MATH224. Homework 7.

1. Find the sine (odd) and cosine (even) half range Fourier series of the functions

(i)
$$f(x) = x^2$$
 for $0 \le x \le L$
(ii) $f(x) = 1$ for $0 \le x \le \pi$.

For (ii) sketch the graph of the resulting odd function and the graph resulting from the first two terms in the series.

2. Calculate the Fourier series of the function f(t) which is odd, has period 3π and is defined by

$$f(t) = \begin{cases} t & \text{for } 0 \le t \le \pi \\ 1 & \text{for } \pi < t < 3\pi/2 \end{cases}.$$

3. Find *particular integrals* for the following linear differential equations:

(i)
$$\frac{d^2y}{dt^2} + 5y = 3\sin t + \sin 4t$$

(ii)
$$\frac{d^2y}{dt^2} + 5y = \sum_{n=1}^{\infty} b_n \sin nt$$

(iii)
$$\frac{d^2y}{dt^2} + 5y = f(t)$$

where f is the periodic function defined by

$$f(t) = t \qquad \text{for} \quad -\pi \leq t < \pi .$$

$$f(t+2\pi) = f(t)$$

Hint: This is the function you looked at in question 2(i) on sheet 6; the series you found there will be useful.