Help Wanted: A DEWSB Wish List

R. Sekhar Chivukula Michigan State University

Lattice Gauge Theory for the LHC May 2-3, 2008

An Experimenter's Wishlist

Missing many needed NLO computations

Campbell

An experimenter's wishlist

Hadron collider cross-sections one would like to know at NLO Run II Monte Carlo Workshop, April 3

		Tiuli ii Monte Gano Workanop, April 2001		
Single boson	Diboson	Triboson	Heavy flavour	
$W + \leq 5j$	$WW + \leq 5j$	$WWW + \leq 3j$	$t\bar{t} + \leq 3j$	
$W + b\overline{b} + \leq 3j$	$WW + b\overline{b} + \leq 3j$	$WWW + b\overline{b} + \leq 3j$	$t\bar{t} + \gamma + \leq 2j$	
$W + c\overline{c} + \leq 3j$	$WW + c\overline{c} + \leq 3j$	$WWW + \gamma \gamma + \leq 3j$	$t\overline{t} + W + \leq 2j$	
$Z + \leq 5j$	$ZZ + \leq 5j$	$Z\gamma\gamma + \leq 3j$	$t\overline{t} + Z + \leq 2j$	
$Z + b\overline{b} + \leq 3j$	$ZZ + b\overline{b} + \leq 3j$	$WZZ + \leq 3j$	$t\bar{t} + H + \leq 2j$	
$Z + c\overline{c} + \leq 3j$	$ZZ + c\overline{c} + \leq 3j$	$ZZZ + \leq 3j$	$t\overline{b} + \leq 2j$	
$\gamma + \leq 5j$	$\gamma\gamma + \leq 5j$		$b\overline{b} + \leq 3j$	
$\gamma + b\overline{b} + \leq 3j$	$\gamma\gamma + b\overline{b} + \leq 3j$			
$\gamma + c\overline{c} + \leq 3j$	$\gamma\gamma + c\overline{c} + \leq 3j$			
	$WZ+\leq 5j$			
	$WZ + b\bar{b} + \leq 3j$			
	$WZ + c\overline{c} + \leq 3j$			
	$W_{\gamma} + \leq 3j$			
	$Z\gamma + \leq 3j$			

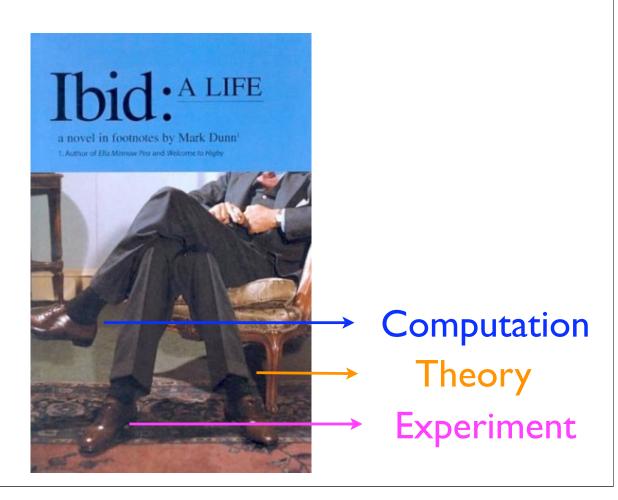
7 years on, and none finished ...

More realistic

NLO calculation priority list from Les Houches 2005 G. Heinrich and J. Huston

$\begin{array}{c} \text{process} \\ (V \in \{Z, W, \gamma\}) \end{array}$	relevant for	
1. $pp \rightarrow VV + \text{jet}$ 2. $pp \rightarrow H + 2 \text{jets}$ 3. $pp \rightarrow t\bar{t}b\bar{b}$ 4. $pp \rightarrow t\bar{t} + 2 \text{jets}$ 5. $pp \rightarrow VVb\bar{b}$ 6. $pp \rightarrow VV + 2 \text{jets}$ 7. $pp \rightarrow V + 3 \text{jets}$ 8. $pp \rightarrow VVV$	$t\bar{t}H$, new physics H production by vector boson fusion (VBF) $t\bar{t}H$ $t\bar{t}H$ $VBF \rightarrow H \rightarrow VV$, $t\bar{t}H$, new physics $VBF \rightarrow H \rightarrow VV$ various new physics signatures SUSY trilepton	* * + *

