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Chapter 1

Introduction

This course is mostly concerned with the subject of ordinary and partial differential
equations. Many physical laws and relations appear mathematically in the form of
such equations, prime examples being Laplace’s equation, the wave equation and the
diffusion equation. The ability to express (“model”) physical problems in terms of
differential equations and to find the corresponding solutions is therefore a necessary
and important skill for the applied mathematician.

During the course you will be introduced to several techniques of fundamental signif-
icance in applied mathematics. For example, the method of separation of variables
applied to partial differential equations such as the one-dimensional wave equation,
and the Laplace transform method for changing differential equations into algebraic
equations. We shall also study Fourier series and look at the solution of partial
differential equations by the method of characteristics. Whenever possible, we shall
endeavour to illustrate the relevance of the differential equations we study to the
corresponding physical situation.

1.1 Ordinary differential equations

An ordinary differential equation (ODE) is a relation which involves one or more
derivatives of an unspecified function y of another variable, usually taken to be x
(though note that t is often used instead for functions of time). Formally, this is
expressed as

F

(
x, y,

dy

dx
,
d2y

dx2
, · · · , d

ny

dxn

)
= 0 (1)
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8 CHAPTER 1. INTRODUCTION

The order n of an ordinary differential equation is the highest derivative dny/dxn it
contains.

An important second order ordinary differential equation is that describing the sim-
ple harmonic motion of a mass acted on by a spring that obeys Hooke’s law.

d2y

dx2
+ ω2y = 0

where ω (the angular frequency) is a constant.

The main problem associated with such an equation is to find functions y in terms
of x for which the derivatives

dy

dx
, . . . ,

dny

dxn

exist and satisfy equation (1).

The general solution of a differential equation is the set of all functions satisfying
it, usually expressed as some kind of general formula involving a number of param-
eters. It can be proved that if F satisfies certain conditions, then the differential
equation (1) has a unique general solution involving n parameters or arbitrary con-
stants.

Rather than concentrate on finding the general solution of each equation individu-
ally, we look for solutions to particular classes of equations. We consider a class of
equations solved if we can express the general solution for any equation in that class
in terms of integrals. An important (and relatively simple) class of equations is the
class of linear equations.

Example: The general solution of the first order ordinary differential equation

dy

dx
= −2y

has the form
y = Ae−2x

where A is an arbitrary constant.

Check:

y = Ae−2x ⇒ dy

dx
= −2Ae−2x = −2y. X

A solution given by a particular set of values of the parameters is called a particular
solution or particular integral of the given differential equation. A particular integral
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is usually specified by initial conditions, which give the values of

y(x0), y
′(x0), y

′′(x0), . . . , y
(n−1)(x0)

for some particular value x0 of the independent variable x. The problem of finding
the solution to an ordinary differential equation with given initial conditions is an
initial value problem.

Example: The solution to the initial value problem

dy

dx
= −2y; y(0) = 3;

can be found from the general solution by evaluating the arbitrary constant A. We
have

3 = y(0) = Ae0 = A

yielding the solution

y(x) = 3e−2x

which is the unique solution to the initial value problem.

Often a particular solution of a second order ordinary differential equation is given
by a pair of boundary conditions, specifying the value of y at two values of x,

y(x0) = a0 and y(x1) = a1.

Example: The boundary value problem

d2y

dx2
+ ω2y = 0; y(0) = y(1) = 0;

clearly has the trivial solution, y(x)=0, for any value of ω. However, if ω = nπ
where n is an integer, then we also have a nontrivial solution,

y(x) = sin(ωx) = sin(nπx).

Check:

y′(x) = ω cos(ωx), y′′(x) = −ω2 sin(ωx) ⇒ y′′(x) + ω2y(x) = 0. X

y(0) = sin(0) = 0, y(1) = sin(nπ) = 0. X
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Sometimes we have several unspecified functions y1, y2, y3, . . . yn, each of which de-
pend on x. This gives rise to a system of ordinary differential equations:

dy1
dx

= F1(x, y1, y2, . . . , yn)

dy2
dx

= F2(x, y2, y2, . . . , yn)

... (2)

dyn
dx

= Fn(x, y2, y2, . . . , yn)

where F1, F2, . . . , Fn are specified. If F1, F2, . . . Fn are all independent of x, then the
system is said to be autonomous.

Example: In a model of a predator-prey system, in which one species (e.g. foxes)
eats another (e.g. rabbits), we have two variables y1 and y2 giving the population
of the predators and prey respectively. A simple model for the rates of change of
these populations is:

dy1
dt

= −ky1 + βy1y2

dy2
dt

= (b− d)y2 − αy1y2

where b, d, α, k, β are constants which depend on the environment and the species
involved. Note that the right hand side of these equations depends on both y1 and
y2.

An n-th order ordinary differential equation can always be written as a system of n
first order equations by setting

yk =
dky

dxk

for k = 0, 1, . . . , n− 1. Then the equation

dny

dxn
= f

(
x, y,

dy

dx
, . . . ,

dn−1y

dxn−1

)
can be expressed

dy0
dx

= y1,
dy1
dx

= y2, . . . ,
dyn−1
dx

= f (x, y0, y1, . . . , yn−1) .

The general solution to both systems has n arbitrary coefficients.
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1.2 Partial differential equations

A partial differential equation (PDE) is an equation where some unknown function
u, say, is a function of several variables. Partial differential equations thus contain
partial derivatives, in which the function is differentiated with respect to one of the
variables, all others being kept fixed.

In physics and engineering, the important partial differential equations are mainly
of second order, such as the one-dimensional wave equation

∂2u

∂t2
= c2

∂2u

∂x2
(3)

which describes the propagation of waves through a one-dimensional medium. For
the case of a taut string u(x, t) represents the displacement of the string from equi-
librium as a function of the position along the string x and the time t. Solutions
to the one-dimensional wave equation depend on the boundary conditions i.e. the
value of u(x, t) and its derivatives at the ends of the string. For a string tethered
at both ends (e.g. on a violin), the solutions are the standing wave harmonics, the
first two of which are depicted below:

The flow of heat in a two-dimensional conductor such as a metal sheet is described
by the (two-dimensional) heat equation

∂u

∂t
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
(4)

In this case u(x, y, t) represents the temperature of the wire at position (x, y) at time
t. Again the precise form of the solution will depend on the boundary conditions.
If the temperature distribution on the boundary of the sheet is held constant, then
as t→∞ the temperature can be shown approach an equilibrium state satisfying

∂2u

∂x2
+
∂2u

∂y2
= 0 (5)
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which is Laplace’s equation in two dimensions.

The general solution of a partial differential equation typically depends on arbitrary
functions of the variables, unlike the case of an ordinary differential equation, where
the general solution only depends on finitely many arbitrary constants. A particular
solution is specified by boundary conditions, which give the values of u and appro-
priate derivatives of u on the boundary of the domain of interest. Conditions which
specify the values of u or its derivatives when t = 0 are called initial conditions.



Chapter 2

First order ordinary differential
equations.

2.1 Separable and homogeneous equations

A general first order ordinary differential equation can be written in the form

dy

dx
= F (x, y)

for some function F . We first consider two particularly simple forms of F (x, y)
where we can solve for y(x) explicitly in terms of integrals.

Separable equations

A separable equation has the form:

dy

dx
= f(x) g(y). (1)

We can write this as
dy

g(y)
= f(x) dx

giving the general solution:∫
1

g(y)
dy =

∫
f(x) dx+ c.

13
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Notice that the constants of integration from the two integrals can be combined to
give one arbitrary constant for the general solution.

Example: If
dy

dx
= −4x

9y

then ∫
9y dy = −

∫
4x dx

so
9y2

2
= −x2 + c.

This solution constitutes a family of ellipses parameterised by the constant c.

Problem: (Newton’s law of cooling) A copper ball is heated to T = 100 ◦C.
Then at time t = 0 it is placed in air at 30 ◦C. After 3 minutes, the temperature of
the ball has fallen to T = 70 ◦C. Find an expression for the temperature of the ball
at time t.

Solution: Newton’s cooling law states that

dT

dt
= −k(T − 30)

for some constant k. This equation is separable, and can be rearranged to give

dT

T − 30
= −k dt.

Integrating the equation we find

ln |T − 30| = −kt+ c,

so the general solution is

T (t) = e−kt+c + 30 = Ae−kt + 30

where A = ec. The initial condition requires T = 100 when t = 0, hence A = 70. So

T (t) = 70e−kt + 30.

We can find the value of k using the second condition, i.e. T (t = 3) = 70:

70− 30 = 70e−3k ⇒ k =
ln(7/4)

3
.
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Problem: A mass m, initially at rest, falls vertically from rest from a distance
h above the ground. If air resistance is proportional to the square of the velocity,
determine the velocity with which it hits the ground.

Solution: Let x be the distance above the ground, and let

v =
dx

dt
and a =

dv

dt
= v

dv

dx

be the velocity and acceleration respectively. From Newton’s second law, F = ma,
and so balancing forces gives:

mg −mkv2 = mv
dv

dx

where mk is the constant of proportionality for air resistance. Cancelling the m, we
obtain

g − kv2 = v
dv

dx
,

which is a separable equation, so can be rearranged into the form

dx =
v dv

g − kv2
,

which integrates to give (here we can assume g > kv2)

x =

∫
v

g − kv2
dv =

1

−2k
ln(g − kv2) + c.

The initial condition gives v = 0 when x = 0, so

c =
ln(g)

2k
,

and hence

x =
1

2k
ln

(
g

g − kv2

)
.

Rearranging gives

e2kx =
g

g − kv2
or

g

k
− v2 =

g

k
e−2kx,

and finally

v =

√
g

k
(1− e−2kx) .

This expression gives the velocity at distance x from the start. In particular,

v2 → g/k as x→∞.
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Homogeneous equations

Sometimes an ordinary differential equation may not appear to be separable, but
can be made so via a change of variable. Specifically ordinary differential equations
of the homogeneous form

dy

dx
= f

(y
x

)
(2)

may be made separable by writing v = y/x, where v(x) is a new dependent variable.
Differentiating y = x v, we obtain:

dy

dx
= v + x

dv

dx
,

and the differential equation becomes

v + x
dv

dx
= f(v)

or
dv

dx
=
f(v)− v

x
,

which is separable. Thus the solution is given by:∫
dv

f(v)− v
=

∫
dx

x
+ c.

After integrating, we replace v by y/x.

Example: To find the general solution to

x
dy

dx
= x+ 3y,

we first divide through by x to obtain the homogeneous equation

dy

dx
= 1 + 3

y

x
.

Let v = y/x so dy/dx = v + x dv/dx. The differential equation for v is

v + x
dv

dx
= 1 + 3v,

which simplifies to
dv

dx
=

1 + 2v

x
.

