Conformal Technicolor

Markus A. Luty UC Davis

Lattice Gauge Theory for LHC Workshop May 2008

Strong Electroweak Breaking

Most elegant solution of the hierarchy problem

$$M_W \sim M_0 e^{-8\pi^2/g_0^2} \ll M_0$$

But...
• Precision electroweak data
May require $S < 0$
• Flavor
 $y\bar{Q}_L u_R H \rightarrow \frac{1}{M^{d-1}} \bar{Q}_L u_R \mathcal{O}$
• Why not e.g. $\frac{1}{M^2} (\bar{Q}_L u_R)^2$? FCNCs...

• $M \sim {
m TeV}$ for top mass

Making it Realistic

• FCNCs

Just add SUSY! ("Bosonic technicolor" S. Samuel 1990)

SUSY flavor problems solved for $M_{\rm SUSY} \gtrsim 10 {
m ~TeV}$

• Strong top dynamics

Requires physics beyond QCD-like technicolor at the weak scale

```
Conformal symmetry!
```

Conformal Technicolor

$$\frac{1}{M^{d-1}}\bar{Q}_L t_R \mathcal{O} \quad \mathsf{OK} \text{ if } d \simeq 1$$

- QCD-like technicolor: d = 3 $\Lambda_t \sim 2$ TeV
- "Walking" technicolor: d = 2 $\Lambda_t \sim 6 \text{ TeV}$ Conformal field theory: d > 1 $\Lambda_t \sim \text{TeV} \left(\frac{\text{TeV}}{m_t}\right)^{1/(d-1)}$ d < 2: $\mathcal{O}^{\dagger}\mathcal{O}$ relevant?

 $\dim(\mathcal{O}^{\dagger}\mathcal{O}) \neq 2d$ unless

- Weak coupling $d \rightarrow 1$
- Large N

MAL, T. Okui 2004

Conformal Technicolor

Want e.g. $N \sim 2$ $d \simeq 1.2 \Rightarrow \Lambda_t \sim 10^4 \text{ TeV}$

Is this possible?

- $d = \frac{6}{5}$ in stringy AdS/CFT construction
- RS constructions for $d\geq 2$

...but $N\gg 1$

Need non-perturbative calculations to check dynamical assumptions

Lattice!

Electroweak Symmetry Breaking E.g. $SU(2)_{\rm CTC} \times SU(3)_{\rm C} \times SU(2)_{\rm W} \times U(1)_{\rm Y}$ $\psi_L \sim (2, 1, 2)_0$ $\psi_R \sim (2, 1, 1)_{\frac{1}{2}}$ $\psi'_R \sim (2,1,1)_{-\frac{1}{2}}$ $\begin{array}{c} \chi_L \sim (2, 1, 1)_0 \\ \chi_R \sim (2, 1, 1)_0 \end{array} \right\} \times K$

+ explicit mass term $m_{\chi} \sim {
m TeV}$

Below m_{χ} expect same universality class as QCD with 2 massless flavors (minimal technicolor)

Dynamics at TeV not QCD-like. S < 0?

Hierarchy Problem?

 $m_\chi \ll M_{\rm Pl}$ technically natural Hierarchy problem similar to why $m_\nu \ll M_W$ E.g. see-saw mechanism:

QCD Conformal Window

Naive generalization: $0 < b_1 < \frac{3}{2} \Rightarrow 3.25 < \frac{N_f}{N_c} < 5.5$

Hunting CFTs on the Lattice

Assume lattice can simulate QCD with good separation of scales

 $L^{-1} \ll m_q \ll \Lambda \ll a^{-1}$

Look for finite volume effects

$$\mathcal{O} = \bar{\psi}\psi$$
 or $\operatorname{tr}(F^{\mu\nu}F_{\mu\nu})$
 $\langle \mathcal{O} \rangle \sim e^{-ML} + \text{ independent of } I$
 $M = \operatorname{mass gap}$

In both confining and conformal phases, mass gap determined by m_q

Hunting CFTs on the Lattice

Confinement: $M = m_{\pi} \sim (\Lambda m_q)^{1/2}$

Conformal:

$$\mu \gg \Lambda : \quad \frac{g^2(\mu)}{16\pi^2} \ll 1 \quad \dim(\bar{\psi}\psi) \simeq 3$$
$$\mu \ll \Lambda : \quad g(\mu) \simeq g_* \quad \dim(\bar{\psi}\psi) = 3 - \gamma$$
$$m_q(\mu) \sim \mu \frac{m_q}{\Lambda} \left(\frac{\Lambda}{\mu}\right)^{1+\gamma}$$

Gets strong when $m_q(\mu) \sim \mu$

$$M \sim \Lambda \left(\frac{m_q}{\Lambda}\right)^{1/(1+\gamma)}$$

Hunting CFTs on the Lattice

Measure γ from scaling L, m_q

$$\langle \mathcal{O} \rangle \sim e^{-Lm_q^{1/(1+\gamma)}}$$

Gives anomalous dimension relevant for top mass

$$\mathcal{L} \sim \frac{1}{\Lambda_t^{2-\gamma}} \bar{t} t \, \bar{\psi} \psi$$
$$m_t \sim \Lambda \left(\frac{\Lambda}{\Lambda_t}\right)^{2-\gamma}$$

 $\gamma>1~{\rm for~conformal~technicolor}$

Falsifiable!

Conclusions

- Conformal technicolor is a compelling paradigm for LHC physics
- Lattice calculations can falsify simple models
- Motivates further lattice exploration of CFTs
 - Anomalous dimensions
 - ${\boldsymbol{S}}$ parameter
 - Hadron spectrum