pp->bBbB pp->4 jets gg->W*W*

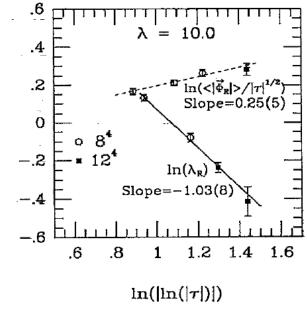

(added in 2007)

*completed since list + people are working

What is a realistic goal for BSM/DEWSB Lattice Calculations in the next decade?

"Computation has become an important tool throughout the physical sciences. Computer simulations can bridge intellectual gaps, such as the relationship between quantum-scale models and continuum-scale models of a physical process or material; moreover, computer simulations can be the most convenient channel for communications from theory to the design of experiments."

NSF Theory Workshop Report, 2004


Lattice Contribution to EWSB

Higgs Lagrangian:
$$\frac{1}{2} \text{Tr} \left(D^{\mu} \Phi D_{\mu} \Phi^{\dagger} \right) + \frac{\lambda}{4} \left(\text{Tr} \left(\Phi \Phi^{\dagger} \right) - v^2 \right)^2$$

Triviality Problem ...

$$\Rightarrow \beta = \frac{3\lambda^2}{2\pi^2} > 0$$

$$\lambda(\mu) < \frac{3}{2\pi^2 \log \frac{\Lambda}{\mu}} .$$

Kuti, et. al. PRL 61 (1988) 678

Dashen & Neuberger PRL 50 (1983) 1897

Technicolor: <u>Higgsless since 1976!</u>

Eliminate Scalars: Electroweak gauge symmetry broken by the nonzero expectation value of a fermion bilinear, driven by new strong interactions.

Understanding of strongly-interacting gauge theories is extremely limited ⇒ theories constructed by analogy!

(New Models in this decade from Extra D)

Strong Dynamics/Technicolor

 $SU(N_{TC})$ strong/confining theory,

$$\Psi_L = \left(\begin{array}{c} U \\ D \end{array} \right)_L \qquad U_R, D_R$$

with massless fermions

$$\begin{array}{c} \mathbf{g}_{\mathrm{TC}} \\ \hline \mathbf{U}, \mathbf{D} \end{array} \\ \begin{array}{c} \overline{\mathbf{U}}, \overline{\mathbf{D}} \\ \hline \end{array} \\ \rightarrow \langle \overline{\boldsymbol{U}}_{\boldsymbol{L}} \boldsymbol{U}_{\boldsymbol{R}} \rangle = \langle \overline{\boldsymbol{D}}_{\boldsymbol{L}} \boldsymbol{D}_{\boldsymbol{R}} \rangle \neq 0 \end{array}$$

• Pions: $\pi^{\pm}, \pi^0 \Leftrightarrow W_L^{\pm}, Z_L$

(We know too much ... this simplest theory is ruled out!)

Weinberg (1976) & Susskind (1979)

Fermion Masses & ETC Interactions

Extended Technicolor Interactions — Connect chiral-symmetries of TFs to quarks & leptons.

$$\begin{array}{c} \text{massless} & \\ \end{array} \begin{array}{c} \left(\begin{array}{c} \mathbf{f} \\ \mathbf{T} \end{array}\right) \\ \end{array} \\ \begin{array}{c} \Psi_{\mathrm{L}} \\ \end{array} \begin{array}{c} \Psi_{\mathrm{L}} \\ \end{array} \begin{array}{c} q_{\mathrm{R}} \\ \Psi_{\mathrm{L}} \end{array} \Rightarrow \frac{g_{ETC}^2}{M_{ETC}^2} (\overline{\Psi}_L U_R) (\overline{q}_R q_L) \\ \end{array} \\ m_q & \approx \frac{g_{ETC}^2}{M_{ETC}^2} \langle \overline{U}U \rangle_{ETC} \end{array}$$

