Lattice Supersymmetry and Strong Dynamics

Simon Catterall

Syracuse University

Lattice Supersymmetry and Strong Dynamics - p. 1

Plan

Two topics:

- Lattice theories with exact supersymmetry
- Phase diagram of SU(2) with adjoint quarks

Why lattice SUSY ?

- Nonperturbative structure of supersymmetric theories
- Dynamical SUSY breaking
- Definition of SUSY theory outside of perturbation theory
- Tool to explore dualities between gauge theories and gravity

Difficulties

Supersymmetry and lattice appear incompatible

- $Q, \overline{Q} \} = \gamma.p$
- Leibniz: $\Delta^+(fg) \neq (\Delta^+f)g + f(\Delta^+g)$
- Fermion doubling

Naive discretizations of SUSY theories break SUSY completely

Radiative corrections lead to many SUSY violating operators – must be tuned out in continuum limit. Hard!

Way out ?

- But ...special class of theories exist in which element of SUSY may be retained.
- Extended supersymmetry. In D = 4 unique theory: $\mathcal{N} = 4$ SYM
- ▲ Lattice theory preserves one SUSY: what happens as a → 0 ? Residual fine tuning problem ? Full supersymmetry restored ?
- A single SUSY plus rotational invariance guarantees that the theory has at least $\mathcal{N} = 1 \dots$
- Maybe such theory would resemble one of the mass deformations of $\mathcal{N} = 4$ discussed by Strassler ?
- For D < 4 many models. Dual to string/supergravity theories

Approaches

- Start from twisted/topological form of SUSY theory (Catterall, Sugino, Kawamoto, Giedt, ...)
- Use orbifold/deconstruction techniques from SUSY matrix model (Kaplan, Unsal, Katz, Cohen, Giedt, Damgaard, Matsuura)

SYM case: completely equivalent (Catterall, Unsal, Damgaard et al.)

Example: Twisting in 2D

Simplest theory contains 2 fermions λ_{α}^{i} with global symmetry $SO_{\text{Lorenz}}(2) \times SO_{\text{R}}(2)$ Twist: decompose under diagonal subgroup Consider fermions as matrix

$$\lambda^i_{\alpha} \to \Psi_{\alpha\beta}$$

Natural to expand:

$$\Psi = \frac{\eta}{2}I + \psi_{\mu}\gamma_{\mu} + \chi_{12}\gamma_{1}\gamma_{2}$$

scalar, vector and tensor (twisted) components!

Supersymmetries

Twisted supercharges (Q, Q_{μ}, Q_{12}) . Twisted (super)algebra:

> $\{Q,Q\} = \{Q_{12},Q_{12}\} = \{Q,Q_{12}\} = \{Q_{\mu},Q_{\nu}\} = 0$ $\{Q,Q_{\mu}\} = p_{\mu}$ $\{Q_{12},Q_{\mu}\} = \epsilon_{\mu\nu}p_{\nu}$

Notice: Momentum is Q(something) where $Q^2 = 0$. Plausible that $T_{\mu\nu}$ Q-exact too. Implies that S = Q(something)

Keeping $Q_{\text{lattice}}^2 = 0$ all that is needed for exact SUSY of action.

Q = 4 SYM in 2D

In twisted form:

$$S = \frac{1}{g^2} \mathcal{Q} \int \text{Tr} \left(\chi_{\mu\nu} \mathcal{F}_{\mu\nu} + \eta [\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}] - \frac{1}{2} \eta d \right)$$

$$egin{array}{rcl} \mathcal{Q} \ \mathcal{A}_{\mu} &= \psi_{\mu} \ \mathcal{Q} \ \psi_{\mu} &= 0 \ \mathcal{Q} \ \overline{\mathcal{A}}_{\mu} &= 0 \ \mathcal{Q} \ \overline{\mathcal{A}}_{\mu} &= 0 \ \mathcal{Q} \ \chi_{\mu
u} &= -\overline{\mathcal{F}}_{\mu
u} \ \mathcal{Q} \ \eta &= d \ \mathcal{Q} \ d &= 0 \end{array}$$

