MATH224. Homework 5.

1. Find the general solutions for $x(t)$ and $y(t)$, obeying the system of inhomogeneous differential equations

$$
\begin{aligned}
& \frac{d x}{d t}=x-2 y+\cos t \\
& \frac{d y}{d t}=2 x-3 y
\end{aligned}
$$

with initial conditions $x(0)=y(0)=1$.
2. The free oscillations of the carbon and oxygen atoms in a carbon-monoxide molecule obey the equations

$$
\begin{aligned}
\frac{d^{2} x}{d t^{2}} & =-\frac{A}{m_{C}}(x-y) \\
\frac{d^{2} y}{d t^{2}} & =-\frac{A}{m_{O}}(y-x)
\end{aligned}
$$

Here x is the displacement of the carbon atom, m_{C} is its mass; y is the displacement of the oxygen atom, and m_{O} is its mass. A is the spring constant of the chemical bond. Either by elimination or by using a matrix method, find the general solution of this system of equations.
How does the quantity $m_{C} x+m_{O} y$ depend on time? Verify the solution for $m_{C} x+m_{O} y$ by adding the differential equations.
3. Find the general solutions of the differential equations:

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}+5 x \frac{d y}{d x}-5 y=0 \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
x^{2} y^{\prime \prime}-x y^{\prime}+y=x^{2} \ln x \tag{ii}
\end{equation*}
$$

$$
\begin{equation*}
x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+2 y=x^{2} \tag{iii}
\end{equation*}
$$