Dimopoulos and Susskind & Eichten and Lane (1979)

$$\langle \overline{U}U\rangle_{ETC} = \langle \overline{U}U\rangle_{TC} \exp\left(\int_{\Lambda_{TC}}^{M_{ETC}} \frac{d\mu}{\mu} \gamma_m(\mu)\right)$$

For QCD-like TC ("precociously" asymptotically free), γ_m is small over this range:

$$\langle \overline{U}U \rangle_{ETC} \approx \langle \overline{U}U \rangle_{TC} \approx 4\pi F_{TC}^3$$

$$\frac{M_{ETC}}{g_{ETC}} \approx 40 \,\text{TeV} \left(\frac{F_{TC}}{250 \,\text{GeV}}\right)^{\frac{3}{2}} \left(\frac{100 \,\text{MeV}}{m_q}\right)^{\frac{1}{2}}$$

FCNCs and Walking Technicolor

Quark mixing implies transitions between different generations: $q \to \Psi \to q'$. ETC algebra:

$$[\overline{q}\gamma\Psi,\overline{\Psi}\gamma q']\supset \overline{q}\gamma q'.$$

 $|\Delta S| = 2$ interactions:

$$\mathcal{L}_{|\Delta S|=2} = \frac{g_{ETC}^2 \,\theta_{sd}^2}{M_{ETC}^2} \,\left(\overline{s}\Gamma^{\mu}d\right) \,\left(\overline{s}\Gamma'_{\mu}d\right) + \text{h.c.}$$

$$\Delta M_K < 3.5 \times 10^{-12} \text{ MeV} \Rightarrow$$

$$\frac{M_{ETC}}{g_{ETC} \sqrt{\text{Re}(\theta_{sd}^2)}} > 600 \text{ TeV}$$

$$m_{q,\ell} \simeq \frac{g_{ETC}^2}{M_{ETC}^2} \langle \overline{T}T \rangle_{ETC} < \frac{0.5 \text{ MeV}}{N_D^{3/2} \theta_{sd}^2}$$

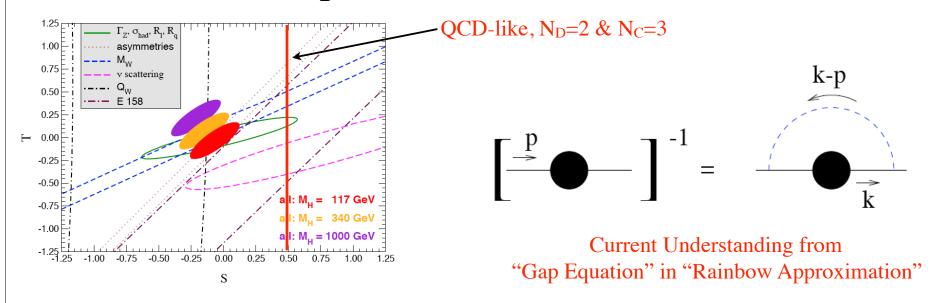
Difficult to get s & c, let alone b & t!

 \Rightarrow TC Dynamics is NOT like QCD.

Walking Technicolor

If $\beta(\alpha_{TC}) \simeq 0$ all the way from Λ_{TC} to M_{ETC} , i.e. if the TC-coupling "walks" $\Rightarrow \gamma_m(\mu) \cong 1$

$$m_{q,l} = \frac{g_{ETC}^2}{M_{ETC}^2} \times \left(\langle \overline{T}T \rangle_{ETC} \cong \langle \overline{T}T \rangle_{TC} \frac{M_{ETC}}{\Lambda_{TC}} \right)$$


 $FCNCs \Rightarrow M_{ETC}/\Lambda_{TC} \gtrsim 100 - 1000$

$$m_{q,l} \lesssim \frac{50 - 500 \, {
m MeV}}{N_D^{3/2} heta_{sd}^2}$$

enough to accommodate s and c quarks.

