieran Holland

consistency

- [more than 1 signal for conformal/non-conformal behavior
 - p-regime and techni-hadron spectrum
 - epsilon-regime and lowest Dirac eigenvalues
 - finite temperature transitions
 - running coupling (Schrodinger functional, Wilson loops)

Kieran Holland

Running coupling

Friday

RG flow

Kieran Holland

lattice in 2 minutes

discretize space-time: lattice spacing gauge links $U_{\mu} = \exp(iaA_{\mu})$ partition function $\mathcal{Z} = \int DU \; \{ \operatorname{Det}(D[U]) \}^{N_f} \exp(-S_{\text{gauge}}[U])$ **Monte Carlo sampling** $\int DU \rightarrow \sum_{\text{typical } U}$ non-local determinant: slow computation

Kieran Holland

running coupling

continuum $g^{2}(R/L,L) = -\frac{R^{2}}{k(R/L)} \frac{\partial^{2}}{\partial R \partial T} \ln\langle W(R,T,L) \rangle |_{T=R}$ Introposition

Wilson loop

 $g^{2}((R+1/2)/L,L) = \frac{1}{k(R/L)}(R+1/2)^{2}\chi(R+1/2,L),$ $\chi(R+1/2,L) = -\ln\left[\frac{W(R+1,T+1,L)W(R,T,L)}{W(R+1,T,L)W(R,T+1,L)}\right]|_{T=R},$

keep (R + 1/2)/L fixed: coupling flows with L old idea: Campostrini et al. PLB349, 499 (1995) also Bilgici et al 0902.3768

Kieran Holland

step-scaling to continuum

extrapolate RG step to continuum $g^2(L) \rightarrow g^2(2L)$

Kieran Holland

test: pure gauge theory

4-dimensional SU(3)example: 28⁴ lattice scheme: r = (R + 1/2)/L = 0.25accurate measurement

Kieran Holland

test: pure gauge theory

many runs on small lattices to tune coupling example: 14^4 each point requires separate simulation AND

additional simulations on doubled lattices at tuned couplings

Kieran Holland

continuum extrapolation

tune: $g^2(L_i, \beta_i) = 1.44$ 4 doubled lattices 2L = 20, 24, 28, 32cut-off effects $\mathcal{O}(a^2)$ i.e. $\mathcal{O}(1/L^2)$

Running coupling

connect RG steps

iterate procedure Ξ ĮŦĮ Į Į $g^{2}(L)=1.44$ g²(L)=1.7 $g^{2}(L)=2.1$ tune $g^2(L_i,\beta_i)$ to $g^{2}(L)=2.8$ previous extrapolation g²(2L) 丰 ± ≠ + Т range of doubled lattices Ŧ I Ŧ. 2L = 20, ..., 44主 Ŧ 0.0005 0.0015 0.002 0 0.001 0.0025 actually, not that cheap $1/(2L)^{2}$

Running coupling

0.003

RG flow

simulation: 4 RG steps

weak coupling: calculate Wilson loop in pert.theory (with improvement - Julius)

nice agreement with 2-loop RG flow

Running coupling

fundamental fermions

 $SU(3), N_f = 16$ fundamental g_{\star}^{2} guaranteed(?) conformal 圭 Ξ lattice: staggered fermions 1.5 g²(L) € no step-scaling θ $g^2(\beta, \Lambda_{\rm scheme}L, a^2/L^2)$ € 0.5 θ consistent with flow to fixed point 0└ 10 12 14 16 similar to Hietanen at al 0904.0864 $SU(2), N_f = 2$ adjoint, Del Debbio et al **Kieran Holland**

$$c_{*}^{2} \approx 0.5$$
 2-loo

fundamental fermions

 $SU(3), N_f = 12$ fundamental interesting & controversial lattice: staggered g² (L, β) no step-scaling $g^2(\beta, \Lambda_{\rm scheme}L, a^2/L^2)$ 2 no sign yet of IRFP

Kieran Holland

controversy

Julius Kuti: p- and epsilon-regime Wilson-loop g(L) consistent with this

Appelquist et al: different definition running coupling - flows to IRFP

also Deuzeman et al: conformal new work: Hasenfratz; Jin & Mawhinney

12 flavor theory unresolved

12 flavor is chirally broken

Running coupling

conclusions

method works in pure gauge theory fundamental $SU(3), N_f = 16$ looks conformal no sign yet of IRFP for $SU(3), N_f = 12$ fundamental long-term: consistency with other signals speculative theories + expensive computers = fun

Kieran Holland