Dynamical fermion algorithms and many flavor simulations on the lattice

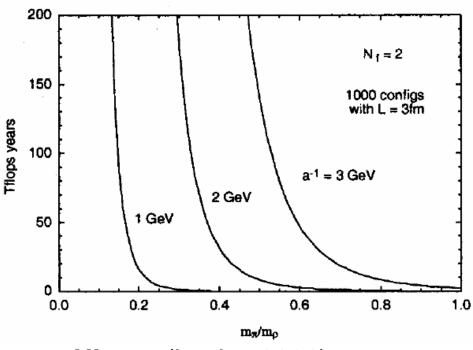
Michael Cheng
Columbia University

Lattice Gauge Theory for LHC Physics Livermore, CA, May 2, 2008

Contents

- Lattice QCD with Dynamical Fermions
- Hybrid Molecular Dynamics
- RHMC
- Multiple time scales and Hasenbusch preconditioning.
- Advanced integrators
- Gap DWF

The Berlin Wall



Ukawa (Lattice 2001) – Improved Wilson quarks

$$\mathbf{Cost} \sim \mathbf{L^5} \left(rac{1}{\mathbf{m}_\pi}
ight)^{\mathbf{5-6}} \mathbf{a^{7-8}}$$

The situation at Lattice 2001 (Berlin)

Cost for generating gauge configurations with dynamical fermions scales like a large power of the pion mass.

Despite exponential increase of CPU power, lattice simulations with realistic quark masses appeared out of reach in near future.

Where is the problem?

$$\mathbf{Cost} \sim \mathbf{L^5} \left(rac{1}{\mathbf{m}_\pi}
ight)^{\mathbf{5-6}} \mathbf{a^{7-8}}.$$

Main problem comes with severe scaling with m_l (m_{π})

- 1. One factor of $\left(\frac{1}{m_{\pi}}a\right)^{1-2}$ from critical slowing down.
- 2. Factor of $\frac{1}{m_1 a} \sim \left(\frac{1}{m_{\pi} a}\right)^2$ from condition number of fermion matrix
- 3. Factor $\frac{1}{m_1 a} \sim \left(\frac{1}{m_\pi a}\right)^2$ for step-size dependence on light quark mass.

Sampling the Gauge Fields

$$\ln Z = \int [\mathcal{D}U][\mathcal{D}\bar{\psi}][\mathcal{D}\psi] \exp\left(-S_g(U) + \sum_q \bar{\psi}_q M_q \psi_q\right)$$

Integrate out the fermion fields:

$$\ln Z = \int [\mathcal{D}U] \prod_{q} Det(M_q(U)) \exp(-S_g(U))$$

- Want to sample gauge fields, U with given Boltzmann weight.
- $Det(M_a(U))$ is costly to calculate.
- Quenched approximation → Omit fermion determinant (neglect quark loops) → Incorrect equilibrium distribution.
- Require method that incorporates fermion determinant

Hybrid Molecular Dynamics

- Old single-link updating used for pure gauge theory insufficient:
 - Local update, but fermion determinant is non-local.
 - Random walk exploration of phase space too slow.
- Hybrid Molecular Dynamics (HMD) Duane & Kogut, Gottlieb, et. al. (mid 1980s)
- Use molecular dynamics to change all gauge link variables simultaneously to produce a new configuration.
- Directed march through phase space → more efficient phase space exploration.
- Dominant mode for dynamical fermion calculations for next 15 years.

