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Large-N volume reduction Eguchi
 Kawai `82

Uµ → Uµzµ ; zµ ∈ ZNb = (g2N)−1with
symmetric

 under

• Dyson-Schwinger Eqs.:

• Observables :

• Starting point : pure SU(N) on a single point.

1.
2. if ZN intact

Eig (Uµ) =
(
eip1

µ , eip2
µ , . . . , eipN

µ

)
attract and break of ZN

• However, weak-coupling analysis : Bhanot, Heller & Neuberger `82 (also later Kazakov & Migdal `82) 

〈
tr
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UµU†

ν

)
tr
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µUν

)〉
reduced

= 0



Alternatives to EK
Name of the game : cause p to repel each other

Quench the p’s to be uniform - the QEK

Twisted BC’s - the TEK                            but 

Partial reduction - L4 instead of 14 

Adjoint fermions - the AEK

Deform the action - the DEK 

BHN `82, Migdal `82,
Gross and Kitazawa `82,

Parisi `82, Bars `83, Okawa `82, 
Parsons `84, Carlson `83, Lewis 
‘84,Greensite and co. `83-`86  

Kovtun, Unsal and Yaffe `07

Unsal and Yaffe `08

Teper and Vairinhos `06,
Ishikawa et al.`07 

Gonzalez-Arroyo
& Okawa `82

Neuberger, Narayanan, Kiskis `04-`07



The QEK model
• Definition of the model :

Bhanot Heller & Neuberger `82,
(see also Migdal `82)

(I)

(II)

(III)

with

Λµ(p) =





eip1
µ 0 . . . 0

0 eip1
µ . . . 0

... . . . . . . 0
0 . . . . . . eipN

µ





and

invariant to pµ −→ pµ + 2πkµ/N ; kµ = 1, 2, . . . , N



Formal proofs

✓              Planar perturbation theory.

✓             W-loop’s Dyson-Schwinger equations.

Gross & Kitazawa `82,
Parisi `82

• Perturbation theory : integrands of all planar diagrams in gauge theory.

• ∫dp ⇒ all planar diagrams in gauge theory

〈Wopen〉QEK =
∫

dp 〈Wopen〉p = 0

• ∫dp is ZN invariant 

• But   Wopen  is not and so

pµ −→ pµ + 2πkµ/N ; kµ = 1, 2, . . . , N



Is that enough ? No ! due to non-perturbative effects. 

∃ Vμ ∈ SU(N)
 such that :

Vµ





eip1
µ 0 · · · 0

0 eip2
µ · · · 0

...
. . .

...
0 0 · · · eipN

µ




V †

µ =





eipσ(1)
µ 0 · · · 0
0 eipσ(2)

µ · · · 0
...

. . .
...

0 0 · · · eipσ(N)
µ





• Focus on one point in                   (imagine N=6)

• “Locking” occurs in weak-coupling : minima defined by piμ-piν≅αμν

|Mµ,−ν |locked ! 1

∫ ∏

µ

∏

i

dpi
µ

6
non

perturbatively

1 2 3 4 5

pxi=1,2,3,4,5,6 :
12 3 456

13 456 2
pyi=1,2,3,4,5,6 :

0 2π 0 2π

13 4 5 62

(Mµ,−ν)locked ! e+iαµν



Implications on Gross-Kitazawa-Parisi analysis 

Planar perturbation theory

O(1) 0 0
= =∼

DS equations: consider 

• Perturbatively fix p and integrate uniformly over 4D BZ of p. 

• Non-perturbatively can get locking and p integral is not uniform.