Thus
ln(1 + 2v)

2
= ln(x) + c ⇒ v =

Cx2 − 1

2
and so

y = x(Cx2 − 1)/2.
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2.2 Exact differential equations

The differential equation
dy

dx
= − P (x, y)

Q(x, y)

can be re-written as
P (x, y) dx+Q(x, y) dy = 0, (3)

where the expression
P (x, y) dx+Q(x, y) dy

is called a differential in x and y.

Equation (3) is exact if there is a function u(x, y) such that

du ≡ ∂u

∂x
dx+

∂u

∂y
dy = P (x, y) dx+Q(x, y) dy.

Since then du = 0, the solution is given by:

u(x, y(x)) = c.

For this to happen we must have:

P (x, y) =
∂u

∂x
and Q(x, y) =

∂u

∂y
.

Now assuming that the second partial derivatives of u(x, y) are continuous, we can
exploit the fact that

∂2u

∂x ∂y
=

∂2u

∂y ∂x

to write

∂P (x, y)

∂y
=
∂Q(x, y)

∂x
.

This turns out to be a necessary and sufficient condition for the differential equation
to be exact.

Now we must find u given P and Q. Integrating the equation for P gives

u(x, y) =

∫
P (x, y) dx,
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but of course this integral is only defined up to an arbitrary constant which may
here depend on y. Thus we can write

u(x, y) = v(x, y) + k(y) where v(x, y) =

∫
P (x, y) dx

and k(y) is some unknown function of y. The equation for Q is then

Q(x, y) =
∂u

∂y
=
∂v

∂y
+
dk

dy
,

so

dk

dy
= Q(x, y)− ∂v

∂y

from which we can determine k(y), then u(x, y), and finally y as a function of x.

Problem: Solve:

2x sin(3y) dx+
(
3x2 cos(3y) + 2y

)
dy = 0.

Solution: Let P (x, y) = 2x sin(3y) and Q(x, y) = 3x2 cos(3y) + 2y. Then

∂P (x, y)

∂y
= 6x cos(3y) =

∂Q(x, y)

∂x
,

so the equation is exact. Therefore

u(x, y) =

∫
P (x, y) dx+ k(y)

= x2 sin(3y) + k(y),

and the equation Q(x, y) = ∂u/∂y gives

3x2 cos(3y) + 2y = 3x2 cos(3y) +
dk

dy
⇒ dk

dy
= 2y.

Hence k(y) = y2, and the general solution is:

x2 sin(3y) + y2 = c.

Check by differentiating:

d
(
x2 sin(3y) + y2

)
= 2x sin(3y) dx+

(
3x2 cos(3y) + 2y

)
dy = 0. X
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2.3 First order linear differential equations.

A first order linear differential equation takes the form

dy

dx
+ p(x)y = q(x), (4)

which is linear in y and dy/dx.

To solve this equation, we first try to find a function µ(x), known as an integrating
factor, such that

d

dx
(µy) = µ

(
dy

dx
+ p(x)y

)
,

which is a multiple of the left hand side of equation (4).

We therefore require
dµ

dx
y + µ

dy

dx
= µ

dy

dx
+ p(x)µy,

which is satisfied if and only if
dµ

dx
= p(x)µ,

a separable equation for µ in terms of p. Therefore

lnµ =

∫
dµ

µ
=

∫
p(x) dx,

so

µ(x) = exp

(∫
p(x) dx

)
.

(We ignore the constant of integration since any solution will do.)

We have now shown that

d

dx
(µ(x)y) = µ(x)

(
dy

dx
+ p(x)y

)
= µ(x)q(x),

which we can integrate to find the general solution:

µ(x)y(x) =

∫
µ(x)q(x) dx+ c

or

y(x) =
1

µ(x)

(∫
µ(x) q(x) dx+ c

)
.
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Example:

dy

dx
+

1

x
y = x.

First find the integrating factor:

µ(x) = e
∫
(1/x)dx = eln(x) = x.

Multiplying through by µ(x) gives:

x
dy

dx
+ y = x2,

so

xy =

∫
x2 dx =

x3

3
+ c

yielding the general solution:

y =
x2

3
+
c

x
.

2.4 Linear differential operators

A function takes a number to a number:

e.g. f(x) = x2; f(2) = 4.

An operator takes a function to a function. You are already familiar with the
derivative operator D which takes a function y to Dy = y′ with

Dy (x) = y′(x) =
dy(x)

dx
=
dy

dx
(x).

The derivative is an example of a linear operator, which means that for any functions
y1 and y2, and any constants c1 and c2,

D(c1y1 + c2y2) = c1Dy1 + c2Dy2.

This condition can be re-written as

d

dx
(c1y1(x) + c2y2(x)) = c1

dy1(x)

dx
+ c2

dy2(x)

dx
,

and is equivalent to the two conditions

D(cy) = cDy and D(y1 + y2) = Dy1 +Dy2.
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Note however, that if f(x) is a function,

D(fy) =
d

dx
(f(x)y(x)) = f

dy

dx
+
df

dx
y = f Dy +Df y 6= f dy,

i.e. linearity only holds for constant multiples!

The second derivative is also a linear operator, written

D2 =
d2

dx2
,

so that

D2y (x) =
d2y(x)

dx2
.

A first-order linear differential operator has the general form:

L = D + p

where p is a function, i.e.

Ly (x) =
dy(x)

dx
+ p(x)y(x).

We should check that this is linear:

L (c1y1(x) + c2y2(x)) =
d

dx
(c1y1(x) + c2y2(x)) + p(x) (c1y1(x) + c2y2(x))

= c1
dy1(x)

dx
+ c2

dy2(x)

dx
+ c1p(x)y1(x) + c2p(x)y2(x)

= c1

(
dy1(x)

dx
+ p(x)y1(x)

)
+ c2

(
dy2(x)

dx
+ p(x)y2(x)

)
= c1 Ly1(x) + c2 Ly2(x),

as required. The differential equation

dy

dx
+ p(x)y = q(x)

can now be written in the operator form:

Ly = q. (5)

If q = 0, this equation is homogeneous, otherwise it is non-homogeneous.
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Equation (5) has a number of properties which depend only on the linearity of the
differential operator L, and not its particular form. Of particular importance is the
complementary equation, which is the homogeneous equation

Ly = 0. (6)

A solution of the homogeneous equation (6) is known as a characteristic function of
the linear operator L. The general solution yc of the complementary equation is the
complementary solution of the non-homogeneous equation (5).

Suppose y1 and y2 are two solutions of Ly = 0, and c1 and c2 are constants. Then
by linearity,

L(c1y1 + c2y2) = c1Ly1 + c2Ly2 = 0,

so c1y1 + c2y2 is also a solution. In fact, if y1, y2, . . . , yn are solutions of Ly = 0 and
and c1, c2, . . . , cn are constants, then

L (c1y1 + c2y2 + · · ·+ cnyn) = 0

so c1y1 + c2y2 + · · ·+ cnyn is also a solution of Ly = 0. This result is known as the
principle of superposition for linear homogeneous equations. Note that y = 0 is a
solution to any homogeneous equation.

Now consider the non-homogeneous equation (5). Solutions y1 and y2 now cannot
in general be added, since

L(c1y1 + c2y2) = c1 Ly1 + c2 Ly2 = c1q + c2q = (c1 + c2)q

which is only a solution if c1 + c2 = 1. However, solutions for different right hand
sides can be added; if y1 is a solution of Ly = q1 and y2 is a solution of Ly = q2,
then

L(y1 + y2) = Ly1 + Ly2 = q1 + q2,

so y1 + y2 is a solution to the equation Ly = q1 + q2.

Now suppose yp is a solution of Ly = q, and yc is a solution of the complementary
homogeneous equation Ly = 0. Then

L(yc + yp) = Lyc + Lyp = 0 + q = q,

so yc + yp is also a solution of Ly = q. In fact, the general solution of Ly = q has
the form y = yc + yp, where the complementary solution yc is the general solution
to Ly = 0, and yp, the particular integral, is a solution to Ly = q.
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Example: Consider the differential equation

Ly(x) = f(x) where Ly =
dy

dx
+ 2y.

The complementary homogeneous equation is

dy

dx
+ 2y = 0

which has the general solution

yc(x) = ce−2x.

Suppose f(x) = 4x2. A particular integral is given by

yp(x) = 2x2 − 2x+ 1,

since
dyp
dx

+ 2yp = (4x− 2) + 2(2x2 − 2x+ 1) = 4x2.

(This solution could have been computed using the general form of the solution to
a linear first order equation.) Hence the general solution is

y(x) = ce−2x + 2x2 − 2x+ 1.

Suppose f(x) = 5 sin(x). Then

yp(x) = 2 sin(x)− cos(x)

is a particular solution. Hence the general solution to

dy

dx
+ 2y = 4x2 + 5 sin(x)

is
y(x) =

(
ce−2x

)
+
(
2x2 − 2x+ 1

)
+ (2 sin(x)− cos(x)) .

2.5* Case study: expansion of an ideal gas

The first law of thermodynamics states that the total energy U of a physical system
can be changed by adding heat Q and/or performing work W :

dU = dQ+ dW.
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Consider an arbitrary quasi-static reversible process in which one mole of an ideal
gas in a piston-cylinder arrangement at constant pressure p absorbs an amount of
heat dQ: If the piston moves out a distance dx, then the work done is

−F dx = −pA dx = −p dV,

where F is the net force on the piston and V is the volume. Hence

dQ = dU + p dV.

Now dU = Cv dT , where the specific heat Cv is a function of T only. Invoking the
ideal gas law pV = RT , with R constant,

dQ = Cv dT +
RT

V
dV.

Here,
∂Cv
∂V

= 0 and
∂

∂T

(
RT

V

)
=
R

V
6= 0,

so the differential equation is not exact. However, there exists an integrating factor
1/T ;

∂

∂V

(
Cv
T

)
= 0 =

∂

∂T

(
R

V

)
,

implying that
dQ

T
= ds

is exact. The quantity s is the entropy.

In thermodynamics the integrals of exact differentials are known as functions of
state.



Chapter 3

Higher order linear ODEs

3.1 Homogeneous second order linear equations

with constant coefficients

A linear second order ordinary differential equation can be written as

Ly (x) ≡ d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x). (1)

If p, q and r are defined and continuous in some interval I, it can be shown that equa-
tion (1) has a twice-differentiable solution in I for any initial condition specifying
y(x0) and y′(x0) with x0 ∈ I.

The simplest case is that of a homogeneous equation with constant coefficients,
which can be written as

a
d2y

dx2
+ b

dy

dx
+ cy = 0 (2)

where a, b and c are real numbers and a > 0.

For a solution, we try y = eλx for some constant λ. Then

dy

dx
= λeλx,

d2y

dx2
= λ2eλx

which implies

(aλ2 + bλ+ c) eλx = 0.