HMC Ф Algorithm

Idea: Introduce pseudo-fermion field (Φ field) and fictitious momentum to create Hamiltonian:

$$\mathbf{H} = \sum_{\mathbf{i}} \frac{\mathbf{p_i^2}}{2} + \mathbf{S_g}(\mathbf{U}) + \phi_{\mathbf{i}}^{\dagger} \left(\mathbf{M}^{\dagger}(\mathbf{U}) \mathbf{M}(\mathbf{U}) \right)_{\mathbf{ij}}^{-1} \phi_{\mathbf{j}} = \sum_{\mathbf{i}} \frac{\mathbf{p_i^2}}{2} + \mathbf{V}(\mathbf{U})$$

Evolve all fields in fictitious time with Hamilton's EOM using numerical "leapfrog" integrator.

$$\mathbf{p_i}(\mathbf{t} + \Delta \mathbf{t}/2) = \mathbf{p_i}(\mathbf{t} - \Delta \mathbf{t}/2) + \frac{\delta \mathbf{V}}{\delta \mathbf{U}}(\mathbf{t})\Delta \mathbf{t}$$

$$\mathbf{U_i}(\mathbf{t} + \Delta \mathbf{t}) = \exp(i\mathbf{p_i}(\mathbf{t} + \Delta \mathbf{t}/2))\mathbf{U_i}(\mathbf{t})$$

Hamiltonian conserved up to $O(\delta t^2)$ step-size errors. Apply Metropolis test to enforce detailed balance.

However, only works for 2 flavor Wilson, 4 flavor staggered!

R Algorithm

For staggered fermions, fermion matrix is naturally 4-flavored. Take roots of fermion determinant to approximate fewer flavors:

$$\mathbf{N_f} \; \mathbf{flavors} pprox \left(\mathbf{det}(\mathbf{M_{stag}^{\dagger}M_{stag}}) \right)^{\mathbf{N_f}/4} = \mathbf{exp} \left(rac{\mathbf{N_f}}{4} \mathbf{tr} \; \mathbf{ln}(\mathbf{M_{stag}^{\dagger}M_{stag}})
ight)$$

Can no longer introduce Φ field. Hamiltonian becomes:

$$\mathbf{H} = \sum_{\mathbf{i}} rac{\mathbf{p_i^2}}{2} + \mathbf{S_g}(\mathbf{U}) - rac{\mathbf{N_f}}{4} \mathbf{tr} \, \ln \left(\mathbf{M}^\dagger(\mathbf{U}) \mathbf{M}(\mathbf{U})
ight)^{-1}$$

Must calculate contribution from fermions stochastically \rightarrow detailed balance is spoiled \rightarrow can't apply Metropolis.

R Algorithm introduces $O(\delta t^2)$ errors to equilibrium ensemble. Must use many different step sizes and extrapolate, or extremely small step size.

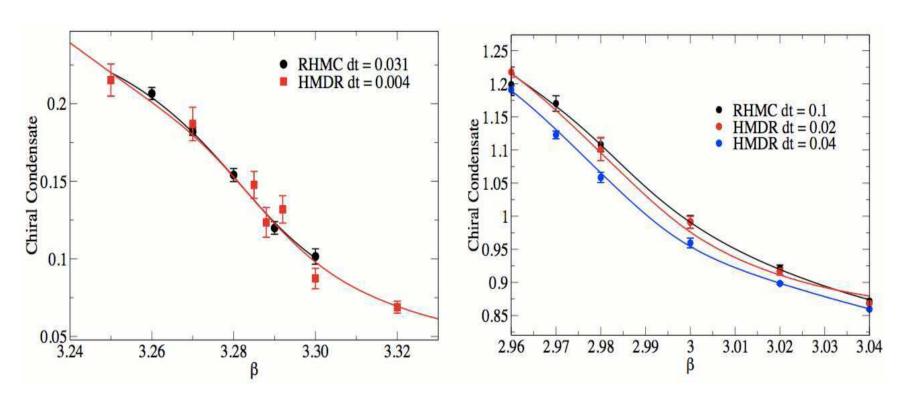
Rational Hybrid Monte Carlo (RHMC)

- R Algorithm necessary for realistic 2+1 flavors, but is inexact.
- RHMC (Clark + Kennedy) → Exact algorithm usable with any number of flavors.
- Problem with R Algorithm: No explicit form for $\left(\mathbf{M}^{\dagger}\mathbf{M}\right)^{-1/\mathbf{n}}$
- Solution: Use Rational Approximation.

