MATH224. Homework 8.

1. Check whether the following functions are solutions of the given partial differential equations:

(i)
$$c\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = 0$$

$$u(x,t) = x - ct + \cos(x - ct)$$

(ii)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$u(x, y) = \cosh(2x)\sin(2y - 1)$$

(iii)
$$4\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$$

$$u(x,t) = t^{-1/2}e^{-x^2/t} \qquad (t > 0)$$

2. Find the characteristic curves of the partial differential equation

$$(x^2+1)\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, \quad \text{for } y > 0.$$

Hence find the general solution.

Check your solution.

3. Find the characteristic curves of the partial differential equation

$$x\frac{\partial u}{\partial x} + 3y\frac{\partial u}{\partial y} = 0, \quad \text{for } y > 0.$$

Hence find the general solution, and the solution to the boundary value problem u = x when y = 1.

Check your solution.