25
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Now since eλx 6= 0 for any x, we can write

aλ2 + bλ+ c = 0, (3)

the auxiliary or characteristic equation for equation (2). The general solution de-
pends on the nature of the roots of equation (3).

Real roots: If the roots λ1 and λ2 are real and different, the general solution is

y(x) = c1e
λ1x + c2e

λ2x.

A repeated root: If there is one repeated root λ, equation (2) is of the form

d2y

dx2
− 2λ

dy

dx
+ λ2y = 0

One solution of this is
y1(x) = eλx.

A second is
y2(x) = xeλx,

which we can check:

dy2
dx

= (1 + λx)eλx,
d2y2

dx2
= (2λ+ λ2x)eλx. X

Therefore

d2y2

dx2
− 2λ

dy2
dx

+ λ2y2 =
(
(2λ+ λ2x)− 2λ(1 + λx) + λ2x

)
eλx = 0

as required. The general solution is then

y(x) = (c1 + c2x)eλx.

Complex conjugate roots: If the roots of the auxiliary equation are complex,
they must be complex conjugates, and we can write

λ+ = α + iβ, λ− = α− iβ.

Then
y±(x) ≡ eλ±x = e(α±iβ)x = eαx (cos(βx)± i sin(βx))



3.1. HOMOGENEOUS SECOND ORDER EQUATIONS 27

are solutions, and so are

y1(x) =
1

2
(y+(x) + y−(x)) = eαx cos(βx),

y2(x) =
1

2i
(y+(x) + y−(x)) = eαx sin(βx).

Hence the general solution is

y(x) = eαx (c1 cos(βx) + c2 sin(βx)) .

Example:

2
d2y

dx2
+ 3

dy

dx
− 2y = 0

Try a solution of the form
y = eλx.

Then
2λ2 + 3λ− 2 = 0,

which factorises to
(2λ− 1)(λ+ 2) = 0.

Therefore
λ1 = 1/2 and λ2 = −2,

and hence the general solution is

y = c1e
x/2 + c2e

−2x

and we have
dy

dx
=
c1
2
ex/2 − 2c2e

−2x.

Now suppose the initial conditions are y(0) = 4, y′(0) = 1. Then

c1 + c2 = 4,
1

2
c1 − 2c2 = 1

which has the solution

c1 =
18

5
, c2 =

2

5
.

Thus the particular solution is

y =
18

5
ex/2 +

2

5
e−2x.
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Example:

d2y

dx2
+ 2

dy

dx
+ 5y = 0

Try
y = eλx.

Then
λ2 + 2λ+ 5 = 0 ⇒ λ1 = −1 + 2i and λ1 = −1− 2i.

Hence the general solution is

y(x) = e−x (c1 cos(2x) + c2 sin(2x)) .

We can check the solution y(x) = e−x cos(2x) by computing

dy

dx
= −e−x cos(2x)− 2e−x sin(2x),

d2y

dx2
= −3e−x cos(2x) + 4e−x sin(2x),

so

d2y

dx2
+ 2

dy

dx
+ 5y = (−3− 2 + 5)e−x cos(2x) + (4− 2× 2)e−x sin(2x) = 0. X

Example:

d2y

dx2
+ 4

dy

dx
+ 4y = 0; y(0) = 1, y′(0) = 3.

The auxiliary equation is
λ2 + 4λ+ 4 = 0

which has a repeated root λ = −2, so the general solution is

y(x) = (c1x+ c2)e
−2x.

We compute

y′(x) = (−2c1x+ c1 − 2c2) e
−2x; y(0) = c2, y′(0) = c1 − 2c2,

so c2 = 1 and then c1 = 5. Hence the particular solution is

y(x) = (5x+ 1)e−2x.
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3.2 Inhomogeneous second order linear equations

These take the form

Ly (x) ≡ a
d2y

dx2
+ b

dy

dx
+ cy = r(x). (4)

We know from the general theory of linear differential equations that the general
solution can be written as a sum of the complementary solution yc and a particular
integral yp. Since we already know how to find the complementary solution, we need
only consider how to find a particular integral.

Method of undetermined coefficients

To solve non-homogeneous linear equations we can use the method of undetermined
coefficients to find yp, which amounts to little more than guessing.

Example:

2
d2y

dx2
+ 3

dy

dx
− 2y = 4

The auxiliary (characteristic) equation is

2λ2 + 3λ− 2 = 0 ⇒ (2λ− 1)(λ+ 2) = 0.

To find yp(x), we use a trial particular integral of a form suggested by r(x). In this
case, we take yp(x) = α, a constant, since r(x) = 4 is constant.

Substitute in the differential equation:

yp(x) = α, y′p(x) = y′′p(x) = 0.

Hence −2yp = 4, so yp(x) = −2. Therefore, a particular integral is

yp(x) = −2,

while, from a previous example, the complimentary function is

yc(x) = Aex/2 +Be−2x .

Hence the general solution is

y(x) = yc(x) + yp(x) = Aex/2 +Be−2x − 2.
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Example:

2
d2y

dx2
+ 3

dy

dx
− 2y = 6x

For the trial particular integral take

yp(x) = αx+ β

since r(x) = 6x.

Substitute in the differential equation:

yp(x) = αx+ β, y′p(x) = α, y′′p(x) = 0.

This gives
3α− 2(αx+ β) = 6x

for all values of x. Equating coefficients of powers of x:

3α− 2β = 0,

−2α = 6.

Hence α = −3 and β = −9/2, so

yp(x) = −3x− 9/2.

The general solution is

y(x) = Aex/2 +Be−2x − 3x− 9/2.

Example:

2
d2y

dx2
+ 3

dy

dx
− 2y = 2e3x

For the trial particular integral take

yp(x) = αe3x.

Substitute in the differential equation:

yp(x) = αe3x, y′p(x) = 3αe3x, y′′p(x) = 9αe3x.

Hence
(18 + 9− 2)αe3x = 2e3x,

so α = 2/25 and we have a particular integral

yp(x) =
2

25
e3x.



3.2. INHOMOGENEOUS SECOND ORDER LINEAR EQUATIONS 31

Example:

2
d2y

dx2
+ 3

dy

dx
− 2y = 68 cos(2x)

For the trial particular integral take

yp(x) = α cos(2x) + β sin(2x),

y′p(x) = −2α sin(2x) + 2β cos(2x),

y′′p(x) = −4α cos(2x)− 4β sin(2x).

Therefore

2
d2yp

dx2
+ 3

dyp
dx
− 2yp = (−8α + 6β − 2α) cos(2x) + (−8β − 6α− 2β) sin(2x).

Equating coefficients of cos(2x) and sin(2x) gives

−10α + 6β = 68,

−6α− 10β = 0

which has the solution α = −5 and β = 3. Hence

yp(x) = 3 sin(2x)− 5 cos(2x).

In general, we can use the following form for the trial solution yp(x) depending on
the form of r(x):

1. If r(x) is a polynomial of degree n, then try a polynomial of degree n:

yp(x) = α0 + α1x+ α2x
2 + · · ·αnxn.

2. If r(x) = ekx, then try
yp(x) = αekx.

3. If r(x) = sin(ωx) or r(x) = cos(ωx), then try

yp(x) = α sin(ωx) + β cos(ωx).

4. If r(x) is a product of functions of the types given above, try the corresponding
product for yp. E.g., if r(x) = xe2x, try yp(x) = (α0 + α1x)e2x.
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5. If the trial function given above contains a solution of the homogeneous equa-
tion, multiply the trial function by x.

Example:

d2y

dx2
+
dy

dx
= 2x+ e−x

The complementary solution is

yc(x) = c1 + c2e
−x.

For r(x) = 2x+ e−x, we would usually try yp(x) = α0 + α1x+ βe−x, but α0 + βe−x

solves the homogeneous equation, so is no good. Instead we try

yp = α1x+ α2x
2 + βxe−x

which gives

dyp
dx

= α1 + 2α2x+ β(1− x)e−x and
d2yp

dx2
= 2α2 + β(x− 2)e−x.

Then

d2yp

dx2
+
dyp
dx

=
(
2α2 + β(x− 2)e−x

)
+
(
α1 + 2α2x+ β(1− x)e−x

)
= (2α2 + α1) + 2α2x− βe−x.

Notice that the terms in x2 and xe−x have cancelled each other out. We find α2 = 1,
α1 = −2 and β = −1, giving particular solution

yp(x) = x2 − 2x− xe−x.

Variation of parameters

When the method of undetermined coefficients fails, there is another more general
approach to finding yp, called variation of parameters. Suppose the complementary
solution to the homogeneous equation

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = r(x)
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is c1y1(x) + c2y2(x). To solve the non-homogeneous equation, we replace the con-
stants by functions:

y(x) = u1(x)y1(x) + u2(x)y2(x).

Since we now have two unknown functions, we must impose an extra condition,
which we take to be

u′1y1 + u′2y2 = 0.

Then

y′ = (u1y
′
1 + u2y

′
2) + (u′1y1 + u′2y2) = u1y

′
1 + u2y

′
2,

y′′ = (u1y
′′
1 + u2y

′′
2) + (u′1y

′
1 + u′2y

′
2).

Substituting into the differential equation and rearranging gives

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = u1(y

′′
1 + py′1 + qy1) + u2(y

′′
2 + py′2 + qy2) + (u′1y

′
1 + u′2y

′
2)

= u′1y
′
1 + u′2y

′
2.

since y1 and y2 solve the homogeneous equation. Thus we obtain two equations for
u′1 and u′2,

u′1y
′
1 + u′2y

′
2 = r,

u′1y1 + u′2y2 = 0

which have the solution

u′1 =
−y2r

y1y′2 − y′1y2
, u′2 =

y1r

y1y′2 − y′1y2
.

The function
W (y1, y2) = y1y

′
2 − y′1y2

is called the Wronskian of y1 and y2.

Example:

d2y

dx2
+ y = sec(x)

The complementary homogeneous equation has solutions

y1(x) = cos(x) and y2(x) = sin(x),

so we try
y(x) = u1(x) cos(x) + u2(x) sin(x).
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The equations for u′1 and u′2 are then

−u′1 sin(x) + u′2 cos(x) = sec(x),

u′1 cos(x) + u′1 sin(x) = 0.

Solving for u′1 and u′2 gives

u′1(x) = − tan(x) and u′2(x) = 1.

Integrating gives

u1(x) = ln | cos(x)|+ c1 and u′2(x) = x+ c2,

so the general solution is

y(x) = c1 cos(x) + c2 sin(x) + ln | cos(x)| cos(x) + x sin(x).

3.3 Case study: oscillations and resonance

Free oscillations

Consider the motion of a mass m suspended from a spring. The weight of the mass
(mg) extends the spring an amount s. If the extension is small, the restoring force
exerted by the spring will be proportional to s (Hooke’s law).