$$\begin{aligned} \mathbf{Det}\left(\mathbf{M}^{\dagger}\mathbf{M}\right)^{\mathbf{1/n}} &= \int [\mathcal{D}\phi^{\dagger}][\mathcal{D}\phi] \ \exp\left(\phi^{\dagger}\mathbf{R^{2}}(\mathbf{M}^{\dagger}\mathbf{M}) \ \phi\right); \ \mathbf{R}(\mathbf{x}) = \mathbf{x^{-1/2n}} \end{aligned}$$
 Partial fraction expansion:
$$\mathbf{R}(\mathbf{x}) = \sum_{\mathbf{i}=1}^{\mathbf{m}} \frac{\alpha_{\mathbf{k}}}{\mathbf{x} + \beta_{\mathbf{k}}}$$

 Φ field can be introduced as in HMC Φ , Hamiltonian conserved during molecular dynamics evolution. No need to extrapolate to $\delta t \to 0$, just apply Metropolis test.

R vs. RHMC



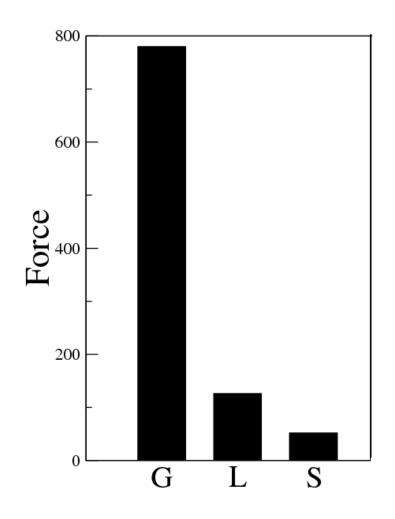
 8^3x^4 p4 staggered fermions, Nf = 3, ma = 0.01 (left), ma = 0.1 (right),

Much larger δt usable with RHMC than R, Step size dependence much weaker than 1/ma.

The Molecular Dynamics Integrator

- What limits the step size, δt?
- Need δH of reasonable size otherwise Metropolis step will not accept often enough.
- If $\mathbf{F} = \frac{\delta \mathbf{V}}{\delta \mathbf{U}}$ is too large, F δt is a poor approximation for the correct energy-conserving time evolution.
- $F_{gauge} \gg F_{fermions}$ but cost of calculating fermion force much greater than gauge force.
- Multiple time-scales (Sexton & Weingarten)

 $\mathbf{F_{gauge}}\delta\mathbf{t_{gauge}}\sim\mathbf{F_{fermion}}\delta_{\mathbf{fermion}}$



Closer look at Fermion Force

- Calculation of fermion force is most expensive part of HMD evolution because it requires a matrix inversion.
- Idea: Spectrum of Dirac operator is dominated by UV modes which are insensitive to m_q. However, it is the relatively few IR modes sensitive to m_q that drive up the condition number of M.
- UV modes contribute most to the F_{fermion}, but it is IR modes which make cost of molecular dynamics ~ 1/m_a
- Separate UV from IR so that the IR modes (which costs most but has relatively small force) can be done less often.
- Many ideas:
 - Hasenbusch "mass preconditioning"
 - Luscher "domain decomposition"
 - Peardon & Sexton "Polynomial Filtering"
 - Deflation, Multi-Grid

Hasenbusch mass preconditioning

Consider fermion determinant for a light quark flavor:

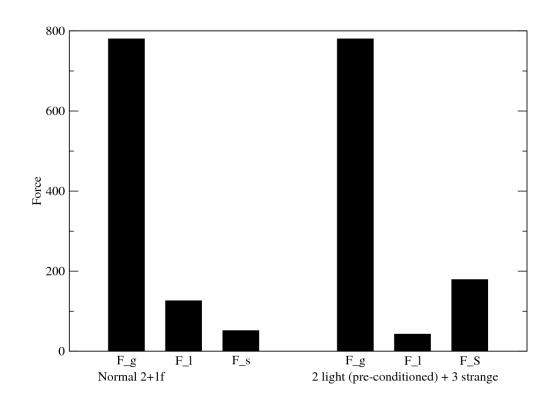
$$\mathbf{Det}\left(\mathbf{M}^{\dagger}(\mathbf{m_l})\mathbf{M}(\mathbf{m_l})
ight) = \mathbf{Det}\left(\mathbf{M}^{\dagger}(\mathbf{m_{pre}})\mathbf{M}(\mathbf{m_{pre}})
ight)\mathbf{Det}\left(rac{\mathbf{M}^{\dagger}(\mathbf{m_l})\mathbf{M}(\mathbf{m_l})}{\mathbf{M}^{\dagger}(\mathbf{m_{pre}})\mathbf{M}(\mathbf{m_{pre}})}
ight)$$

 $m_{pre} > m_l$: UV modes are relatively insensitive to quark mass, so dividing with $\mathbf{M}^{\dagger}(\mathbf{m_{pre}}\mathbf{M}(\mathbf{m_{pre}})$ effectively removes UV modes from Term 2, leaving only IR modes. Term 1 easier to invert.

$$\mathbf{lnZ} = \int [\mathcal{D}\phi_{\mathbf{i}}^{\dagger}][\mathcal{D}\phi_{\mathbf{i}}] \mathbf{exp} \left(\phi_{\mathbf{1}}^{\dagger} \frac{1}{\mathbf{M}^{\dagger}(\mathbf{m_{pre}})\mathbf{M}(\mathbf{m_{pre}})} \phi_{\mathbf{1}} + \phi_{\mathbf{2}}^{\dagger} \frac{\mathbf{M}^{\dagger}(\mathbf{m_{pre}})\mathbf{M}(\mathbf{m_{pre}})}{\mathbf{M}^{\dagger}(\mathbf{m_{l}})\mathbf{M}(\mathbf{m_{l}})} \phi_{\mathbf{2}} \right)$$

Calculate force from Φ_1 with time step δt_1 , Φ_2 with time step δt_2 so that $F_1 \delta t_1 \sim F_2 \delta t_2$

Hasenbusch mass preconditioning



- Hasenbusch preconditioning effectively removes most of the force contribution from the light quark part of the action
- Need extra (easier) inversions of the strange quark part.

Integrators

Hamiltonian:
$$\mathbf{H} = \sum_{\mathbf{i}} \frac{\mathbf{p_i^2}}{2} + \mathbf{S_g(U)} + \mathbf{S_F(U)} = \mathbf{T(p)} + \mathbf{V(U)}$$

$$\text{Define:} \quad \hat{\mathbf{Q}}(\mathbf{t}) = \exp\left(\mathbf{t}\mathbf{T}'(\mathbf{p})\frac{\partial}{\partial\mathbf{U}}\right); \quad \hat{\mathbf{P}}(\mathbf{t}) = \exp\left(-\mathbf{t}\mathbf{V}'(\mathbf{U})\frac{\partial}{\partial\mathbf{p}}\right)$$

$$\hat{\mathbf{Q}}(\Delta \mathbf{t})\mathbf{U}(\mathbf{t}) = \mathbf{U}(\mathbf{t} + \Delta \mathbf{t}); \quad \hat{\mathbf{P}}(\Delta \mathbf{t})\mathbf{p}(\mathbf{t}) = \mathbf{p}(\mathbf{t} + \Delta \mathbf{t})$$

Arbitrary symplectic integrators can be made from combinations of $\hat{\mathbf{Q}}, \hat{\mathbf{P}}$

