# Supersymmetric Yang-Mills with domain wall fermions

Michael G. Endres Lattice gauge theory for LHC physics November 6, 2009

# Supersymmetry (SUSY) on the lattice

- Much effort devoted toward formulating supersymmetric lattice theories
  - fascinating theoretical challenge
  - potential role of SUSY in beyond the standard model physics
  - desire to better understand various nonperturbative aspects of SUSY theories via numerical simulation

## SUSY on the lattice

• Naive lattice discretization explicitly breaks SUSY:



- Undesirable SUSY violating operators may arise through radiative corrections
- Fine-tuning of operators is required to reach SUSY limit

SUSY on the lattice

N=I SYM is the only four-dimensional SUSY theory that can be studied using conventional lattice discretizations and without-fine tuning

- Only relevant SUSY violating operator allowed by gauge and hypercubic symmetries is a gluino mass term
- Chiral symmetry realized on lattice implies SUSY restoration in continuum limit (e.g., overlap or domain wall fermions)

# N=I super Yang-Mills (SYM)

$$L = \frac{1}{g^2} \left[ \bar{\lambda} \gamma_{\mu} D_{\mu} \lambda + \frac{1}{4} v_{\mu\nu} v_{\mu\nu} \right] , \qquad \bar{\lambda} = \lambda^T C$$

- One of the simplest of SUSY gauge theories in terms of field content
  - I vector field and I adjoint Majorana fermion (gluino)
  - a single input parameter, the gauge coupling (g)
- Anomalous U(I)<sub>R</sub> (chiral) symmetry:  $\lambda \to e^{-i\alpha\gamma_5}\lambda \Rightarrow \theta \to \theta 2N_c\alpha$
- $Z_{2Nc}$  subgroup of U(I)<sub>R</sub> survives at quantum level
  - partition function invariant for:  $\alpha = \frac{\pi k}{N_c}$ ,  $k = 0, \dots, 2N_c 1$

# N=I SYM

$$L = \frac{1}{g^2} \left[ \bar{\lambda} \gamma_{\mu} D_{\mu} \lambda + \frac{1}{4} v_{\mu\nu} v_{\mu\nu} \right] , \qquad \bar{\lambda} = \lambda^T C$$

- Gluino condensation:  $\langle \bar{\lambda} \lambda \rangle \neq 0$ 
  - discrete chiral symmetry breaking:  $Z_{2N_c} \rightarrow Z_2$
- Confinement
  - colorless bound states (glue-glue, glue-gluino, gluino-gluino)
- No SUSY breaking (non-vanishing Witten index)

# N=I SYM

$$L = \frac{1}{g^2} \left[ \bar{\lambda} \gamma_{\mu} D_{\mu} \lambda + \frac{1}{4} v_{\mu\nu} v_{\mu\nu} \right] , \qquad \bar{\lambda} = \lambda^T C$$

- Why study N=I SYM via numerical simulations?
  - natural starting point: simplest of SUSY theories, can simulate with well understood lattice actions
  - test exact theoretical predictions about SYM (e.g., discrete chiral symmetry breaking)
  - access to nonperturbative aspects of SYM, for which less is known (e.g., spectrum)

## Numerical studies of N=1 SYM

- Wilson
  - DESY-Muenster-Roma Collaboration (hep-lat/0112007 and references therein, arXiv:0811.1964)
- Domain wall fermions
  - G.T. Fleming, et al. (hep-lat/0008009)
  - M. G. Endres (arXiv:0810.0431, arXiv:0902.4267)
  - J. Giedt, et. al. (arXiv:0807.2032, arXiv:0810.5746)

## Simulation details

- Wilson gauge action (fund. rep.) + DWF (adj. rep.)
- SU(2) gauge group
- Simulations performed:
  - using modified Columbia Physics System (CPS)
  - on QCDOC at Columbia University and New York Blue (BlueGene/L) at Brookhaven National Laboratory