Hence in equilibrium
mg = ks

where k is the spring (stiffness) constant. Now suppose we extend the spring a
further distance y. The acceleration ÿ is given in terms of the upwards force

F = k(s+ y).
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Applying Newton’s second law (balancing net forces and resulting accelerations), we
have that

mÿ = −k(s+ y) +mg = −ky,
giving rise to the second order ODE

ÿ +

(
k

m

)
y = 0.

Usually one defines ω2
o = k/m, the square of the angular frequency.

The general solution is

y(t) = A cos(ω0)t+ C sin(ω0t),

known as harmonic oscillation.

Now suppose the spring is damped, i.e. there is a frictional force opposing the mo-
tion, whose magnitude is proportional to the velocity. Then the differential equation
of motion becomes:

ÿ +
( c
m

)
ẏ +

(
k

m

)
y = 0.

The auxiliary equation is

r2 +
c

m
r +

k

m
= 0,

so

r =
−c
2m
± 1

2

√
c2 − 4km

m2
=

1

2m

(
−c±

√
c2 − 4km

)
.

Now write

α = c/2m > 0, β =
1

2m

√
c2 − 4km.

If c2 > 4km, we have two distinct real roots, and the system is said to be overdamped.
If c2 < 4km, we have complex conjugate roots, and the system is umderdamped.
Finally, if c2 = 4km, we have a a double real root, which gives critical damping. We
examine each of these cases in turn:

Overdamping: This corresponds to the case of two real roots, for which the solu-
tion is

y(t) = c1e
−(α−β)t + c2e

−(α+β)t

This depicts the typical behaviour if y(0) = 0. There is no oscillation: both
terms in the above equation tend to zero as t → ∞, the 2nd at a faster rate
than the first.
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Underdamping: This corresponds to the case of complex conjugate roots, for
which the solution is

y(t) = e−αt[A cos(ω1t) +B sin(ω1t)],

where ω1 =
√

4km− c2 / 2m.

Note that if c is small, we can expand the square root using the binomial
theorem

ω1 =

√
4km

2m

[√
1− c2

4km

]
=

√
k

m

[
1− c2

8km
+ · · ·

]
= ω0

[
1− c2

8km
+ · · ·

]
.

Thus the frequency of oscillations is reduced from the underdamped case.

Critical damping: This corresponds to a double (repeated) real root, so the gen-
eral solution is

y(t) = (c1t+ c2)e
−αt.

Since e−αt > 0 and because (owing to its linearity) c1t + c2 can have at most
one zero for positive t, the motion can have at most one passage through the
equilibrium position (y = 0). If the initial conditions are such that c1 and c2
have the same sign, there is no such passage.
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Forced oscillations

We look at the equation

d2y

dt2
+ 2α

dy

dt
+ αω2

0y = r(t),

where r(t) is an input (usually oscillatory) of this system. Suppose that r(t) has the
form

r(t) = R sin(ωt),

where R is a constant. Then

yp = A cos(ωt) +B sin(ωt).

Substituting into the equation we find

ẏp = ωB cos(ωt)− ωA sin(ωt),

ÿp = −ω2 [B sin(ωt) + A cos(ωt)] .

Hence

−ω2 [B sin(ωt) + A cos(ωt)]

+ 2α [ωB cos(ωt)− ωA sin(ωt)] + ω2
0(A cos(ωt) +B sin(ωt)) = R sin(ωt).

Equating coefficients gives:

−ω2A+ 2αωB + ω2
0A = 0,

−ω2B − 2αωA+ ω2
0B = R.
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Solving yields:

A =
−2αωR

(ω2
0 − ω2)2 + (2αω)2

B =
R(ω2

0 − ω2)

(ω2
0 − ω2)2 + (2αω)2

.

So the general solution is:

y(t) = e−αt [c1 cos(ω1t) + c2 sin(ω1t)] +
−2αωR cos(ωt)

(ω2
0 − ω2)2 + (2αω)2

+
R(ω2

0 − ω2) sin(ωt)

(ω2
0 − ω2)2 + (2αω)2

.

The first term quickly goes to zero as t→∞, so for large t, the solution is (approx-
imately)

y(t) =
−2αωR cos(ωt)

(ω2
0 − ω2)2 + (2αω)2

+
R(ω2

0 − ω2) sin(ωt)

(ω2
0 − ω2)2 + (2αω)2

.

Now let

sinφ =
2αω√

(ω2
0 − ω2)2 + (2αω)2

and

cosφ =
ω2
0 − ω2√

(ω2
0 − ω2)2 + (2αω)2

.

Then

y(t) =
R sin(ωt− φ)√

(ω2
0 − ω2)2 + (2αω)2

.

Thus the response to the input sin(ωt) is an oscillatory wave with amplitude

A =
R√

(ω2
0 − ω2)2 + (2αω)2

and the same frequency as the input, but out of phase by the angle φ. It is instructive
to plot the amplitude of the motion (output) as a function of the frequency ω of the
input:

The output has a peak at ω =
√
ω2
0 − 2α2 which is termed the resonance frequency.

For small α this is ω0. Note that at ω = ω0 the phase lag is φ = π/2, i.e. the output
motion is 90◦ out of phase with the input.

The above exposition applies both to mechanical and electrical resonance. In the
latter case, it explains how radios and televisions are tuned.
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3.4 The Euler equation

The Euler equation is:

x2
d2y

dx2
+ ax

dy

dx
+ by = r(x).

Notice that the coefficient of d2y/dx2 has a zero at x = 0, which means that the
Euler equation is an example of a singular differential equation. However it can be
solved in a very similar way to the equation with constant coefficients.

The complementary homogeneous equation is

x2
d2y

dx2
+ ax

dy

dx
+ by = 0.

Try a solution y(x) = xm where m is unknown. Then

y′(x) = mxm−1,

y′′(x) = m(m− 1)xm−2.

Substituting into the equation gives

(m(m− 1) + am+ b)xm = 0.

This has a solution if

m(m− 1) + am+ b = m2 +m(a− 1) + b = 0.
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We therefore obtain

m =
−(a− 1)±

√
(a− 1)2 − 4b

2
.

The form of the solution is dictated by the nature of the roots. We consider two
cases:

Two distinct roots: Here the solution is straightforward:

y(x) = c1x
m1 + c2x

m2 ,

where m1 and m2 are the roots. Notice that if m1 and m2 are positive, then
both solutions are zero at x = 0.

A double root: Again, y = xm is a root. We can express the coefficients a and b
in terms of m, and re-write the equation

x2
d2y

dx2
+ (1− 2m)x

dy

dx
+m2y = 0.

The second solution is given by

y(x) = ln(x)xm.

We check this by substituting into the original equation:

dy

dx
=

1

x
xm +m ln(x)xm−1 = (1 +m lnx)xm−1,

d2y

dx2
= (2m− 1 +m(m− 1) ln(x)) xm−2,

so

x2
d2y

dx2
+ (1− 2m)x

dy

dx
+m2y

= (2m− 1 +m(m− 1) ln(x))xm + (1− 2m)(1 +m lnx)xm +m2 ln(x)xm

=
(
(2m− 1) + (1− 2m) + ((m2 −m) + (m− 2m2) +m2) ln(x)

)
xm = 0

as required. Hence the general solution is

y(x) = (c1 + c2 ln(x))xm.
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Example:

x2
d2y

dx2
− 2x

dy

dx
+ 2y = 0; y(1) = 1, y′(1) = 0.

The auxiliary equation is

m(m− 1)− 2m+ 2 = 0.

The left hand side simplifies to

m(m− 1)− 2m+ 2 = m2 − 3m+ 2 = (m− 2)(m− 1)

which has roots m = 1 and m = 2. Thus the general solution is

y(x) = c1x+ c2x
2.

The initial conditions give

c1 + c2 = 1 and c1 + 2c2 = 0,

so c1 = 2 and c2 = −1, giving the solution

y(x) = 2x− x2.

Note that y = 0 at x = 0 automatically. Initial conditions cannot violate this
condition, which is not surprising, as the original equation requires it.

Example:

x2
d2y

dx2
+ 3x

dy

dx
+ y = 0

The auxiliary equation is

m(m− 1) + 3m+ 1 = 0,

and since

m(m− 1) + 3m+ 1 = m2 + 2m+ 1 = (m+ 1)2,

we have a double root m = −1. Thus the general solution is

y(x) =
c1 + c2 ln(x)

x
.
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The Euler equation can be transformed into an equation with constant coefficients
by writing x = et, so t = ln(x). Then

dy

dx
=
dy

dt

dt

dx
=

1

x

dy

dt
,

and

d2y

dx2
=

1

x

d

dx

(
dy

dt

)
− 1

x2
dy

dt
=

1

x

dt

dx

d

dt

(
dy

dt

)
− 1

x2
dy

dt

=
1

x2
d2y

dt2
− 1

x2
dy

dt
,

so

x2
d2y

dx2
+ ax

dy

dx
+ by =

d2y

dt2
− dy

dt
+ a

dy

dt
+ by =

d2y

dt2
+ (a− 1)

dy

dt
+ by.

Thus the equation

x2
d2y

dx2
+ ax

dy

dx
+ by = f(x)

becomes

d2y

dt2
+ (a− 1)

dy

dt
+ by = f(et),

a linear second order ordinary differential equation with constant coefficients.

If f(et) is one of the forms we found previously for linear equations with constant
coefficients, we should solve it in terms of t and then transform it back in terms of
x.

Example:

x2
d2y

dx2
− 2x

dy

dx
+ 2y = ln(2x)

Since
g(t) = f(et) = ln(2et) = ln(2) + t

the equation can be transformed to

d2y

dt2
− 3

dy

dt
+ 2y = ln(2) + t.

Using the trial solution yp(t) = αt+ β, we find

−3α + 2(αt+ β) = ln(2) + t,
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implying

2α = 1 and 2β − 3α = ln(2).

Then α = 1/2 and β = (ln(2) + 3/2)/2, so

yp(t) =
t

2
+

1

2

(
ln(2) +

3

2

)
; yp(x) =

ln(2x)

2
+

3

4
.

3.5 Homogeneous systems of ODEs

A homogeneous system of n first order linear ordinary differential equations with
constant coefficients has the form

dyi
dx

=
n∑
j=1

aijyi (5)

for unknowns y1, y2, . . . , yn.

Example:

dy1
dx

= −4y1 − 2y2,

dy2
dx

= y1 − y2.

To solve this, we can eliminate one of the variables, say y1, by expressing y1 and its
derivative in terms of y2.

dy2
dx

= y1 − y2 ⇒ y1 =
dy2
dx

+ y2 and
dy1
dx

=
d2y2

dx2
+
dy2
dx

.