Leapfrog (PQP) integrator:

$$\mathbf{\hat{G}_{LF}(t)} = \left(\mathbf{\hat{P}}(\delta \mathbf{t}/\mathbf{2})\mathbf{\hat{Q}}(\delta \mathbf{t})\mathbf{\hat{P}}(\delta \mathbf{t}/\mathbf{2})\right)^{\mathbf{t}/\delta \mathbf{t}}$$

Omelyan Integrator

Omelyan Integrator (Omelyan, de Forcrand, Takaishi):

$$\mathbf{\hat{G}_{Omelyan}(t)} = \left(\mathbf{\hat{Q}}(\lambda\delta\mathbf{t})\mathbf{\hat{P}}(\delta\mathbf{t}/\mathbf{2})\mathbf{\hat{Q}}((\mathbf{1}-\mathbf{2}\lambda)\delta\mathbf{t})\mathbf{\hat{P}}(\delta\mathbf{t}/\mathbf{2})\mathbf{\hat{Q}}(\lambda\delta\mathbf{t})\right)^{\mathbf{t}/\delta\mathbf{t}}$$

 λ is a tunable parameter. Empirically, for DWF $~\lambda pprox 0.22$

Like leapfrog, Omelyan is also second-order integrator, i.e. corrections of $O(\delta t^2)$, but tuned to give small corrections.

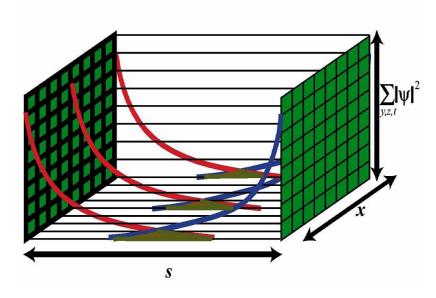
 δH for Omelyan integrator about order of magnitude smaller than leapfrog at fixed δt , but extra force calculation.

Net effect is approximately 50% gain in CPU cost.

Same formalism can be used for higher order integrators: $O(\delta t^n)$

Domain Wall Fermions

- Domain Wall Fermions more expensive than Wilson, staggered, but preserve exact chiral symmetry as Ls → ∞
- Four-dimensional chiral states bound to domain walls, mixing of chiral states suppressed by 5-D extent
- At strong coupling, residual chiral symmetry breaking is dominated by localized "lattice dislocations" – not well suppressed by increasing Ls.



Lattice dislocations correspond to near-zero modes of 4-D Wilson operator, $D_{Wilson}(M_5)$

Gap DWF

 Gap DWF (Vranas) – Explicitly Suppress these localized modes by adding extra term to Boltzmann weight:

$$\mathbf{Det}(\mathbf{M_{DWF}})\mathbf{exp}\left(-\mathbf{S_g}\right) \to \mathbf{Det}(\mathbf{D^2_{Wilson}}(\mathbf{M_5})\ \mathbf{Det}(\mathbf{M_{DWF}})\mathbf{exp}\left(-\mathbf{S_g}\right)$$

- States with small λ (which spoil chiral symmetry) are given an additional weight of λ^2 from added term $D_{Wilson}(M_5)$
- Introduction of 4-D Wilson Dirac Operator does not affect physics heavy quark mass only renormalizes bare parameters.
- Unfortunately, these same states drive topology change.
- Results in an infinite energy barrier for low-lying eigenstates to make zero-crossings that change topology.
- Need method that controls residual chiral symmetry breaking, but does not completely eliminate topological tunneling.

Twisted Gap?

