The Lattice and Holography

Ami Katz Boston U.

Holographic Map

- Old Myth: G.T. at large Nc simplifies a weakly coupled string theory. <u>AdS/CFT:</u> An additional simplification occurs for a large hierarchy of anomalous dimension of operators:
 - a few have $\Delta_O \sim 1$, but most have $\Delta_O >> 1$.

Duality: G.T. is dual to an extra-dimensional (ED) theory:

Local primary operators of G.T. O(x).

Fields propagating in ED curved space $\phi(x, z)$.

 m_{ϕ}

Holographic Dictionary

G.T. $\bar{q}q(x)$ $J_{\mu}(x) = \bar{q}\gamma_{\mu}q(x)$ $T_{\mu\nu}(x)$

 $\bar{q}\gamma_{\mu_1}D_{\mu_2}...D_{\mu_n}q(x)$

ED dual

 $\phi(x,z)$

 $A_{\mu}(x,z)$

 $h_{\mu\nu}(x,z)$

 $\phi_{\mu_1\mu_2\ldots\mu_n}(x,z)$

<u>At first:</u> ED duals only for conformal theories.

<u>Then:</u> Non-conformal duals were found. (similar to Randall-Sundrum ED models)

Lesson:

Lightest states are well described by the lowest dimension operators.

Warped ED models do good

- I. Offer a different perspective on TC models.
- 2. UV completions for composite Higgs models.
- 3. Provide mechanisms for addressing FCNC.
- 4. Generate flavor hierarchies.
- 5. Have interesting LHC phenomenology.

How likely is LHC strong coupling to be described by a weak ED model?

Wanted:

- I. A strongly coupled conformal theory (non-susy).
- 2. A large hierarchy in anomalous dimensions of operators (rare even for strong coupling).
- 3. Correlation functions with certain polarization structures suppressed (not due to any symmetry).

LATTICE - HELP!

QCD as a test for ED models

w/ Erlich, Schwartz, Son, and Stephanov.

<u>QCD</u>: $\Delta_O \sim O(1)$ (no hierarchy).

ED dual contains infinitely many fields.

<u>Conjecture</u>: Lightest states are well described by the lowest dimension operators.

Might only need to consider a few ED fields.

Evidence for the conjecture:

- I. True for G.T. with known ED duals.
- 2. 2D QCD at Large Nc ('t Hooft model). w/T. Okui nth excited meson PDF: $f_q^n(x) = |\phi_n(x)|^2$

$$\phi_n(x) = \sum_k \langle 0 | O_k | n \rangle P_{k-1}(2x-1)$$
$$\langle 0 | O_k | n \rangle \ll 1, \ k \gtrsim n$$

Also seen numerically for 2D QCD with adjoints.

3. Suggested by success of ED models for lightest QCD resonances.

4. LATTICE?

ED toy model for QCD-lite

<u>Chiral Symm breaking sector:</u> $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$

Conformal theory: $ds^{2} = \frac{1}{z^{2}}(dx_{\mu}dx^{\mu} - dz^{2})$

Dilitation: $x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$

UV: z << 1, IR: z >> 1

$$\int_{x} e^{iqx} \langle J^{a}_{\mu}(x) J^{b}_{\nu}(0) \rangle = \delta^{ab} (q_{\mu}q_{\nu} - q^{2}g_{\mu\nu}) \Pi(Q^{2})$$

Lattice - Help find condensates at large Nc.

Crude Model

$c_{nV}, c_{nA} = 0.$

 $z_{IR} = 1/(346MeV), \ \langle \bar{q}q \rangle = (308MeV)^3, \ m_q = 2.3MeV, \ m_s = 35MeV.$

Observable	Measured	Model	Width
	(MeV)	(MeV)	(MeV)
m_π	139.6	141	-
$m_ ho$	775.8	832	146
m_{a_1}	$1230{\pm}40$	1220	250-400
f_{π}	92.4	84	-
$F_{ ho}^{1/2}$	345 ± 8	353	-
$F_{a_1}^{1/2}$	433 ± 13	440	-
m_{K^*}	892	897	51
m_{ϕ}	1020	994	4
m_{K_1}	1272 ± 7	1290	$90{\pm}2$
m_K	498	411	-
f_k	113	117	-
m_{f_2}	1275	1236	185
m_{ω_3}	1667 ± 4	1656	$168{\pm}10$
m_{f_4}	$2025{\pm}8$	2058	$225{\pm}18$
$m_{ ho_5}$	$2330{\pm}35$	2448	400 ± 100
m_{f_6}	$2465{\pm}50$	2829	$255{\pm}40$
m_η	548	520	-
$m_{\eta'}$	958	867	-
$\Gamma(f_2 \rightarrow 2\gamma)$	$2.6 {\pm}.24~{ m KeV}$	2.71 KeV	-

Conclusions

- Holographic models capture well certain properties of the low lying states in strongly coupled theories.
- 2. Provide a natural connection between low-energy parameters and the UV theory (ex. $F_{\rho}/m_{\rho}(N_c)$).
- 3. They are a useful tool for the LHC, where we might access only a few resonances.
- 4. They work better than they should.
- 5. LATTICE may help clarify the reach and limitations of the approach.