Substituting into the equation for dy1/dx, we obtain

d2y2

dx2
+
dy2
dx

= −4

(
dy2
dx

+ y2

)
− 2y2 ⇒ d2y2

dx2
+ 5

dy2
dx

+ 6y2 = 0,

which has the solution

y2(x) = c1e
−2x + c2e

−3x.

From this we can show

y1(x) = −c1e−2x − 2c2e
−3x.
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Matrix methods

While this method can always be used to compute the solution, there is a more el-
egant method based on computing eigenvalues and eigenvectors of matrices. Equa-
tion (5) can be written in vector form:

dy

dx
= Ay, (6)

where

y =


y1
y2
...
yn

 and A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 .

We look for solutions of equation (6) of the form

y(x) = eλxv,

where λ is a constant and v is a nonzero constant vector. Equation (6) then becomes

λeλxv = eλxAv,

from which we can cancel the eλx to deduce that we must have

λv = Av. (7)

Equation (7) is the eigenvalue equation for A. If λ and v solve this equation, we say
λ is an eigenvalue of A, and v is the corresponding eigenvector. An n× n matrix A
has at least one and at most n eigenvalues.

The eigenvalue equation can be re-written as

(A− λI)v = 0,

which has a non-trivial solution if and only if the determinant of the matrix A− λI
is equal to zero. Therefore, we can compute the eigenvalues of A by solving the
characteristic equation of A,

det(A− λI) = 0. (8)

If A has eigenvalues λ1, λ2, . . . , λm with corresponding eigenvectors v1,v2, . . . ,vm,
then, by linearity,

y(x) = c1e
λ1xv1 + c2e

λ2xv2 + · · ·+ cme
λmxvm

is a solution of the homogeneous equation.
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Example: The system

dy1
dx

= −4y1 − 2y2,

dy2
dx

= y1 − y2

can be written in vector form as

dy

dx
= Ay where A =

(
−4 −2
1 −1

)
.

The characteristic equation for A is

det

(
−4− λ −2

1 −1− λ

)
= (−4− λ) (−1− λ)− 1 (−2) = λ2 + 5λ+ 6 = 0,

which gives the eigenvalues

λ1 = −2 and λ2 = −3.

The eigenvector v1 satisfies (A− λ1I)v1 = 0, so

−2α−2β = 0
α+ β = 0

where v1 =

(
α
β

)
.

Both these equations must have the same solutions. Here we find α = −β, so we
can choose α = 1 and β = −1 to give

v1 =

(
1
−1

)
(or any nonzero multiple of this). Similarly, we can show that

v2 =

(
2
−1

)
,

so the general solution is

y = c1e
−2x
(

1
−1

)
+ c2e

−3x
(

2
−1

)
,

or explicitly for y1 and y2,

y1 = c1e
−2x + 2c2e

−3x,

y2 = −c1e−2x − c2e−3x.
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Complex eigenvalues

Suppose A has a complex eigenvalue λ with corresponding eigenvector v. Write
λ = α + iω and v = u + iw. Then we have a solution

y(x) = eλxv = eαx (cos(ωx) + i sin(ωx)) (u + iw)

= eαx (u cos(ωx)−w sin(ωx)) + ieαx (u sin(ωx) + w cos(ωx)) .

Since the equation is a real equation, the complex conjugate function y(x) must also
be a solution. Then, by linearity, we deduce that the real and imaginary parts of
y(x) are solutions to the system. Therefore, we obtain the solutions

yRe(x) = eαx (cos(ωx)u− sin(ωx)w) ,

yIm(x) = eαx (sin(ωx)u + cos(ωx)w) ,

which combine to give the general solution:

y(x) = eαx
(

(c1 cos(ωx) + c2 sin(ωx)) u + (−c1 sin(ωx) + c2 cos(ωx)) w
)
.

Repeated eigenvalues

Suppose λ is a double root of the characteristic polynomial, but has only one eigen-
vector v (up to constant multiples). We can then find a vector u such that

Au = λu + v.

Note that u is only defined up to addition of a scalar multiple of v. A second
solution to the system of equations is then

y(x) = eλx (u + xv) .

Check:

dy

dx
= λeλx (u + xv) + eλxv; Ay = eλx (λu + v + λxv) . X



3.6. NON-HOMOGENEOUS SYSTEMS OF ODES 47

3.6 Non-homogeneous systems of ODEs

A non-homogeneous system of linear equations has the general form

dy

dx
= Ay + f(x), (9)

where f is a vector-valued function,

f(x) =


f1(x)
f2(x)

...
fn(x)

 .

The complementary homogeneous equation is

dy

dx
= Ay.

Just as for a single higher-order ordinary differential equation, we use the method of
undetermined coefficients for certain functions f(x). We can use the following forms
for the trial solution yp:

1. If f(x) is a polynomial of degree n, then try a polynomial of degree n,

yp(x) = v0 + xv1 + x2v2 + · · ·xnvn.

2. If f(x) = ekxu, then try
yp(x) = ekxv.

3. If f(x) = sin(ωx)u or f(x) = cos(ωx)u, then try

yp(x) = sin(ωx)v + cos(ωx)w.

The method of variation of parameters can also be used to solve non-homogeneous
linear systems.

Example:

dy1
dx

= −4y1 − 2y2 − 2e2x,

dy2
dx

= y1 − y2 + 7e2x.



48 CHAPTER 3. HIGHER ORDER LINEAR ODES

To find a particular solution, we use a trial solution

yp(x) = e2xv.

The system of equations then becomes

2e2xv = e2xAv + e2xb,

where

A =

(
−4 −2
1 −1

)
and b =

(
−2
7

)
.

We can cancel out the factor e2x and rearrange to obtain

(2I− A) v = b.

Writing the matrix equation in full, we find(
6 2
−1 3

)(
v1
v2

)
=

(
−2
7

)
,

which we can solve to obtain v1 = −1 and v2 = 2. A particular solution is therefore
given by

yp(x) = e2x
(
−1
2

)
or, in components, as

y1(x) = −e2x, y2(x) = 2e2x.

Example:

dy1
dx

= −y1 − 2y2 + 2e−x,

dy2
dx

= 2y1 − y2.

We can write this system in vector form as

dy

dx
= Ay + e−xb , where A =

(
−1 −2
2 −1

)
and b =

(
2
0

)
.

To find the general solution, we first try to solve the corresponding homogeneous
system dy/dx = Ay. The characteristic polynomial of A is

(λ+ 1)2 + 4,
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which has roots λ = −1± 2i. Taking the eigenvalue λ = −1 + 2i, we find

A− λI =

(
−2i −2

2 −2i

)
,

so the corresponding eigenvector vλ is

vλ =

(
1
−i

)
=

(
1
0

)
+ i

(
0
−1

)
.

Hence the general solution of the homogeneous equation is

yc(x) = e−x
(
c1 cos(2x) + c2 sin(2x)
c1 sin(2x)− c2 cos(2x)

)
.

We now try for a particular solution of the form

yp = e−xv,

where v is a constant vector. Substituting into the equation gives

−e−xv = e−xAv = e−xb ⇒ (A + I)v = −b.

Now

A + I =

(
0 −2
2 0

)
,

so

(A + I)−1 =
1

4

(
0 2
−2 0

)
and hence

v = −(A + I)−1b = −1

4

(
0 2
−2 0

)(
2
0

)
=

(
0
1

)
.

Then the general solution is

y1 = e−x (c1 cos(2x) + c2 sin(2x)) ,

y2 = e−x (c1 sin(2x)− c2 cos(2x) + 1) .

Example: Consider the initial value problem

dx

dt
= x+ 4y − t− 5, x(0) = 1;

dy

dt
= −x+ 5y + t− 3, y(0) = 0.
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We can write the system in vector form with

A =

(
1 4
−1 5

)
and f(t) = t

(
−1
1

)
+

(
−5
−3

)
.

The characteristic polynomial is

det(A− λI) = (1− λ) (5− λ)− 4 (−1) = λ2 − 6λ+ 9 = (λ− 3)2,

so λ = 3 is a double root. We then compute

A− 3I =

(
−2 4
−1 2

)
,

so an eigenvector v satisfying (A−3I)v = 0 and a vector u satisfying (A−3I)u = v
are given by

v =

(
2
1

)
and u =

(
−1
0

)
.

The complementary solution is then

yc(t) = (c1 + c2t)e
3t

(
2
1

)
+ c2e

3t

(
−1
0

)
.

For a trial particular solution, use

yp(t) = v0 + tv1.

Substituting into the system, we obtain

v1 = Av0 + tAv1 + u0 + tu1.

Equating coefficients of t gives

v1 = Av0 + u0 and Av1 + u1 = 0.

The inverse of A is

A−1 =
1

9

(
5 −4
1 1

)
,

so

v1 = −A−1u1 = −1

9

(
5 −4
1 1

)(
−1
1

)
=

(
1
0

)
,

v0 = A−1(v1 − u0) =
1

9

(
5 −4
1 1

)(
6
3

)
=

(
2
1

)
.
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The general solution is therefore

y(t) = (c1 + c2t)e
3t

(
2
1

)
+ c2e

3t

(
−1
0

)
+ t

(
1
0

)
+

(
2
1

)
.

Setting t = 0, we find

y(0) = c1

(
2
1

)
+ c2

(
−1
0

)
+

(
2
1

)
=

(
1
0

)
so c1 = c2 = −1, giving the particular solution

y(t) = −(1 + t)e3t
(

2
1

)
− e3t

(
−1
0

)
+ t

(
1
0

)
+

(
2
1

)
,

or, in components,

x(t) = −(2t+ 1)e3t + t+ 2,

y(t) = −(t+ 1)e3t + 1.

Check:

x′(t) = −(6t+ 5)e3t + 1 = x+ 4y − t− 5. X

y′(t) = −(3t+ 4)e3t = −x+ 5y + t− 3. X



52 CHAPTER 3. HIGHER ORDER LINEAR ODES



Chapter 4

Fourier Series

4.1 Derivation of the Fourier series

A function f(x) is said to be periodic if it is defined for all real x and there exists
T > 0 such that

f(x+ T ) = f(x).

T is called period of f .

Obviously, if n is an integer, then cos(nx) and sin(nx) have period 2π. Therefore,
the trigonometric series

a0
2

+ a1 cos(x) + b1 sin(x) + a2 cos(2x) + b2 sin(2x) + . . .

also has period 2π (assuming that it converges). If we can write f(x) as a trigono-
metric series with period 2π, the series is called the Fourier series of f(x).

Suppose f(x) is periodic with period 2π. We assume that f(x) can be expressed as
a trigonometric series

f(x) =
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

and want to find the coefficients a0, a1, a2, . . . , b1, b2, . . . known as the Fourier coef-
ficients.