Augment Boltzmann weight using twisted-mass Wilson fermions:

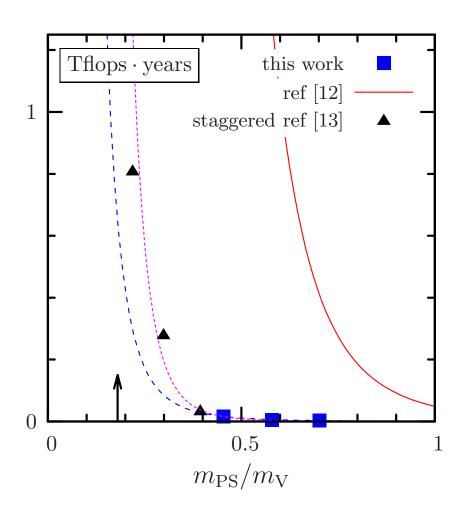
$$\mathbf{Det}(\mathbf{M_{DWF}})\mathbf{exp}\left(-\mathbf{S_g}\right) \to \mathbf{Det}(\frac{\mathbf{D_W^2(M_5)} + \epsilon^2}{\mathbf{D_W^2(M_5)} + \delta^2}) \ \mathbf{Det}(\mathbf{M_{DWF}})\mathbf{exp}\left(-\mathbf{S_g}\right)$$

- Choose ε small (but non-zero) so that small eigenvalue modes are suppressed but not completely eliminated → residual chiral symmetry breaking is under control, but topology changes is not eliminated.
- Choose $\delta > \varepsilon$ so that high-momentum modes are not affected.
- Currently under investigation by RBC
- May be useful for many flavor simulations where added fermions push the bare parameters to stronger coupling.

Scaling with N_f

- Lattice calculations with many flavors more difficult than normal QCD calculations.
- More flavors \rightarrow larger fermion forces that require the use of smaller step sizes with HMC: $\delta t \sim N_f^{-3/2}$
- To see "walking" behavior in many flavor QCD → two dynamically generated scales. Need a very large lattice box to correctly show behavior at both scales without significant distortion
- Recent proposal by LSD Collaboration:
 - ~2 TFlops for exploratory studies at $N_f = 4$, 6
 - Estimate of ~10 TFlops for careful study of finite volume effects, simulations with more flavors...

The Berlin Wall (revisited)



Plot from Jansen, et. al. with improved Wilson fermions.

Recent work by RBC suggests

(Christ Lattice 2007):

$$\mathbf{Cost} \sim \mathbf{L^4} rac{\langle \mathbf{ar{q}q}
angle}{\mathbf{m_l}}$$

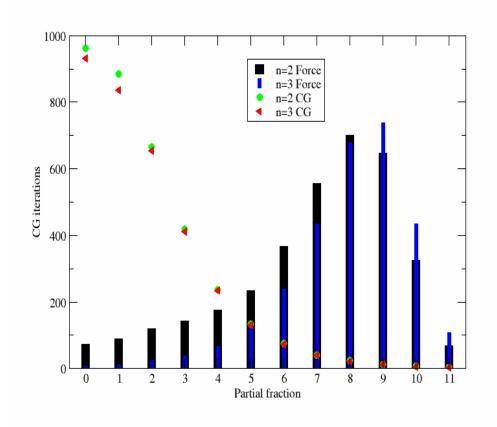
Calculations with realistic parameters feasible now with already-existing computational resources.

Conclusions

- Pessimistic estimates from 2001 did not account for algorithmic improvements.
- Severe scaling with quark masses is largely ameloriated with new techniques.
- Separation of scales: IR modes are computationally most costly, but were actually not the limiting factor for HMC.
- Many new techniques (mass preconditioning, domain decomposition, deflation) effectively separate IR and UV modes, allowing more "intelligent" HMC.
- Other methods (integrators, Gap DWF) also help.
- Arsenal of algorithms → on the cusp of realistic lattice calculations now, rather than 5-10 years from now,

BACKUP

Even Further...



Partial Fraction Expansion:

$$\mathbf{R}(\mathbf{x}) = \sum_{\mathbf{i} = \mathbf{1}} \mathbf{m} \frac{\alpha_{\mathbf{k}}}{\mathbf{x} + \beta_{\mathbf{k}}}$$

Terms with lightest poles (smallest β_k) are hardest to invert, convert relatively little to force.

Solve CG for lightest poles with less precision → small error in force for great CPU savings.