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Quirk/Hidden Valley/
Unparticle Model

X

CFT, no confinement        unparticles

QCD-like confinement        hidden valley

stringy confinement        quirks n=0

n=few

n=many

X is a heavy fermion with both 
SM and New gauge couplings

n fermionsNewSM
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Quirks

Luty, Kang, Nasri in preparation



Summary of Weird Signatures

                                                                          

               anomalous curved tracks                    

    displaced vertices, anomalous ionization    

                                                                         

    

                    soft hadron showers                      

    

                                                                     

   hidden glueball decays, photon showers 
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Quirks

Chacko, Harnik in preparation
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Barrier

Some Particles
Unable to Decay

Within Valley
Slow Decay Back to 

SM Sector 
Through Barrier

Hidden Valleys

Strassler, Zurek hep-ph/0604261, 0605193

Multiparticle
production in
Hidden Valley

LHC



q

q

Q

Q

v-hadrons

But some v-
hadrons decay in 
the detector to 
visible particles, 
such as bb pairs, 
qq pairs, leptons 
etc.

Z’

Some v-hadrons 
are stable and 
therefore invisible

Strassler, Zurek hep-ph/0604261

Hidden Valleys

Analogous to e+e-  hadrons
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=
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∆(p) ∝ (−p2 − iε)d−2

dΦ(p) ∝ 1
Γ(d− 1)
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discuss, this can have a profound impact on their mo-
mentum dependence.

The spectral density ρ(p2, µ) defined in (7) obeys the
renormalization-group evolution equation [50]

dρ(p2, µ)

d lnµ
= −

[
2Γcusp(µ) ln

p2

µ2
+ 2γJ(µ)

]
ρ(p2, µ)

− 2Γcusp(µ)

∫ p2

0

dp′2
ρ(p′2, µ) − ρ(p2, µ)

p2 − p′2
. (8)

The quantities Γcusp and γJ are anomalous dimensions,
which depend on the renormalization scale only through
the running coupling αs(µ). Their perturbative expan-
sions are known to three-loop order. In particular, Γcusp

is the cusp anomalous dimension of Wilson loops with
light-like segments [56], which plays a central role in the
physics of soft-gluon interactions (see e.g. [57]). We stress
that the form of the evolution kernel in (8) is exact; its
simplicity is a consequence of dimensonal analysis com-
bined with some magic properties of Wilson lines.

The exact solution to the evolution equation was ob-
tained in [54]. It can be written in the form

ρ(p2, µ0) = N(M, µ0)
(
p2

)η−1

× j̃
(

ln
p2

M2
+ ∂η, M

) e−γEη

Γ(η)
, (9)

where ∂η denotes a derivative with respect to the quantity
η, which is then identified with

η =

∫ M2

µ2
0

dν2

ν2
Γcusp(ν) . (10)

The normalization factor N has scaling dimension −2η
and is given by

lnN(M, µ0) =

∫ M2

µ2
0

dν2

ν2

[
Γcusp(ν) ln

1

ν2
+ γJ(ν)

]
. (11)

This quantity is momentum-independent and will thus
be irrelevant to our discussion. The function j̃(x, M) has
a perturbative expansion free of large logarithms. It is
obtained from the Laplace transform

j̃(x, M) =

∫ ∞

0

dp2 e−p2/s ρ(p2, M) , (12)

where s = ex+γEM2. At one-loop order [58]

j̃(x, M) = 1 +
CF αs(M)

4π

(
2x2 − 3x + 7 −

2π2

3

)
. (13)

The two-loop expression for this function can be found
in [50].