53
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To find a0, we integrate both sides:∫ π

−π
f(x) dx =

∫ π

−π

a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx)) dx

= a0

∫ π

−π

1

2
dx+

∞∑
n=1

an

∫ π

−π
cos(nx) dx+

∞∑
n=1

bn

∫ π

−π
sin(nx) dx

= πa0 ,

since ∫ π

−π
cos (nx) dx =

∫ π

−π
sin (nx) dx = 0.

Therefore,

a0 =
1

π

∫ π

−π
f(x) dx.

To get an, we multiply through by cos(mx) and integrate term by term.∫ π

−π
f(x) cos(mx) dx =

∫ π

−π

(
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

)
cos(mx) dx

=
1

2

∫ π

−π
a0 cos(mx) dx

+
∞∑
n=1

an

∫ π

−π
cos(nx) cos(mx) dx

+
∞∑
n=1

bn

∫ π

−π
sin(nx) cos(mx) dx.

We now use the trigonometric identities:

cos(mx) cos(nx) =
cos((m+ n)x) + cos((m− n)x)

2
,

sin(mx) sin(nx) =
cos((m− n)x)− cos((m+ n)x)

2
,

sin(mx) cos(nx) =
sin((m+ n)x) + sin((m− n)x)

2
to deduce that most of these integrals vanish:∫ π

−π
sin(mx) cos(nx) dx = 0 for m,n ∈ Z,

and∫ π

−π
cos(mx) cos(nx) dx =

∫ π

−π
sin(mx) sin(nx) dx = 0 if m 6= n.
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These results mean that the functions cos(nx) and sin(nx) are mutually orthogonal.
Orthogonality implies that all integrals in the expression for am are zero except for
the integral of cos(nx) cos(mx) for m = n, which gives:∫ π

π

f(x) cos(mx) dx =

∫ π

π

am cos2(mx) dx

= am

∫ π

−π

1− sin(2mx)

2
dx = am

∫ π

−π

1

2
dx = amπ.

Thus

am =
1

π

∫ π

−π
f(x) cos(mx) dx.

Similarly, by multiplying the series by sin(mx), one finds that

bm =
1

π

∫ π

−π
f(x) sin(mx) dx.

Let us combine these results:

a0 =
1

π

∫ π

−π
f(x) dx ,

am =
1

π

∫ π

−π
f(x) cos(mx) dx ,

bm =
1

π

∫ π

−π
f(x) sin(mx) dx .

Collectively these are known as Euler’s formulae.

The series

f(x) =
a0
2

+
∞∑
m=1

(am cos(mx) + bm sin(mx))

is called the Fourier series (FS) of f(x). The coefficients am and bm are called the
Fourier coefficients of f(x). Note that the coefficients are linear in f .

Note: Because of the periodicity,
∫ π
−π can be replaced by

∫ 2π

0
.
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4.2 Even and odd functions

Recall that a function f is even if f(−x) = f(x) for all x, and odd if f(−x) = −f(x).

If f is 2π-periodic, then in the Fourier series for f ,

an =
1

π

∫ π

x=−π
f(x) cos(nx) dx.

If f is an odd function, we can set y = −x, and find

an =
1

π

∫ −π
y=π

f(−y) cos(−ny) (−1)dy = − 1

π

∫ π

y=−π
f(y) cos(ny) dy = −an,

which can only be true if an = 0.

Example: Consider the square wave function shown below, with period 2π.

f(x) =

{
−k if −π < x < 0 ,
k if 0 < x < π .

Then

an =
1

π

∫ π

−π
f(x) cos(nx) dx = 0

for n = 0, 1, 2, . . . since f(x) is an odd function.

bn =
1

π

∫ π

−π
f(x) sin(nx) dx
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=
1

π

(∫ 0

−π
f(x) sin(nx) dx+

∫ π

0

f(x) sin(nx) dx

)
=

2k

π

∫ π

0

sin(nx) dx =
−2k

πn
[cos(nx)]π0

=


0 if n is even,

4k

π(2m+ 1)
if n = 2m+ 1.

Therefore

f(x) =
∞∑
m=0

4k

π(2m+ 1)
sin((2m+ 1)x) .

Aside: Note that at x = π/2 we have f(x) = k. Dividing through by k then yields

1 =
4

π

(
1− 1

3
+

1

5
− 1

7
+ · · ·

)
⇒ π

4
= 1− 1

3
+

1

5
− 1

7
+ . . . ,

which is a famous series expansion due to Leibniz.

If f(x) is an odd function, then again setting y = −x, we find

1

π

∫ 0

x=−π
f(x) sin(nx) dx =

1

π

∫ 0

y=π

f(−y) sin(−ny)(−1) dy =
1

π

∫ π

0

f(y) sin(y) dy,

since we have a total of four minus signs, one due to f being an odd function, one
due to sin being an odd function, one since dx = (−1) dy and a final one due to
reversing the order of integration. Therefore

bn =
1

π

∫ π

−π
f(x) sin(nx) dx =

1

π

∫ 0

−π
f(x) sin(nx) dx+

1

π

∫ π

0

f(x) sin(nx) dx

=
2

π

∫ π

0

f(x) sin(nx) dx.

We can find similar formulae if f is an even function. Therefore,

If f is an odd function, then an = 0 and bn =
2

π

∫ π

0

f(x) sin(nx) dx .

If f is an even function, then bn = 0, and an =
2

π

∫ π

0

f(x) cos(nx) dx .
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Half range expansions

Suppose f(x) is defined for 0 < x < π and we wish to extend f to a periodic function
with period 2π. There are many ways one could do this, but two obvious choices
are to extend f(x) such that it is either odd or even.

Even extension

If we choose the even extension, then bn = 0,

a0 =
1

π

∫ π

−π
f(x) dx =

2

π

∫ π

0

f(x) dt

and

an =
1

π

∫ π

−π
f(x) cos(nx)) dx =

2

π

∫ π

0

f(x) cos(nx) dx.

We have now represented the function f(x) in the range 0 < x < π by a Fourier
cosine series.
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Odd extension

If we choose the odd extension, then an = 0, and

bn =
1

π

∫ π

−π
f(x) sin(nx) dx =

2

π

∫ π

0

f(x) sin(nx) dx.

We have represented the function f(x) in the range 0 < x < π by a Fourier sine
series.

Example: Let f(s) = x for 0 < x < π. Consider first the even periodic extension.
Since we are considering an even extension, bn = 0. The coefficients an are given

by:

a0 =
2

π

∫ π

0

x dx = π ,

an =
2

π

∫ π

0

f(x) cos(nx) dx =
2

π

∫ π

0

x cos(nx) dt

=
2

π

([
x sin(nx)

n

]π
0

−
∫ π

0

1

n
sin(nx) dx

)
=

2

π

[
cos(nx)

n2

]π
0

=
2 ((−1)n − 1)

n2π
.

Hence an = 0 if n is even, and if n = 2m+ 1 is odd,

an =
−4

(2m+ 1)2π
.
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Therefore we have the Fourier cosine series for 0 < x < π:

x = f(x) =
π

2
− 4

π

∞∑
m=0

cos((2m+ 1)x)

(2m+ 1)2
.

Now consider the odd periodic extension. Here we have an = 0, and

bn =
2

π

∫ π

0

f(x) sin(nx) dx =
2

π

∫ π

0

x sin(nx) dx

=
2

π

([
−x cos(nx)

n

]π
0

+

∫ π

0

1

n
cos(nx) dx

)
=
−2(−1)n

n
.

Hence for 0 < x < π

x = f(x) = −2
∞∑
n=1

(−1)n

n
sin(nx).

4.3 Functions having an arbitrary period

Suppose (as is often the case) that the period differs from 2π, so f is periodic with
period T > 0; that is, f(t+ T ) = f(x).

A simple scaling (stretching or shrinking the period to 2π) allows us to work out
the Fourier series for such a function. To see this, define a new function

g(x) = f

(
Tx

2π

)
.
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Then g has period 2π since

g(x+ 2π) = f

(
T (x+ 2π)

2π

)
= f

(
Tx

2π
+ T

)
= f

(
Tx

2π

)
= g(x),

hence its Fourier series is

g(x) =
a0
2

+
∞∑
n=1

(
an cos(nx) + bn sin(nx)

)
with the usual formulae for the an and bn. Now setting x = 2πt/T , we have f(t) =
g(2πt/T ), so the Fourier series of f is

f(t) =
a0
2

+
∞∑
n=1

(
an cos

(
2nπt

T

)
+ bn sin

(
2nπt

T

))

with

a0 =
2

T

∫ T/2

−T/2
f(t) dt ,

an =
2

T

∫ T/2

−T/2
f(t) cos

(
2nπt

T

)
dt ,

bn =
2

T

∫ T/2

−T/2
f(t) sin

(
2nπt

T

)
dt ,

for n = 1, 2, 3, . . . . Again, because of the periodicity,
∫ T/2
−T/2 can be replaced by

∫ T
0

.

Example:

f(t) =


0 if −2 < t < −1 ,
1 if −1 < t < 1 ,
0 if 1 < t < 2 .

First note that f is even, so bn = 0 for all n. Now T = 4, so

a0 =
2

4

∫ 2

−2
f(t)dt =

1

2

∫ 1

−1
dt = 1 ,

an =
2

4

∫ 2

−2
f(t) cos

(
2nπt

T

)
dt =

1

2

[
T

2nπ
sin

(
2nπt

T

)]1
−1

=
2

nπ
sin
(nπ

2

)
.
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We note further that an = 0 when n is even. Otherwise, we have

a1 =
2

π
, a3 =

−2

3π
, a5 =

2

5π
, a7 =

−2

7π
, . . . .

Hence

f(t) =
1

2
+

2

π

(
cos

(
πt

2

)
− 1

3
cos

(
3πt

2

)
+

1

5
cos

(
5πt

2

)
− 1

7
cos

(
7πt

2

)
+ · · ·

)

=
1

2
+

2

π

∞∑
m=0

(−1)m

2m+ 1
cos

(
(2m+ 1)πt

2

)
.

Problem: In electronics, a half-wave rectifier clips the negative portion of any
input voltage applied to it. If a sinusoidal input voltage of amplitude V and angular
frequency ω is applied to the rectifier, calculate the Fourier series of the resulting
output voltage.

Solution: The output has the form

f(t) =

{
0 if −T/2 < t < 0 ,

V sin(ωT ) if 0 < t < T/2 ,

where T = 2π/ω or ω = 2π/T .

Since f(t) = 0 when −T/2 < t < 0, we have

a0 =
2

T

∫ T/2

−T/2
f(t) dt =

ω

π

∫ π/ω

0

V sin(ωt) dt =
2V

π
,

an =
2

T

∫ T/2

0

f(t) cos(nωt) dt =
ωV

π

∫ π/ω

0

sin(ωt) cos(nωt) dt

=
ωV

2π

∫ π/ω

0

(sin ((n+ 1)ωt) + sin ((1− n)ωt)) dt .