Note complexified gauge field $A_{\mu} = A_{\mu} + iB_{\mu}$

Action

Q-variation, integrate d:

$$S = \frac{1}{g^2} \int \operatorname{Tr} \left(-\overline{\mathcal{F}}_{\mu\nu} \mathcal{F}_{\mu\nu} + \frac{1}{2} [\overline{\mathcal{D}}_{\mu}, \mathcal{D}_{\mu}]^2 - \chi_{\mu\nu} \mathcal{D}_{[\mu} \psi_{\nu]} - \eta \overline{\mathcal{D}}_{\mu} \psi_{\mu} \right)$$

Rewrite as

$$S = \frac{1}{g^2} \int \text{Tr} \left(-F_{\mu\nu}^2 + 2B_{\mu}D_{\nu}D_{\nu}B_{\mu} - [B_{\mu}, B_{\nu}]^2 + L_F \right)$$

where

$$L_F = \begin{pmatrix} \chi_{12} & \frac{\eta}{2} \end{pmatrix} \begin{pmatrix} -D_2 - iB_2 & D_1 + iB_1 \\ D_1 - iB_1 & D_2 - iB_2 \end{pmatrix} \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}$$

Lattice ?

- $\mathcal{A}_{\mu}(x) \rightarrow \mathcal{U}_{\mu}(n)$. Complexified Wilson links.
- Natural fermion assignment η on sites, ψ_{μ} links, χ_{12} diagonal links.
- Well-defined prescription for $\mathcal{D}_{\mu} \to \Delta_{\mu}^{+/-}$
- Lattice action: real positive def, gauge and Q invariant.
- Possible to do dynamical Monte Carlo simulations.
 - D=2 periodic and antiperiodic fermion bc.
 - Dimensionally reduce: D=1 theory with 2 exact SUSY's

Vacuum ?

D=1 thermal runs. $e^{2aB_{\mu}} = \mathcal{U}^{\dagger}_{\mu}\mathcal{U}_{\mu}$

As $a \to 0$ width of scalar distribution finite and determined by continuum (dimensionless) coupling β

Phase of Pfaffian

Write $Pf = e^{i\alpha} |Pf|$ Handle by reweighting. Thermal case $\alpha \to 0$ as $a \to 0$.

SUSY breaking in D = 1 **SYM**

In limit $a \rightarrow 0$ vacuum expectation value of $E/\lambda^{\frac{1}{3}}$ does not go to zero – SUSY breaking! Non-trivial since hard to even define Witten index for theory with infinite number of vacua ...

Q = 16 SYM in 4D

- Symmetry: $SO_{Lorenz}(4) \times SO_{R}(4)$
- **•** Again after twisting regard fermions as 4×4 matrix.
- Trace of supercharge matrix yields nilpotent supercharge Q.
- Twisted action contains Q-exact piece formally identical to $D = \mathcal{N} = 2$ case plus a new Q closed term.
- Lattice discretization follows as for $D = \mathcal{N} = 2 \mathcal{A}_a \rightarrow \mathcal{U}_a$.

Details

- ▶ Naturally formulated as 5D theory A_a , $(\eta, \psi_a, \chi_{ab})$ where $a, b = 1 \dots 5$
- After dimensional reduction to $4D A_5$ plus imag parts of $A_{\mu}, \mu = 1 \dots 4$ yield 6 scalars of $\mathcal{N} = 4$
- Fermions: $\chi_{ab} \to \chi_{\mu\nu} \oplus \overline{\psi}_{\mu}, \ \psi_a \to \psi_{\mu} \oplus \overline{\eta}$
- Twisted action reduces to Marcus twist of $\mathcal{N} = 4$.
 Equivalent to usual theory in flat space.
- AdSCFT dual to type II strings with D3-branes. Bigger conjectured duality between (p+1)SYM and type II with Dp-branes.

Supergravity Black Hole from D = 1 SYM

Low energy string -> supergravity

Large N –> classical Now $E \rightarrow 0$ as $t = T/\lambda^{\frac{1}{3}} \rightarrow 0$ Matches energy of black hole solution in type IIa supergravity at low temperature (strong coupling) ! (S.C, T.Wiseman)

Summary so far

- Contrary to folklore can build lattice actions invariant under (some) SUSY.
- Exploit twisted formulations (or orbifold ...) with scalar supercharge and Q-exact actions.
- Reduce/eliminate fine tuning.
- Simulations of $\mathcal{N} = 4$ SYM feasible using modern algorithms from lattice QCD and current hardware.