## Simulation parameters

| L <sup>3</sup> xT   | β     | Ls | m <sub>f</sub> |
|---------------------|-------|----|----------------|
| 16 <sup>3</sup> x32 | 2.3   | 16 | 0.01           |
|                     |       |    | 0.02           |
|                     |       |    | 0.04           |
|                     |       | 20 | 0.01           |
|                     |       |    | 0.02           |
|                     |       |    | 0.04           |
|                     |       | 24 | 0.01           |
|                     |       |    | 0.02           |
|                     |       |    | 0.04           |
|                     |       | 28 | 0.01           |
|                     |       |    | 0.02           |
|                     |       |    | 0.04           |
|                     |       | 32 | 0.02           |
|                     |       | 40 | 0.02           |
|                     |       | 48 | 0.02           |
|                     | 2.353 | 28 | 0.02           |
|                     | 2.4   | 28 | 0.02           |

| L <sup>3</sup> xT | β   | Ls | m <sub>f</sub> |
|-------------------|-----|----|----------------|
| 8 <sup>3</sup> x8 | 2.3 | 16 | 0.02           |
|                   |     | 20 | 0.02           |
|                   |     | 24 | 0.02           |

- Static potential
- Residual mass
- Gluino condensate
- Dirac spectrum
- Topological charge

• Spectrum

## Summary of basic measurements

- Static potential:
  - $r_0/L \approx 0.18 \ (\beta=2.3) \ to \ 0.30 \ (\beta=2.4)$



- Residual mass:
  - $(m_f + m_{res}) r_0 \sim 0.35 (\beta = 2.4) 0.5 (\beta = 2.3)$  for L<sub>s</sub>=28
  - m<sub>res</sub> is 5-10 times larger than m<sub>f</sub>
- Gluino condensate in the chiral limit:
  - 20-25% systematic errors due to large residual chiral symmetry breaking

## Dirac spectrum

- Check if DWFs are working correctly for chosen parameters
  - are low modes bound to fifth dimension boundaries?
  - does Dirac spectrum reflect expected continuum properties?
  - do the matrix elements of the chirality operator make sense?
- Alternative approach for estimating residual mass
- Determine gluino condensate via the Banks-Casher relation

- Check topological ergodicity
- Check consistency of topological charge and near zero-modes of Dirac operator

# Continuum (Euclidean) Dirac operator

| Operator:   | $\gamma_\mu D_\mu$  | $D = \gamma_{\mu} D_{\mu} + m_g$ | $D_H = \gamma_5 D$                                                                                                                                |
|-------------|---------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Eigenvalue: | $\pm i\lambda$      | $\pm i\lambda + m_g$             | $\pm \lambda_H = \sqrt{\lambda^2 + m_g^2}$                                                                                                        |
| Eigenstate: | $ \pm\lambda angle$ | $ \pm\lambda angle$              | $\left \pm\lambda_{H}\right\rangle \propto \sqrt{-i\lambda+m_{g}}\left \lambda\right\rangle \pm \sqrt{i\lambda+m_{g}}\left -\lambda\right\rangle$ |

- Zero-modes unpaired and eigenstates of chirality operator
- Eigenvalues come in positive/negative pairs

$$\gamma_{\mu}^{\dagger} = \gamma_{\mu} \qquad \{\gamma_5 \ , \gamma_{\mu} D_{\mu}\} = 0$$

• Eigenvalues are two-fold degenerate

$$C^{\dagger}DC = D^*$$

## Eigenvalue measurement details

- Performed eigenvalue studies of the Hermitian DWF Dirac operator (D<sub>H</sub>)
  - eigenvalues are two-fold degenerate
  - ± pairing of eigenvalues absent at finite lattice spacing
- Measurements performed on 8<sup>4</sup> lattices
- Obtained lowest 64 eigenvalues (Λ<sub>H</sub>) on each of 150 gauge field configurations

#### Low modes of D<sub>H</sub>

 $\beta$ =2.3, m<sub>f</sub>=0.2 and L<sub>s</sub>=24



$$\mathcal{N}_{\Lambda_H}(s) = \sum_x \Psi_{\Lambda_H}^{\dagger}(x, s) \Psi_{\Lambda_H}(x, s) \qquad D_H \Psi_{\Lambda_H} = \Lambda_H \Psi_{\Lambda_H}$$

$$\langle \Lambda'_{H} | \Gamma_{s} | \Lambda_{H} \rangle = \sum_{x,s} sgn\left(\frac{L_{s}-1}{2} - s\right) \Psi^{\dagger}_{\Lambda'_{H}}(x,s) \Psi_{\Lambda_{H}}(x,s)$$