When the tree-level approximation j̃ = 1 is used in
(9), the result exactly coincides with the unparticle spec-
tral density (2). The terms of order αs(M) in j̃ lead to
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FIG. 1. Comparison of the unparticle spectral density (2)
(dashed) and the spectral density (9) of a massless quark jet
at next-to-leading order in QCD (solid). We use parameters
M = 10 GeV and η = 0.5. The right plot shows the same
results on logarithmic scales.

logarithmic modifications of the simple power form. In
the “unparticle language” they would indicate a small
breaking of conformal invariance, which is unavoidable if
the unparticle sector is coupled to the Standard Model.
Therefore, our result (9) shares all features of a realistic
model for the spectral function of the unparticles of a
conformal sector coupled to the Standard Model. In Fig-
ure 1 we compare the results (2) and (9) for a particular
set of input parameters.

In our “interacting particle model” for unparticle
states the exponent η = dU − 1 is expressed as an in-
tegral over the cusp anomalous dimension, see (10). In a
theory such as QCD the numerical value of η can be O(1)
provided the scales µ0 and M are widely separated. This
is because the perturbative smallness of the cusp anoma-
lous dimension is overcome by the logarithmic integra-
tion over scales. In leading logarithmic approximation
one finds

η ≈
Γ0

β0
ln

αs(µ0)

αs(M)
(14)

with Γ0 = 4CF = 16/3 and β0 = 11
3

CA− 2
3
nf = 23/3 (for

nf = 5 light flavors). Considering the case M = 10GeV
as an example, we obtain η = 0.5 for µ ≈ 1.2GeV. Other
examples of jet functions have a similar functional form
but different values of η. For the example of a gluon jet
the one-loop coefficient Γ0 = 4CA is a factor 9/4 larger
than in the case of a quark jet (for Nc = 3), leading to
even larger η values.

The discussion above may be generalized to the case of
massive QCD jets. If the quark field ψ in (5) has mass m,
then relations (5)–(8) remain valid, but the solution (9)
must be modified. In this case it is no longer possible to
write the solution in closed form, however a perturbative
expansion of the resummed spectral function can still be
obtained [59,60]. At one-loop order one finds
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S =
∫

d4p

(2π)4
φ†(p)

[
µ2 − p2

]2−d
φ(p)

F (x− y) =
[
∂2 − µ2

]2−d
δ(x− y)

Effective Action

S =
∫

d4xd4y φ†(x)F (x− y)φ(y)



F (x− y)→ F (x− y)W (x, y)

Minimal Gauge Coupling

W (x, y) = P exp
[
−igT a

∫ y

x
Aa

µdwµ

]

...

cf Mandelstam Ann Phys 19 (1962) 1



= −igT a 2pα + qα

2p · q + q2

[(
µ2 − (p + q)2

)2−d −
(
µ2 − p2

)2−d
]

Gauge Vertex



igΓaα(p, q) ∝ 2pα + qα

2p · q + q2

[(
µ2 − (p + q)2

)2−d −
(
µ2 − p2

)2−d
]

iqµΓaµ = ∆−1(p + q, m, d)T a − T a∆−1(p, m, d)

Ward-Takahashi 
Identity
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(√
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q2

)3

σ1(m = 0)

unquark production

d < 2

Cacciapaglia, Marandella, JT hep-ph/0708.0005



lnZ = −1
2

lnDet(D2 + m2)2−d

= −1
2
Tr ln(D2 + m2)2−d

= −1
2
(2− d)Tr ln(D2 + m2)

In General



σunparticle = (2− d)σparticle

Colored  Unproduction

d < 2

R-Hadrons, anomalous jets/E loss

Cacciapaglia, Marandella, JT hep-ph/0708.0005
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Pair production

     is aligned to visible  

!pT

!pT
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QCD radiation

Hard jet + 2 jets +  

      in opposite direction 
to the hard jet

!pT

!pT

Detailed calculation and simulation needed 
(background)

Anomalous Jets



discuss, this can have a profound impact on their mo-
mentum dependence.

The spectral density ρ(p2, µ) defined in (7) obeys the
renormalization-group evolution equation [50]
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which depend on the renormalization scale only through
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sions are known to three-loop order. In particular, Γcusp
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that the form of the evolution kernel in (8) is exact; its
simplicity is a consequence of dimensonal analysis com-
bined with some magic properties of Wilson lines.