Does $\gamma_m = 1$ in a walking theory?

- Chiral symmetry breaking in an approximately conformal theory
- Large anomalous dimension of $\bar{\psi}_L \psi_R$
- Can we calculate αS ?
- What is the spectrum? PNGB masses?

PDG2006: Erler and Langacker

Extended TechniColor

$$SU(N_{TC}+3)$$

$$\Lambda_1 \qquad \downarrow \qquad m_1 \approx \frac{4\pi F^3}{\Lambda_1^2}$$

$$SU(N_{TC}+2)$$

$$\Lambda_2 \qquad \downarrow \qquad m_2 \approx \frac{4\pi F^3}{\Lambda_2^2}$$

$$SU(N_{TC}+1)$$

$$\Lambda_3 \qquad \downarrow \qquad m_3 \approx \frac{4\pi F^3}{\Lambda_3^2}$$

$$SU(N_{TC})$$

Self-breaking through "tumbling":

"Most Attractive Channel"

Chiral Symmetry Breaking

@ Critical Coupling

Does tumbling occur, and in the pattern predicted by this method?

Top Quark Mass Generation

$$\begin{array}{c|c} \Psi_{\rm l} \\ Q_{\rm l} \end{array} \begin{array}{c} {\rm ETC} \\ \end{array} \begin{array}{c} {\rm t_{\rm r}} \\ U_{\rm r} \end{array} \Rightarrow \frac{g_{ETC}^2}{M_{ETC}^2} (\overline{\Psi}_L U_R) (\overline{t}_R Q_L) \end{array}$$

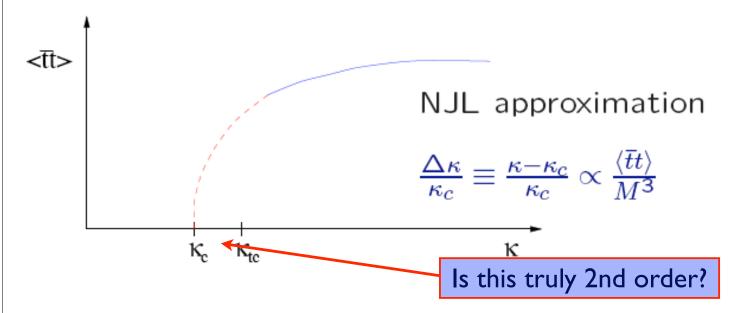
$$m_t \approx \frac{g_{ETC}^2}{M_{ETC}^2} \langle \overline{U}U \rangle_{ETC}$$

$$\frac{M_{ETC}}{g_{ETC}} \approx 1 \,\text{TeV} \left(\frac{F_{TC}}{250 \,\text{GeV}}\right)^{\frac{3}{2}} \left(\frac{175 \,\text{GeV}}{m_t}\right)^{\frac{1}{2}}$$

Are new interactions required to explain top-quark mass?

Topcolor-Assisted Technicolor[†] (TC2)

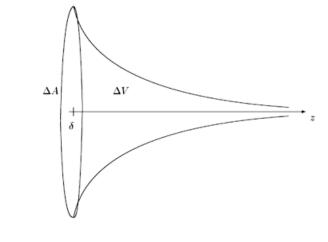
- Strong Technicolor dynamics at 1 TeV dynamically generates most of EWSB.
- Extended Technicolor dynamics at scales much higher than 1 TeV generate the light quark and lepton masses.
- Strong Topcolor dynamics also at a scale of 1 TeV generates $\langle \bar{t}t \rangle \neq 0$, $m_t \sim 170$ GeV.


