Introduction to lattice supersymmetry and its applications

Simon Catterall

Syracuse University

November 7, 2009

イロト イヨト イヨト イヨト

 $\begin{array}{l} \mbox{Outline}\\ \mbox{Goals, Methods}\\ \mbox{DWF for }\mathcal{N}=1\\ \mbox{Super QCD}\\ \mbox{Exact lattice SUSY}\\ \mathcal{N}=4 \mbox{SYM and AdS/CFT} \end{array}$

Goals, Methods

DWF for $\mathcal{N}=1$

Super QCD

Exact lattice SUSY

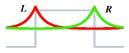
 $\mathcal{N}=4$ SYM and AdS/CFT

イロン イヨン イヨン イヨン

æ

SUSY plays a key role in many theories of BSM physics

- Understanding soft SUSY breaking in MSSM in terms of strongly coupled high scale SQCD
- Extra dims models
- SUSY technicolor
- AdS/CFT duals, strings, black holes
- Many aspects are inherently non-perturbative eg dynamical SUSY breaking, gaugino condensation – lattice natural tool.


 $\begin{tabular}{c} \hline & & Outline \\ \hline & & Goals, Methods \\ DWF for $\mathcal{N}=1$ \\ Super QCD \\ Exact lattice SUSY \\ $\mathcal{N}=4$ SYM and AdS/CFT \end{tabular}$

Problems, solutions

- SUSY broken. Large amount fine tuning in general to take *a* → 0.
- But, some cases evaded/reduced:
 - ► 4D N = 1 SYM: chiral symmetry prohibits gaugino mass. Hence DWF/overlap good approach.
 - ► 4D N = 4 SYM: supersymmetric lattice action exists. (new ideas twisting, orbifolding, Kähler-Dirac fermions).
 - Stepping stones to other theories: super QCD, deformations of *N* = 4 with eg mass terms, AdS/CFT duals

・ロン ・回 と ・ 回 と ・ 回 と

Why DWF good for $\mathcal{N}=1$

- ▶ 5D domain wall: 4d chiral, massless mode localized to wall.
- Can be gauged and subject to Majorana condition real, positive definite Pfaffian (c.f Wilson)
- Only relevant SUSY breaking op. is gaugino mass (Veneziano et al)
- Good chiral properties of DWF SUSY broken but no fine tuning a → 0 ...

But more expensive ... See M. Endres talk < -> < -> < -> < -> < ->

Simon Catterall

Introduction to lattice supersymmetry and its applications

History

- ▶ Fleming, Kogut, Vranas in 2000: $8^4 \times L_s$ lattices, $\beta = 2.3$, $L_s = 12 24$
- Recently 2008-9:
 - S.C,Brower,Fleming,Giedt,Vranas arXiv:0807.2032, arXiv:0810.5746 (16³ × 32 × L_s with L_s = 16 − 64, β = 2.3, 2.4), (1Tflopyear)
 - ▶ M. Endres arXiv:0902.4267, $(8^4/16^3 \times 32 L_s = 16 28 \beta = 2.3, 2.35, 2.4)$
- ▶ Both groups use hacked CPS code for SU(2). Run on BG/L

Results so far

Broad agreement between 2 recent calcs. Show:

- Confining as expected static potential, string tension.
- Finite volume effects under control.
- Estimate cut-off effects now.
- Much better extrapolations to chiral limit measure residual mass - but large ...

Strong evidence for nonzero
$$< ar{\lambda} \lambda >$$
 as $a
ightarrow 0.$

Future

- ► Large m_{res} = \frac{\rho(0)}{L_s} + ... Need larger L_s. Or better DWFs (möbius ?,..)
- Non-perturbative renormalization to give physical condensate.
- Spectrum ? Interpolating operators known. But 1 Majorana fermion – disconnected diagrams. Hard. cf η' in QCD.
- Eg. 32³ × 64 with L_s = 64 − 128 at 3 β's would need at least 100 Tflopyear.

(日) (同) (E) (E) (E)

Super QCD - I

- MSSM weakly coupled. But soft SUSY breaking ops typically generated by strongly coupled SQCD like sector at high scales.
- Ingredients: add chiral multiplets (scalar+fermion in fundamental)
- DWF eliminates need to tune fermion masses (Giedt et al. arXiv:0806.0013)
- ▶ Fine tuning Yukawas swap for scalar kinetic terms. Flavor symmetries imply single m_{ϕ}^2
- ► Quartic ops still an issue n = (2 + few) such ops. depending on N_f, N_c.

(日) (同) (E) (E) (E)

Super QCD - II

- Find SUSY pt by requiring < ∂_µS_µ(x)Θⁱ(0) >= 0 for set of set ops Θⁱ with i ≥ n number of ops.
- If we want to use multicanonical reweighting techniques need say 10 simulation pts for each fine tuned coupling.
- ► Implies need 10^{2+few} more CPU than current N = 1 DWF simulations.
- Note: use for N = 4 SYM independent of supersymmetric lattice formulations

・ロト ・回ト ・ヨト ・ヨト

SUSY lattices

- ► Recent work: possible to discretize theories with Q ≥ 2^D supercharges while preserving one or more SUSYs exactly (S.C, David Kaplan, Mithat Ünsal, Phys. Rep, arXiv:0903.4881)
- Simplest way to understand: discretizations of topologically twisted versions of target SYM theory
- In flat space: these twisted theories completely equivalent to usual theory.
- ▶ In particular lead to unique lattice formulation of N = 4 SYM with one exact SUSY.