∫
dp

〈
MµνM"

µν

〉
p

︸ ︷︷ ︸
=

∫
dp 〈Mµν〉p

︸ ︷︷ ︸

∫
dp

〈
M"

µν

〉
p

︸ ︷︷ ︸
+O(1/N)

, because 〈Mµν〉QEK =
〈
M"

µν

〉
QEK

= 0
〈
MµνM"

µν

〉
QEK

= 0

but if locked :

usually :

Wopen = Mµ,ν = tr (UµUν) /N



Does locking occurs ? Non-perturbative studies

1. Fix p, do MC to evaluate

2. Integrate over p

1. N=20,30,40,50,80,100,125,150,200, @ 100K measurements.

2. Used : Metropolis/Hybrid Heat Bath/Heat Bath/Over-relaxations.

3. Various choices for p distributions (uniform, “clock” momenta, “BARS”)



Results : MC lattice studies of QEK

b

|M|

SU(40)

(obtained by self-averaging)



Results : MC lattice studies of QEK
SU(40), b=0.5

Real(Mμν)

Similar results ∀N, b, dp

Mμν in complex plane



Evidence for breakdown of quenched large-N reduction

• Weak-coupling : breakdown of Gross-Kitazawa-Parisi :

• p’s chosen by non-perturbatively are locked, and not what your put in.

• Monte-Carlo studies of N≤200 :

1. Locking.

2. Large discrepancies in plaquette of QEK vs. gauge.

3. Large discrepancies in strong-to-weak transition coupling:

• btransition = 0.3148(2) in QEK

• bbulk ≅ 0.36



Other Large-N reductions on the lattice
• DEK : deform Yang-Mills action 

• Numerically hard : naively scales like N7 !!!!! 

• partial DEK : for example 2+1 dimensions

• AEK : dynamical adjoint fermions.

flips sign and p’s reject

Kovtun, 
Unsal 

and Yaffe `07

Unsal and Yaffe `08

SDEK = SYM +
∫ 1/T

0
dτ

∑

n1,n2

an1,n2 |tr (Un1
1 (τ) · Un2

2 (τ))|2

SDEK = SYM +
∑

n1,n2
n3,n4

an1,n2,n3,n4

∣∣tr
(
Unµ

µ · Unν
ν · · · Unρ

ρ

)∣∣2

scales like 
N3

U3(τ + 1)

U3(τ)
U2(τ)

U1(τ)



Minimizing FQEK(pσ(a)
µ ) ∼

∑

a<b

log

[
∑

µ

sin2

(
pσ(a)

µ − pσ(b)
µ

2

)]



Results : MC lattice studies of QEK

self averaging



Results : MC lattice studies of QEK



Results : MC lattice studies of QEK
self averaging



Results : MC lattice studies of QEK

self-averaging, p = locked start

SU(80), b=0.4



Results : MC lattice studies of QEK
SU(80), b=0.4

self-averaging, p = locked startEach 5000 have randomize p 

QEK slowly tunnels to the locked state (20K updates)



The QEK model

Why ? (Intuitive) E.g.  Migdal `82

(I)

(II)

(III)

The original EK model

(I)

(II)

(III)

Uniform : Non-uniform:

∼ e−FEK(p)



W-loop’s Dyson-Schwinger Equations

• Do a change of variables Uµ → Uµ + iO(ε Uµ)

• Again get source terms, which with the p-integral are

with

Because vanishes.

• These are zero if quenched large-N factorization holds



Quenched factorization - why ?
?

• Perturbation theory to (L+M)-loop order

• For most terms in the sum, with the exception of O(1/N) have
(a1, a2, a3, . . . , aL) != (b1, b2, b3, . . . , bM )



Free energy along path



Plaquette vs MC time

SU(40)
at

b=0.5

SU(80)
at

b=0.4

fixed p randomize p every 5000



Tunneling event unlocked to locked

SU(40)
at

b=0.5

plaquette :



Non-perturbative locking
SU(40,80) at b=0.5, uniform dist.

Real(Mμν) Mμν in complex plane



SU(16,81) at b=0.7, dist. a la Bars

Real(Mμν), SU(16) Mμν in complex plane, SU(81)

Non-perturbative locking



Transition is very strongly 1st order

• FIrst implementation of  Wang-Landau algorithm for gauge theory

Large-N transition at

b = 0.3148(2) QEK

b≅0.36 gauge theory