Can we realize the NJL dynamics?

$$SU(3)_h \times SU(3)_\ell \xrightarrow{M} SU(3)_{QCD}$$
 where (t,b) feel the first SU(3) and (u,d,c,s) feel the second

Below the scale M

massive topgluons exchanged by top quarks


•
$$\mathcal{L} \supset -\frac{4\pi\kappa}{M^2} \left(\overline{t}\gamma_{\mu}\frac{\lambda^a}{2}t\right)^2$$

Note:
M >> ITeV
implies fine
tuning

AdS/CFT Duality

Conjecture: Equivalence of 5D theory in AdS and 4D CFT

$$ds^{2} = \left(\frac{R}{z}\right)^{2} \left[\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^{2}\right]$$
$$R < z < R'$$

UV ----- IR

NB: Rescaling Invariance!

Strong evidence for N=4 SUSYYM string theory on AdS

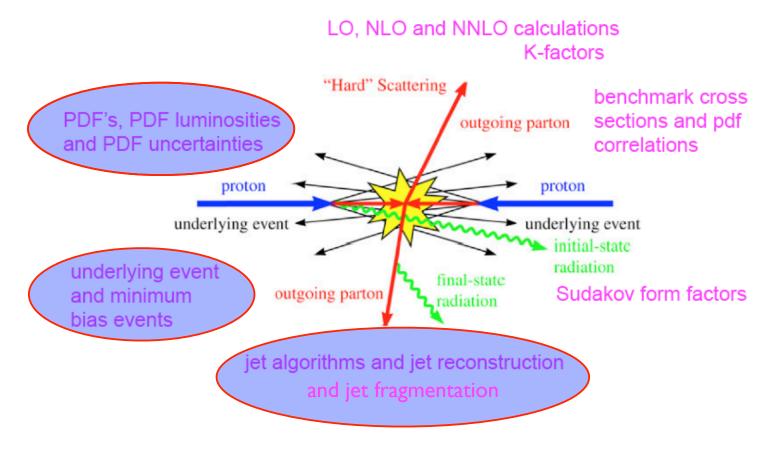
Strongly-coupled CFT ⇔ Weakly-coupled 5D Theory!

AdS/CFT Dictionary

Bulk of AdS	\leftrightarrow	CFT
Coordinate (z) along AdS	\longleftrightarrow	Energy scale in CFT
Appearance of UV brane	\longleftrightarrow	CFT has a cutoff
Appearance of IR brane	\leftrightarrow	conformal symmetry broken spontaneously by CFT
KK modes localized on IR brane	\leftrightarrow	composites of CFT
Modes on the UV brane	\longleftrightarrow	Elementary fields coupled to CFT
Gauge fields in bulk	\longleftrightarrow	CFT has a global symmetry
Bulk gauge symmetry broken on UV brane	\leftrightarrow	Global symmetry not gauged
Bulk gauge symmetry unbroken on UV brane	\leftrightarrow	Global symmetry weakly gauged
Higgs on IR brane	\leftrightarrow	CFT becoming strong produces composite Higgs
Bulk gauge symmetry broken on IR brane by BC's	\leftrightarrow	Strong dynamics that breaks CFT also breaks gauge symmetry

Duality and Higgsless Models

A Higgsless Theory on AdS could be "dual" to a conformally-invariant model of dynamical EWSB : like walking TC!


Can we find a 4-D Conformal Higgless Theory?

Inspiration: Symmetries in QCD

	Symmetry	Anomaly?	Fate
•	Color (gauged)	no	unbroken (confined)
•	Scale Invariance	yes	not a symmetry
•	SU(3)∨ x U(1)в	no	unbroken
•	<u>SU(3)</u> A	no	spontaneously broken
?	U(I)A	yes	not a symmetry
??	СР	no?!	not a symmetry!?

QCD: Unsolved Problems @ LHC

Understanding SM predictions at the LHC

The Holy Grail

A complete Yang-Mills Phase Diagram:

for any group (will settle for SU(N)), any fermion representation(s), arbitrary gauge-symmetry breaking and

relevant scaling dimensions, spectrum, & correlation functions

see Sanino, arXiv:0804.0182 for a recent review (analytic)