Taking n = 1 we find

a1 =
ωV

2π

∫ π/ω

0

sin(2ωt) dt =
ωV

2π

[
− cos(2ωt)

2ω

]π/ω
0

= 0.

For n = 2, 3, 4, . . . we have

an =
ωV

2π

[
−cos((1 + n)ωt)

(1 + n)ω
− cos((1− n)ωt)

(1− n)ω

]π/ω
0

=
V

2π

(
1− cos((1 + n)π)

1 + n
+

1− cos((1− n)π)

1− n

)
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which is zero for n odd. For n even,

an =
V

2π

(
2

1 + n
+

2

1− n

)
=

−2V

(n− 1)(n+ 1)π
.

Similar manipulations yield bn = 0 unless n = 1, for which

b1 =
V

2
.

Hence finally the Fourier series can be written as

f(t) =
V

π
+
V

2
sin(ωt)− 2V

π

∞∑
m=1

cos(2mωt)

(2m+ 1)(2m− 1)
,

where we have set n = 2m in the sum.

4.4 Representation by Fourier series

Now we can compute Fourier series, it is useful to know how the series approximates
the function. We consider the partial sums

f̃N(x) =
a0
2

+
N∑
n=1

(an cos(nx) + bn sin(nx)) ,

and how f̃(x) = limN→∞ f̃N(x) approximates f(x).

Pointwise convergence

Suppose f(x) is 2π periodic and piecewise continuous, and that f(x) has a right and
a left hand derivative at each point. Then

1. The Fourier series of f(x) converges for all values of x.

2. If f is continuous at x0, then the Fourier series at x0 converges to f(x0).

3. If f is discontinuous at x0, the sum of the series is the average of the left and
the right hand limits of f(x) at the discontinuity:

f̃(x0) =
1

2

(
lim
x→x−0

f(x) + lim
x→x+0

f(x)

)
.
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Example:

f(x) =

{
0 if −π < x < 0 ,
1 if 0 < x < π .

Utilising the results from an earlier example, f has the Fourier series

f(x) =
1

2
+

2

π

∞∑
m=0

sin((2m+ 1)x)

2m+ 1
.

If x = 0, the sum of the series is 1/2.

The Gibbs phenomenon

Below we plot the form of the first 8 and the first 50 terms of the Fourier series of
the square wave computed previously. Clearly there is a fairly rapid convergence to
the limiting form, but notice the spikes at the discontinuities.
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Although the Fourier series for f converges to f pointwise, the partial sums over-
shoot the function values at the discontinuity by a uniformly large amount, even
when considering a large number of terms (N = 50). This is known as the Gibbs
phenomenon.

The uniform or maximum error between a function f and an approximation f̂ is

max
−∞<x<∞

∣∣∣f(x)− f̂(x)
∣∣∣ .

The following results hold for the maximum error of the Fourier approximations:

1. If f is continuous, then the Fourier series of f approximates f uniformly:

max
−∞<x<∞

∣∣∣f(x)− f̃N(x)
∣∣∣→ 0 as N →∞.

2. If f is discontinuous at x0 with a jump

δf(x0) = lim
x→x+0

f(x)− lim
x→x−0

f(x),

then for all sufficiently large N , there is a value x1 slightly greater than x0
such that

f̃N(x1)− f(x1)

δf(x0)
> G,

where G is a constant with approximate value 0.09. In other words, the ap-
proximation f̃N(x1) overshoots the exact value f(x1) near the discontinuity.
The Fourier approximations do not converge uniformly in this case.

The total square error

Let f(x) be a given function of period 2π. The total square error when approximat-

ing f by a function f̂ is ∫ π

−π

(
f(x)− f̂(x)

)2
dx.

If f is a 2π-periodic piecewise-continuous function, then:

1. The Fourier approximations f̃N converge to f , i.e. the total square error∫ π

−π

(
f(x)− f̃N(x)

)2
dx→ 0 as N →∞.
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2. The total square error on approximating f by f̃N is∫ π

−π

(
f(x)− f̃N(x)

)2
dx = π

∞∑
n=N+1

(
a2n + b2n

)
.

Thus the Fourier series provides a good approximation in terms of the total square
error, and we can estimate the error of the approximation by the Fourier coefficients.
Moreover, we can compute the square integral of f in terms of the Fourier coefficients:∫ π

−π

(
f(x)

)2
dx =

∫ π

−π

(
a0
2

+
∞∑
n=1

(an cos(nx) + bn sin(nx))

)2

dx

=

∫ π

−π

a20
4

+
∞∑
n=1

a2n cos2(nx) +
∞∑
n=1

b2n sin2(nx) dx

= π

(
a20
2

+
∞∑
n=1

(
a2n + b2n

))
,

since most of the terms integrate to zero by the orthogonality relations.

4.5 Forced oscillations revisited

Fourier series find applications in solving many types of differential equations. A
prime example is the differential equation for forced oscillations of a damped system,

mÿ + cẏ + ky = r(t)

where k is the spring constant, m the mass and r(t) is the forcing term which we
take to be a periodic function with period T . If we further assume that c� km, we
have under-damping.

Consider first the homogeneous equation corresponding to the unforced system,

ÿ +
c

m
ẏ + ω2y = 0

where ω2 = k/m is the natural frequency of the undamped system. This has solu-
tions

y = e−ct/2m (A cos(ω1t) +B sin(ω1t))

where A and B are arbitrary coefficients and ω1 < ω is the oscillation frequency of
the damped system. Since this decays to zero at large t, the motion at late times
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is controlled by the particular integral, which depends on the forcing term r(t).
We call this the steady state solution. As we shall now see, it can be written as
a superposition of harmonic oscillations having the frequency of the external force
and multiples of this frequency.

To calculate the particular integral we write r(t) as a Fourier series,

r(t) =
a0
2

+
∞∑
n=1

(
an cos

(
2nπt

T

)
+ bn sin

(
2nπt

T

))
and write the trial particular integral as

y(t) =
c0
2

+
∞∑
n=1

(
cn cos

(
2nπt

T

)
+ dn sin

(
2nπt

T

))
.

To find the undetermined coefficients cn and dn we calculate term by term:

ÿn =

(
2πn

T

)2(
−cn cos

(
2nπt

T

)
− dn sin

(
2nπt

T

))
,

c

m
ẏn =

2πnc

Tm

(
−cn sin

(
2nπt

T

)
+ dn cos

(
2nπt

T

))
,

ω2yn(t) = ω2

(
cn cos

(
2nπt

T

)
+ dn sin

(
2nπt

T

))
,

rn(t) =

(
an cos

(
2nπt

T

)
+ bn sin

(
2nπt

T

))
.

Matching coefficients gives
ω2c0 = a0

and

an =

(
ω2 −

(
2πn

T

)2
)
cn +

2πn

T

c

m
dn ,

bn = − 2πn

T

c

m
cn +

(
ω2 −

(
2πn

T

)2
)
dn .

This we can solve to find cn and dn in terms of an and bn.

Note that in the above, if c/m is small (light damping) and ω2 ≈
(
2πn
T

)2
, then the

coefficients of cn and dn are small, and so cn and dn will be large. This phenomenon
is called resonant behaviour, where the response of the system to the input force is
very large.
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Example: Consider the equation

ÿ + 0.02ẏ + 25y = r(t)

with the forcing term

r(t) =

{
1 if −π 6 t < 0 ,
−1 if 0 < t < π .

The function r(t) is odd and can be represented by a Fourier series with an = 0 and

bn =
2

nπ

(
1 + (−1)n+1

)
=

{
0 if n is even,

4/(2m+ 1)π if n = 2m+ 1,

so the right hand side of the differential equation is

∞∑
k=0

4

(2k + 1)π
sin((2k + 1)t) .

Now write for the particular integral

y(t) =
∞∑
n=1

(cn cos(nt) + dn sin(nt)) ,

ẏ(t) =
∞∑
n=1

n (−cn sin(nt) + dn cos(nt)) ,

ÿ(t) =
∞∑
n=1

−n2 (cn cos(nt) + dn sin(nt)) ,

so the left hand side of the differential equation becomes

∞∑
n=1

(
(25− n2) (cn cos(nt) + dn sin(nt)) + 0.02n (−cn sin(nt) + dn cos(nt))

)
.

Comparing like terms gives cn = dn = 0 if n is even, and

(25− n2) cn + 0.02n dn = 0 ,

(25− n2) dn − 0.02n cn =
4

nπ

if n is odd. In matrix notation:(
25− n2 0.02n
−0.02n 25− n2

)(
cn
dn

)
=

(
0

4/nπ

)
.
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Inverting the matrix gives

(
cn
dn

)
=

(
25− n2 −0.02n
0.02n 25− n2

)(
0

4/nπ

)
(25− n2)2 + 0.0004n2

,

so for n odd,

dn =
4(25− n2)/nπ

(25− n2)2 + 0.0004n2
,

cn =
−0.08/π

(25− n2)2 + 0.0004n2
.

Evaluating the first few terms we obtain

d1 ≈
1

6π
, d3 ≈

1

12π
, d5 = 0, d7 ≈ −

1

42π
, . . .

and

c1 ≈ −
0.08

(24)2π
, c3 ≈ −

0.08

(12)2π
, c5 = − 0.08

0.01π
= − 8

π
, c7 ≈ −

0.08

(24)2π
, . . . .

We see that all terms are small except c5, so y5 is the dominating term in the
oscillation. So the steady state motion is approximately a harmonic oscillation with
frequency five times that of the applied force.

4.6* Approximation by trigonometric polynomials

The partial sums of the Fourier series provide one approximation to f . It is natural
to ask whether this represents the best approximation that can be obtained using
trigonometric functions i.e. if there exists another trigonometric polynomial f̂N(x)
of N terms,

f̂(x) =
α0

2
+

N∑
n=1

(αn cos(nx) + βn sin(nx)) ,

for which the approximation is better.

The total square error for f̂ is

e(f̂N) =

∫ π

−π
(f(x))2 dx+

∫ π

−π

(
f̂N(x)

)2
dx−

∫ π

−π
2f(x)f̂N(x) dx.
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Now∫ π

−π

(
f̂N(x)

)2
dx =

∫ π

−π

(
α0

2
+

N∑
n=1

(αn cos(nx) + βn sin(nx))

)

×

(
α0

2
+

N∑
n=1

(αn cos(nx) + βn sin(nx))

)
dx

= π

(
α2
0

2
+ α2

1 + α2
2 + · · ·+ α2

N + β2
1 + β2

2 + · · ·+ β2
N

)
,

and ∫ π

−π
f(x)f̂N(x) dx =

∫ π

−π
f(x)

[
α0

2
+

N∑
n=1

(αn cos(nx) + βn sin(nx))

]
= π

(α0a0
2

+ α1a1 + α2a2 + · · ·+ αNaN

+ β1b1 + β2b2 + · · ·+ βNbN) .