## Low modes of D<sub>H</sub>

 $\beta$ =2.3, m<sub>f</sub>=0.2 and L<sub>s</sub>=24



- Modes exponentially localized on left/right walls
- Modes have definite chirality, consistent with:  $m_g >> \lambda$ 
  - in continuum theory:  $\langle \lambda'_H | \gamma_5 | \lambda_H \rangle = \frac{1}{\lambda_H} \left[ m_g \delta_{\lambda'_H, \lambda_H} + i | \lambda | \delta_{-\lambda'_H, \lambda_H} \right]$

# Extracting information from $\Lambda_H$

• Fit valence mass dependence of eigenvalues using reparameterized Taylor expansion:

$$\Lambda_{H}^{2}(m_{v}) = n_{5}^{2} \left[\lambda^{2} + (m_{v} + \delta m)^{2}\right] + \mathcal{O}(m_{v}^{3})$$
 T. Blum, et al., hep-lat/0007038

• Can show:

$$\langle \bar{\psi}\psi \rangle = \frac{1}{12V} \sum_{i} \left\langle \frac{m_f + \delta m_i}{\lambda_i^2 + (m_f + \delta m_i)^2} \right\rangle + \mathcal{O}(m_v^3)$$
  
"effective 4D eigenvalue of D-slash" reflects residual chiral symmetry breaking due to finite L<sub>s</sub>

• Use  $\lambda$  and  $\delta m$  distributions to extract condensate and  $m_{res}$ 

# Extracting information from $\Lambda_H$



- No evidence for  $\pm \Lambda_H$  pairing suggests large lattice spacing
- $m_f + \delta m >> \lambda$ , consistent with "physical"  $\gamma_5$  results
- Residual mass cannot be extracted from  $\delta m$  distribution
- Few near nero-modes

Michael G. Endres • Lattice gauge theory for LHC physics • November 6, 2009

## Near zero-modes and topological charge



- Gluonic definition of topological charge for same ensemble suggest that there is topological ergodicity
- Nonzero topological charge is poorly reflected in analysis of eigenvalues

## Banks-Casher relation for DWFs



- Large disagreement in density of eigenvalues and chiral limit value of the condensate
- Moderate L<sub>s</sub> dependence of  $\rho(\lambda)$  for  $\lambda \sim 0.1$  0.2
- Spectrum too distorted by large residual chiral symmetry breaking effects

- Smoothed gauge fields using APE smearing (smearing coefficient equal to 0.45)
- Measured topological charge using two methods:
  - 5-loop improved (5li) definition of charge, O(a<sup>4</sup>) classically improved field strength tensor Ph. de Forcrand, M. Garcia Perez and I.-O. Stamatescu
  - fermionic definition based on stochastic estimate of  $\langle \psi \gamma_5 \psi \rangle$



- Q<sub>top</sub> fluctuation are a result of smearing away of small instantons
- Adequate for qualitative results, but should probably consider cooled lattices in future studies

Michael G. Endres • Lattice gauge theory for LHC physics • November 6, 2009



- Qualitative picture of topological charge is independent of N<sub>smear</sub>
- Variation in topological charge with  $N_{smear} \sim I 2$  on average



- Gluonic and fermionic definitions seem track reasonably well with each other at weakest couplings
  - hints of an index theorem at weaker coupling?

# Summary of results

- Current DWF SYM results are generally disappointing due to large residual chiral symmetry breaking
  - large systematic errors in chiral limit extrapolations
  - evident from Dirac spectrum studies and matrix elements of the "physical" chirality operator
- Substantial reduction in residual chiral symmetry breaking is crucial for reliable study of N=I SYM
- Nonetheless, these simulations are important for understanding the relationship between the input parameters of the lattice action and physical quantities, which will guide future studies.

## Future tasks and directions

- Combine improved action, larger L<sub>s</sub> and weaker coupling to achieve smaller residual chiral symmetry breaking
  - Iwasaki gauge action
  - AuxDet DWFs recently implemented in Columbia Physics System (D. Renfrew) and modified for use with adjoint representation fermions (MGE)
- AuxDet simulations will be performed on New York Blue and QCDOC at Brookhaven National Laboratory in the near future
  - parameter tuning in progress... stay tuned.