The exact solution to the evolution equation was ob-
tained in [54]. It can be written in the form
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This quantity is momentum-independent and will thus
be irrelevant to our discussion. The function j̃(x, M) has
a perturbative expansion free of large logarithms. It is
obtained from the Laplace transform

j̃(x, M) =
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0
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where s = ex+γEM2. At one-loop order [58]
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The two-loop expression for this function can be found
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When the tree-level approximation j̃ = 1 is used in
(9), the result exactly coincides with the unparticle spec-
tral density (2). The terms of order αs(M) in j̃ lead to
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FIG. 1. Comparison of the unparticle spectral density (2)
(dashed) and the spectral density (9) of a massless quark jet
at next-to-leading order in QCD (solid). We use parameters
M = 10 GeV and η = 0.5. The right plot shows the same
results on logarithmic scales.

logarithmic modifications of the simple power form. In
the “unparticle language” they would indicate a small
breaking of conformal invariance, which is unavoidable if
the unparticle sector is coupled to the Standard Model.
Therefore, our result (9) shares all features of a realistic
model for the spectral function of the unparticles of a
conformal sector coupled to the Standard Model. In Fig-
ure 1 we compare the results (2) and (9) for a particular
set of input parameters.

In our “interacting particle model” for unparticle
states the exponent η = dU − 1 is expressed as an in-
tegral over the cusp anomalous dimension, see (10). In a
theory such as QCD the numerical value of η can be O(1)
provided the scales µ0 and M are widely separated. This
is because the perturbative smallness of the cusp anoma-
lous dimension is overcome by the logarithmic integra-
tion over scales. In leading logarithmic approximation
one finds

η ≈
Γ0

β0
ln

αs(µ0)

αs(M)
(14)

with Γ0 = 4CF = 16/3 and β0 = 11
3

CA− 2
3
nf = 23/3 (for

nf = 5 light flavors). Considering the case M = 10GeV
as an example, we obtain η = 0.5 for µ ≈ 1.2GeV. Other
examples of jet functions have a similar functional form
but different values of η. For the example of a gluon jet
the one-loop coefficient Γ0 = 4CA is a factor 9/4 larger
than in the case of a quark jet (for Nc = 3), leading to
even larger η values.

The discussion above may be generalized to the case of
massive QCD jets. If the quark field ψ in (5) has mass m,
then relations (5)–(8) remain valid, but the solution (9)
must be modified. In this case it is no longer possible to
write the solution in closed form, however a perturbative
expansion of the resummed spectral function can still be
obtained [59,60]. At one-loop order one finds
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Pythia Jets

resum large logs in tree-level amplitudes 
from soft and collinear gluons



SCET Jets

resum enhanced tree-level amplitudes: 
soft and collinear gluons
some one-loop corrections

almost light-like quarkscollinear Wilson lines



Lattice Jets

non-perturbative two point function

quark with Wilson line
 is gauge invariant



Conclusions
to understand unparticle

signals at the LHC we need a
non-perturbative understanding of

jets

it wouldn’t hurt to get a better
understanding of QCD jets either





φ(p, ε) = φ0(p)

S =
1
2

∫
d4xdz ∂5

(
R3

z3
φ∂5φ

)
=

1
2

∫
d4x

(
R3

z3
φ∂5φ

)
|z=ε

S =
1
2

∫
d4p

(2π)4
φ0(−p)φ0(p) [∆local(p) + ∆non−local(p)]

φ0(p)→ ε−νR−3/2φ0(p)

AdS/CFT



d = 2− ν

SUV =
∫

d4p

(2π)4
ν − 2

ε
φ0(−p)φ0(p)

AdS/CFT

S′ =
1
2

∫
d4p

(2π)4
φ0(−p)∆(p)φ0(p) + c

∫
d4p

(2π)4
φ0(−p)A(p)

S′ = −c2

2

∫
d4p

(2π)4
A(−p)∆−1(p)A(p)

Klebanov, Witten hep-th/9905104


