### High Performance Computing at Livermore, Petascale and Beyond Presentation to: LSD, May 2, 2008 Livermore, CA



#### Dr. Mark K. Seager ASC Platforms Lead at LLNL

#### UCRL-PRES-403698

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

### **Talk Overview**



- Current Computing Environments at LLNL
  - Systems & Simulation Environment
- Peta and Exascale Programmatic Drivers
  - Weapons Physics for Know Unknowns
  - Uncertainty Quantification for Existing Stockpile
- Sequoia Target Architecture
- Comments on evolutionary changes required for petascale programming model



## Our platform strategy is to straddle multiple technology curves to appropriately balance risk and cost/performance benefit



#### Three complementary curves...

- 1. Delivers to today's stockpile's demanding needs
  - Production environment
  - For "must have" deliverables now
- 2. Delivers transition for next generation
  - "Near production", riskier environment
  - Capability system for risk tolerant programs
  - Capacity systems for risk averse programs
- 3. Delivers affordable path to petaFLOP/s
  - Research environment, leading transition to petaflop systems?
  - Are there other paths to a breakthrough regime by 2006-8?

#### Any given technology curve is ultimately limited by Moore's Law



NNSA has a sterling record of delivering production computers, setting the standard for national supercomputing user facilities Ast



ASC White [2001]: First shared tri-laboratory resource came in 23% over required peak





ASC Purple [2005]: First NNSA User Facility came in \$50M under budget and is routinely 90+% utilized



Linux Clusters Curve 2 leveraged strategic tri-labs institutional investments to create huge efficiency for institution and programs with scalable COTS and Open Source SW approach



- LLNL institutional investments filled gaps in Linux cluster technology
  - LLNL Early Lustre adoption leading to integrated simulation environment
  - LLNL SLURM and Linux Distro development for manageability
  - LLNL Thunder was TOP500(23) #2
- Real world synergy
  - LLNL Peloton SUs procurement for three institutional clusters
  - Enabled >50% TCO improvement for ASC



# America's dominance in simulation today is the result of NNSA's investments and its astute technical choices



Today's Top 12 supercomputers depended on NNSA investments

37% of the Top 500 systems today depended on ASC technology investments

BG/L is #1 for the seventh consecutive Top 500 list Four Gordon Bell prizes in three years





World's first low-power consuming supercomputer reduces energy footprint by 75%







### Livermore Currently Has the Worlds Best Computing Infrastructure, by a Wide Margin



|                                  | Top500 |         | Manufacturer       |         | Interconne | Node    |         | Memory | Peak    |
|----------------------------------|--------|---------|--------------------|---------|------------|---------|---------|--------|---------|
| System                           | Rank   | Program | / Model            | OS      | ct         | S       | CPUs    | (GB)   | TFLOP/s |
| Unclassified Network (OCF) 98.37 |        |         |                    |         |            |         |         |        |         |
| uBG/L                            | TBD    | ASC     | IBM                | Linux   | IBM        | 32,768  | 65, 536 | 17,408 | 183.50  |
| Atlas (Peloton)                  | 29     | M&IC    | Appro              | Linux   | IB DDR     | 1,152   | 9,216   | 18,432 | 44.24   |
| Thunder                          | 47     | M&IC    | California Digital | Linux   | Elan4      | 1,024   | 4,096   | 8,192  | 22.94   |
| Zeus (Peloton)                   | 241    | M&IC    | Appro              | Linux   | IB DDR     | 288     | 2,304   | 4,608  | 11.06   |
| ALC                              | 414    | ASC     | IBM xSeries        | Linux   | Elan3      | 960     | 1,920   | 3,840  | 9.22    |
| uPurple                          |        | ASC     | IBM SP             | AIX     | Federation | 108     | 864     | 3,456  | 6.57    |
| Yana                             |        | M&IC    | Appro              | Linux   | N/A        | 80      | 640     | 1,600  | 3.07    |
| Prism                            |        | ASC     | GraphStream        | Linux   | IB SDR     | 128     | 256     | 2,048  | 1.23    |
| Snowbert                         |        | M&IC    | IBM SP             | AIX     | Colony     | 8       | 64      | 32     | 0.06    |
| Classified Network (SCF) 978.05  |        |         |                    |         |            |         |         |        |         |
| BlueGene/L                       | 1      | ASC     | IBM                | Linux   | IBM        | 106,496 | 212,992 | 69,632 | 596.38  |
| BlueGene/L v3                    | TBD    | ASC     | IBM                | Linux   | IBM        | 65, 536 | 131,072 | 49,152 | 367.00  |
| Purple                           | 11     | ASC     | IBM SP             | AIX     | Federation | 1,532   | 12,288  | 49,152 | 93.39   |
| Juno (TLCC)                      | TBD    | ASC     | Appro              | Linux   | IB DDR     | 1,152   | 18,432  | 36,864 | 162.20  |
| Eos (TLCC)                       | TBD    | ASC     | Appro              | Linux   | IB DDR     | 288     | 4,608   | 9,216  | 40.55   |
| Minos (Peloton)                  | 38     | ASC     | Appro              | Linux   | IB DDR     | 864     | 6,912   | 13,824 | 33.18   |
| Rhea (Peloton)                   | 61     | ASC     | Appro              | Linux   | IB SDR     | 576     | 4,608   | 9,216  | 22.12   |
| Lilac                            | 449    | ASC     | IBM xSeries        | Linux   | Elan3      | 768     | 1,536   | 3,072  | 9.19    |
| UМ                               |        | ASC     | IBM p655           | AIX     | Federation | 128     | 1,024   | 2,048  | 6.14    |
| ŪV                               |        | ASC     | IBM p655           | AIX     | Federation | 128     | 1,024   | 2,048  | 6.14    |
| Норі                             |        | ASC     | Appro              | Linux   | N/A        | 80      | 640     | 1,488  | 3.07    |
| Gauss                            |        | ASC     | GraphStream        | Linux   | IB SDR     | 256     | 512     | 3,072  | 2.46    |
| Ace                              |        | ASC     | Rackable System    | ELinux  | N/A        | 176     | 352     | 704    | 1.97    |
| Queen                            |        | ASC     | Rackable System    | & Linux | N/A        | 63      | 126     | 252    | 0.71    |
| Tempest                          |        | ASC     | IBM Power5         | AIX     | N/A        | 12      | 84      | 480    | 0.55    |