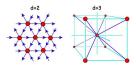
Exact SUSY for $\mathcal{N} = 4$: pros and cons

- Exact SUSY ensures boson/fermion spectrum paired and *E*_{vac} = 0.
- ▶ Reduces number of potential counterterms needed to take a → 0.
- Action is local, free of doublers, gauge invariant and supersymmetric.
- Price (mostly technical):
 - Most natural lattice is not hypercubic A^{*}₄
 - 16 Fermion fields distributed over links of lattice fermion action non-standard (Kähler-Dirac).
 - Bosons 5 Complex gauge links $U_a = e^{(A_a + iB_a)}$
 - Sign problem ?

・ロン ・回 と ・ ヨ と ・ ヨ と

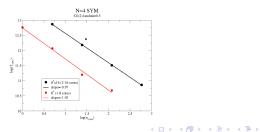
Lattice $\mathcal{N} = 4$

Action:


$$S = \sum_{\mathbf{x}} \operatorname{Tr} \left(\mathcal{F}_{mn}^{\dagger} \mathcal{F}_{mn} + \frac{1}{2} \left(\overline{\mathcal{D}}_{m}^{(-)} \mathcal{U}_{m} \right)^{2} - \left(\eta \overline{\mathcal{D}}_{m}^{(-)} \psi_{m} + \chi_{mn} \mathcal{D}_{[m}^{(+)} \psi_{n]} \right) \right)$$

+ S_{closed}

Fields defined on A_4^* with


$$\mathcal{F}_{mn} = \mathcal{U}_m(x)\mathcal{U}_n(x+m) - \mathcal{U}_n(x)\mathcal{U}_m(x+n)$$
$$S_{\text{closed}} = -\frac{1}{8}\sum_{\mathbf{x}} \operatorname{Tr} \epsilon_{mnpqr} \chi_{qr}(\mathbf{x} + \mu_m + \mu_n + \mu_p)\overline{\mathcal{D}}_p^{(-)} \chi_{mn}(\mathbf{x} + \mu_p)$$

・ロン ・回 と ・ヨン ・ヨン

Lattices, code

 $8^3 \times 16$ 2-16 cores Jpsi (MPI comm using MDP in FermiQCD)

Simon Catterall Introduction to lattice supersymmetry and its applications

æ

Renormalization

Lattice symmetries:

- Gauge invariance
- Q-symmetry.
- Point group symmetry eg. S^5 for A_4^*
- Exact fermionic shift symmetry $\eta \rightarrow \eta + \epsilon I$

Conclusion:

 Only (marginally) relevant ops that can arise correspond to renormalizations of ops. in bare theory except for SUSY mass term Q(U_aU[†]_aη)

Examine flows at 1-loop - in progress (with J. Giedt). Currently appears that no mass term induced!

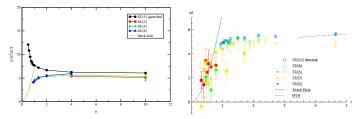
A (10) > (10)

< ∃ >

Lattice perturbation theory

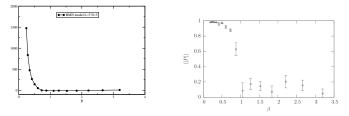
Ingredients:

- ► Bosons: $\langle \overline{\mathcal{A}}_a(k)\mathcal{A}_b(-k) \rangle = \frac{1}{\hat{k}^2}\delta_{ab}$ with $\hat{k}^2 = 4\sum_a \sin^2(k_a/2)$
- Fermions: $M_{\text{KD}}^{-1}(k) = \frac{1}{\hat{k}^2} M_{\text{KD}}(k)$ with M(k) a 16 × 16 block matrix.
- Vertices: $\psi\eta$, $\psi\chi$ and $\chi\chi$. No lattice tadpoles.
- Small number of Feynman graphs determine wavefunction renormalization from 1-loop corrections to fermion propagators.


・ロン ・回 と ・ ヨ と ・ ヨ と

Gravity duals

- Large number of examples of conjectured dualities between (supersymmetric) YM and gravity/string theories.
- YM always strongly coupled –
 New SUSY lattice actions very useful in this respect.
- Simplest example studied so far:
 SYMQM at large N black hole type IIa SUGRA
 S.C and Wiseman arXiv:0803.4273, Nishimura et al. arXiv:0810.2884
- Current work:
 - $\mathcal{N} = 4$ in D = 4 AdS/CFT, (SUSY)Wilson loops
 - Dimensional reduction to 2D Is Gregory-LaFlamme black string-black hole transition dual to thermal PT in YM ?


・日・ ・ ヨ・ ・ ヨ・

Black holes from YM

Energy vs temperature for SYMQM system. Black hole prediction shown (no fit) Care ... divergence in thermal partition function - needs care ...

Mass deformed SYMQM – BMN model

Thermal phase transition between SUSY confining phase at low T and deconfined broken phase at high T (Relation to Hawking-Page transition in $\mathcal{N} = 4$?)

A ■

Summary

Several promising approaches to SUSY on lattice

- Use DWF+reweighting $\mathcal{N} = 1$ SYM and SQCD. Ultimate goal to understand soft terms in MSSM.
 - Break SUSY but ensure restored as $a \rightarrow 0$ with minimum fine tuning
 - Price is (some) reweighting scalar sector and need DWF.
- Formulations with exact SUSY.
 - Reduced fine tuning due to lattice symmetries.
 - Lots of applications to AdS/CFT-like duals, understand quantum black holes, ...
 - Potential sign problem ?