MATH224. Homework 7.

1. Find the sine (odd) and cosine (even) half range Fourier series of the functions
(i) $f(x)=x^{2}$
for $0 \leq x \leq L$
(ii) $f(x)=1$
for $0 \leq x \leq \pi$.

For (ii) sketch the graph of the resulting odd function and the graph resulting from the first two terms in the series.
2. Calculate the Fourier series of the function $f(t)$ which is odd, has period 3π and is defined by

$$
f(t)= \begin{cases}t & \text { for } 0 \leq t \leq \pi \\ 1 & \text { for } \pi<t<3 \pi / 2\end{cases}
$$

3. Find particular integrals for the following linear differential equations:

$$
\begin{equation*}
\frac{d^{2} y}{d t^{2}}+5 y=3 \sin t+\sin 4 t \tag{i}
\end{equation*}
$$

(ii) $\frac{d^{2} y}{d t^{2}}+5 y=\sum_{n=1}^{\infty} b_{n} \sin n t$
(iii) $\frac{d^{2} y}{d t^{2}}+5 y=f(t)$
where f is the periodic function defined by

$$
\begin{aligned}
f(t) & =t \quad \text { for } \quad-\pi \leq t<\pi . \\
f(t+2 \pi) & =f(t)
\end{aligned}
$$

Hint: This is the function you looked at in question 2(i) on sheet 6 ; the series you found there will be useful.