### **Open Computing Facility Simulation Environment is Based on Lustre**







### **Predictive simulation roadmap through exascale**



# Predicting stockpile performance drives five separate classes of petascale calculations

- 1. Quantifying uncertainty (for all classes of simulation)
- 2. Identify and model missing physics (e.g., boost)
- 3. Improving accuracy in material property data
- 4. Improving models for known physical processes
- 5. Improving the performance of complex models and algorithms in macro-scale simulation codes

Each of these mission drivers require petascale computing

### Sequoia is the key integrating tool for Stockpile Stewardship in 2011-2015 time frame



# Sequoia Target Architecture Leverages LLNL Success with Five Generations of ASC Platforms

#### Sequoia Peta-Scale Architecture

- Smoothly integrates into LLNL environment
- Architecture suitable for weapons science and Integrated Design Codes (IDC)
  - 24x Purple for design codes in support of certification
  - 20-50x for weapon science requirements
- Risk Reduction woven into every aspect of Sequoia
  - Associated R&D contracts accelerate technology development
  - Targets and Off-ramps allow innovation with shared risk
- ASC HQ supports: \$250M Total Project Cost
  - Sequoia, ID system and R&D



### Each year we get faster more processors





- Historically: Boost singlestream performance via more complex chips, first via one big feature, then via lots of smaller features.
- Now: Deliver more cores per chip.
- The free lunch is over for today's sequential apps and many concurrent apps (expect some regressions). We need killer apps with lots of latent parallelism.
- A generational advance >OO is necessary to get above the "threads+locks" programming model. From Herb Sutter 14

<hsutter@microsoft.com>

### How many cores are you coding for?



Microprocessor parallelism will increase exponentially (2x/1.5yr) in the next decade





# DRAM component density is doubling every 3 years





## Memory power projection (Quad-rank DIMM)



## Application Programming Model Requirements

- MPI Parallelism at top level
  - Static allocation of MPI tasks to nodes and sets of cores+threads
- Effectively absorb multiple cores+threads in MPI task
- Support multiple languages: C/C++/Fortran03
- Allow different physics packages to express node concurrency in different ways

### **Unified Nested Node Concurrency**





- 1) Pthreads born with MAIN
- 2) Only Thread0 calls functions to nest parallelism
- 3) Pthreads based MAIN calls OpenMP based Funct1
  - 4) OpenMP Funct1 calls TM/SE based Funct2
  - 5) Funct2 returns to OpenMP based Funct1
  - 6) Funct1 returns to Pthreads based MAIN
- MPI Tasks on a node are processes (one shown) with multiple OS threads (Thread0-3 shown)
- Thread0 is "Main thread" Thread1-3 are helper threads that morph from Pthread to OpenMP worker to TM/SE compiler generated threads via runtime support
- Hardware support to significantly reduce overheads for thread repurposing and OpenMP loops and locks





- The petascale (in aggregate) era is here!
- LLNL has a roadmap through Exascale
- Next generation Sequoia platform will enable stockpile stewardship program with a 20 petaFLOP/s simulation environment