Dynamics of gauge theories

At fixed N_c and small N_f gauge theories thought to

- Confine and break chiral symmetry
- Exhibit asymptotic freedom in U.V
- As N_f raised theoretical arguments suggest
- Critical $N_f = N_f^a$ theory develops I.R stable fixed pt. Conformally invariant. Chiral symmetry restored.
- Increase N_f further find another threshold $N_f = N_f^b$ loss of asymptotic freedom.

$N_{f}^{a,b}$ depend on repn. of fermions (Sannino et al)

Why SU(2) with adjoints ?

- Estimates based on resummed perturbation theory indicate $N_f^a \sim 2$ for this theory.
- Need to check with non-perturbative calc.
- If $\beta(g) = 0$ conformal theory may be useful as unparticle sector (Georgi)
- If near conformal $\beta(g) \sim 0$ over range scales coupling walks, mass scale small, dynamics very different from QCD.
- Since N_f small walking technicolor models built from this theory may not be ruled out by precision EW data.

Lattice theory

Use standard Wilson plaquette action for gluons, Wilson fermion action for quarks with replacement

$$U_{\mu}(x) \to \operatorname{Tr}(S^{a}U_{\mu}(x)S^{b}U_{\mu}^{\dagger})$$

with

$$\{S^a\}, a = 1, 2, 3$$

 2×2 basis for adjoint.

- First thing determine 2D phase diagram (β, ma) .
- Continuum limits obtained near critical line(s).
- Initial work used small lattices $4^3 \times 8$, sampled phase diagram at coarse resolution contrasting behavior with fundamental quarks (S.C, F. Sannino, Phys. Rev. D76:034504,2007)

New (preliminary) results

- $8^3 \times 16$ lattices. High resolution of critical region O(100) points in (β , ma) parameter space. Higher statistics.
- Collaboration with Giedt, Sannino and Schneible. Parallel code on IBM BlueGene-L at RPI.
- Examining mesons, string tension and gluonic observables.

Mass scan

Note: $m_c(\beta)$ determined from minimum pion (rho) mass. Note: Goldstone behavior ?

3D meson mass plot

Rho -----

Have simulated theory at O(100) points in the (β, ma) parameter space

Meson masses

 $m_{\rho}(\beta < 2) \sim 5m_{\rho}(\beta > 2)$ m_{π} degenerate with m_{ρ} for $\beta > 2$ and independent of bare coupling!

Mass scaling like 1/L at weak coupling.

 $m_{\pi}(L=4)/m_{\pi}(L=8) \sim 2$

String tension

Creutz ratios used to estimate σa^2 String tension independent of bare coupling $\beta > 2$ Flows to small values as length scale increased.

Gluon condensate

Discontinuity develops for small β – first order phase transition ?

Interpretations(s)

Strong coupling: ρ heavy, first order transition. Lattice artefacts ...

Weak coupling: light masses, small string tension, degenerate π , ρ indep of bare coupling. Explanations:

- Near zero of β-function finite change in coupling yields very large scale change. Small lattice spacing. Perturbative deconfined regime with small masses.
- Nearby conformal fixed pt light mass scale independent of bare coupling. Small string tension.

Distinguish ? Larger lattices, asymmetric lattices – use finite size effects to extract anomalous dimension ? Hard!

Cartoon of RG flows

First order line or point ? Strong coupling lattice phase ?

Summary

- Technicolor models with non-standard reprise for fermions may yet offer conservative ways of breaking EW theory.
- Need to check with lattice simulations.
- Current algorithms/hardware make exploratory calcs quite feasible.
- **•** Focused on SU(2) model with $N_f = 2$ adjoint Dirac fermions.
- Mapping phase diagram seems to be just 1 critical line. Two regimes – strong and weak coupling. First order phase transition between?
- Behavior of meson masses, string tension difficult to interpret but consistent with near conformal behavior ... Strongly coupled ?