Hence

e(f̂N) =

∫ π

−π
(f(x))2 dx+ π

(
α2
0

2
+ α2

1 + α2
2 + · · ·+ α2

N + β2
1 + β2

2 + · · ·+ β2
N

)
− 2π

(α0

2
a0 + α1a1 + α2a2 + · · ·+ αNaN + β1b1 + β2b2 + · · ·+ βNbN

)
.

Now let us compare this error with the error for the N -th term of the Fourier series.

e(f̂N)− e(f̃N)

= −2π
(α0

2
a0 + α1a1 + α2a2 + · · ·+ αNaN + β1b1 + β2b2 + · · ·+ βNbN

)
+ π

(
α2
0

2
+ α2

1 + α2
2 + · · ·+ α2

N + β2
1 + β2

2 + · · ·+ β2
N

)
+ 2π

(
a20
2

+ a21 + a22 + · · ·+ a2N + b21 + b22 + · · ·+ b2N

)
− π

(
a20
2

+ a21 + a22 + · · ·+ a2N + b21 + b22 + · · ·+ b2N

)
= π

(
1
2
(a0 − α0)

2 + (a1 − α1)
2 + · · ·+ (aN − αN)2

+ (bN − βN)2 + · · ·+ (bN − βN)2
)
.

Therefore e(f̂N)− e(f̃N) > 0, with equality if and only if

α0 = a0, α1 = a1, . . . , αN = aN , β1 = b1, β1 = b1, . . . , βN = bN .

Hence the Fourier coefficients minimise the total square error.



APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS 71

Note: We have also shown that

e(f̃N) =

∫ π

−π
f 2(x) dx− π

(
a20
2

+
N∑
n=1

(a2n + b2n)

)
,

which means that as N increases, the error e(f̃) must decrease. Thus with increasing
N , the partial Fourier sum yields a better and better approximation to f . We have
already seen the stronger result that the total square error actually converges to 0,
though to show this is much harder.

Problem: Let f(x) = x2 for −π < x < π, f(x+ 2π) = f(x). Find the function

f̂N(x) =
α0

2
+

N∑
n=1

(αn cos(nx) + βn sin(nx)) ,

so that the mean square error e(f̂N) =
∫ π
−π(f(x)− f̂N(x))2 dx is a minimum for the

cases N = 1, 2, 3, 4 .

Solution: The Fourier coefficients minimise e, i.e. αn = an and βn = bn. The
function f(x) is even, hence bn = 0.

a0 =
1

π

∫ π

−π
f(x) dx =

1

π

[
x3

3

]π
−π

=
2π2

3
,

an =
1

π

∫ π

−π
x2 cos(nx) dx =

1

π

[
1

n
x2 sin(nx) +

2

n2
x cosnx− 2

n3
sin(nx)

]π
−π

=
4(−1)n

n2
.

Now the error is given by

e(f̂N) =

∫ π

−π
f 2(x) dx− π

[
α2
0

2
+

N∑
n=1

(α2
n + β2

n)

]
,

and the square integral of f is∫ π

−π
f 2(x) dx =

∫ π

−π
x4 dx =

2π5

5
.

Thus

e(f̂1) =
2π5

5
− π

(
4π4

18
+ 16

)
= 4.138 ,



72 CHAPTER 4. FOURIER SERIES

e(f̂2) =
2π5

5
− π

(
4π4

18
+ 16 + 1

)
= 0.9964 ,

e(f̂3) =
2π5

5
− π

(
4π4

18
+ 16 + 1 +

16

81

)
= 0.3758 ,

e(f̂4) =
2π5

5
− π

(
4π4

18
+ 16 + 1 +

16

81
+

16

256

)
= 0.1795 ,

giving the results to 4 significant figures.



Chapter 5

First Order Partial Differential
Equations

5.1 The method of characteristics

A first order partial differential equation for a function of two variables u(x, y) has
the general form

F (x, y, u, ux, uy) = 0.

A solution represents a surface above the (x, y)-plane, z = u(x, y). The particular
surface is determined by the boundary conditions.

In many cases, we have one time variable t and one space variable x, and an equation
for u(x, t). If, in addition, u(x, 0) = f(x) is specified, we have an initial value
problem.

Example: The first-order wave equation is

∂u

∂t
= c

∂u

∂x
.

If we take
u(x, t) = f(x+ ct)

for a differentiable function f , we find

∂u

∂t
= cf ′(x+ ct) and

∂u

∂x
= f ′(x+ ct) ,

73
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so u is a solution, regardless of the choice of f . If we now impose the initial conditions

u(x, 0) = sin(x),

the solution of the initial value problem is

u(x, t) = sin(x+ ct),

which describes a sine wave moving to the left with speed c.

Looking at the solution to the first order wave equation, we notice the following:

1. The general solution depends on an arbitrary function, rather than a finite
number of arbitrary constants.

2. The boundary condition specified u on a line (t = 0) in the (x, t)-plane.

3. Any solution depends only on x+ct, and so is constant on lines x+ct = const.

These features are typical of many first order partial differential equations. The lines
x + ct = const are a special case of characteristic curves. The characteristic curves
depend only on the partial differential equation itself, and not on the boundary
conditions. Characteristic curves are important in finding solutions, and also in
determining appropriate boundary conditions. The solutions to the first order wave
equation are constant on the characteristic curves.

Computing characteristic curves

Consider the following linear first-order partial differential equation:

p(x, y)ux + q(x, y)uy = 0 . (1)

We look for curves on which u is constant. We specify a curve by a parameterisation,
in which x and y are given as functions of t,

x = x(t) , y = y(t) .

To differentiate u along the curve, we take u as a function of t, u = u(x(t), y(t)).
Then

d

dt
u(x(t), y(t)) =

∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
.

For u to be constant along the curve, we want du/dt = 0. However, since u also
solves the partial differential equation, if we set

dx

dt
= p(x, y) and

dy

dt
= q(x, y)
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then
d

dt
u(x(t), y(t)) =

∂u

∂x
p(x, y) +

∂u

∂y
q(x, y) = 0

as required. Hence the characteristic curves are given by the solutions of the system
of equations

dx

dt
= p(x, y) ,

dy

dt
= q(x, y) . (2)

Solving the system of equations (2) gives an expression for the characteristic curves
in terms of a parameter t and the two constants of integration, c1 and c2. Eliminating
t, we find an expression for the characteristic curves in terms of x, y and the two
constants, which we rearrange into an expression of the form

G(x, y) = const.

The general solution of equation (1) is then

u(x, y) = f(G(x, y))

for an arbitrary function f .

Example:

∂u

∂x
+
√

1 + y2
∂u

∂y
= 0 .

The differential equations for the characteristic curves are

dx

dt
= 1 ,

dy

dt
=
√

1 + y2 .

Clearly,
x = t+ c1,

and solving the equation for y, we obtain∫
dy√

1 + y2
=

∫
dt ,

so
sinh−1(y) = t+ c2 ⇒ y = sinh(t+ c2).

Eliminating t, we find

y = sinh(x− c1 + c2) = sinh(x+ c) ,
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where c = c2 − c1 is another constant. Rearranging, we find

sinh−1(y)− x = c .

Therefore the general solution is

u(x, y) = f(sinh−1(y)− x)

for an arbitrary function f .

5.2 Characteristic curves and boundary condi-

tions

Clearly, if we know the value of u(x, t) at one point on each characteristic curve, we
can determine u(x, t) at any point. Therefore, if the boundary conditions specify
u(x, t) at exactly one point on every characteristic curve, we can determine a unique
particular solution. The problem is then said to be well-posed. Conversely, if the
boundary conditions do not specify u on some of the characteristic curves, then
the solution is not uniquely specified, and if the boundary conditions specify two
values of u on some characteristic curve, the problem is inconsistent, and there is
no solution. We then say the boundary value problem is ill-posed.

Note: Here, we have assumed the solution is constant on the characteristic curves.
Later, we shall consider cases where the solution on a characteristic curve is deter-
mined by an ordinary differential equation.
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Suppose we now have boundary conditions specified on a curve B. We can param-
eterise B with a parameter s, and set x = x0(s) and y = y0(s). We now use the
boundary conditions for the partial differential equation as initial conditions for the
system of equations (2) determining the characteristic curves, so that

x(0) = x0(s), y(0) = y0(s) and u(x0, y0) = u0(s).

Solving the initial value problem for the characteristics gives x and y as functions
of s and t. We then eliminate t and solve for s in terms of x and y, which allows us
to compute u as a function of x and y.

Example:

∂u

∂x
− ∂u

∂y
= 0 , u(x, 0) = 5x2 .

The characteristic curves are given by

dx

dt
= 1 and

dy

dt
= −1,

so on integrating we get

x = t+ x0 and y = −t+ y0 .

Thus the characteristic curves are x + y = x0 + y0 = const. The boundary
conditions can be expressed as

x0 = s, y0 = 0, u0 = 5s2.

Hence x+ y = s and u = 5s2, so

u = 5(x+ y)2

is the solution of the problem.

Example: Suppose now that the boundary conditions in the previous problem had
been u = 5x2 along y = x. Then

x0 = s, y0 = s, u0 = 5s2 .

The characteristic curves are the same, so from the boundary conditions we obtain
x+ y = 2s, so

u = 5s2 =
5(x+ y)2

4
.
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5.3 Quasi-linear equations

A quasi-linear first order partial differential equation has the form

p(x, y, u)ux + q(x, y, u)uy = r(x, y, u) .

Notice that the coefficients p and q can depend upon u as well as x and y.

These equations can also be tackled using the method of characteristics. However,
to simplify matters, we will only consider the case where p and q only depend on x
and y, though we still allow r to depend nonlinearly on u:

p(x, y)ux + q(x, y)uy = r(x, y, u) .

Let u(t) = u(x(t), y(t)), where (x(t), y(t)) is a characteristic curve defined, as before,
by

dx

dt
= p(x, y) ,

dy

dt
= q(x, y) , with x(0) = x0 and y(0) = y0 .

Then

du

dt
=

∂u

∂x

dx

dt
+
∂u

∂y

dy

dt
=

∂u

∂x
p(x, y) +

∂u

∂y
q(x, y) = r(x, y, u) ,

giving an ordinary differential equation for u. Applying the boundary conditions
u = u0(s) on the curve (x, y) = (x0(s), y0(s)) gives the following system of ordinary
differential equations and initial conditions:

dx

dt
= p(x, y),

dy

dt
= q(x, y),

du

dt
= r(x, y, u);

x(0) = x0(s), y(0) = y0(s), u(0) = u(x0, y0) = u0(s).

This allows us to find x, y and u as functions of s and t:

x = x(s, t), y = y(s, t), u = u(s, t).

Finally, we can express s and t in terms of x and y to find u(x, y).

Example: Consider the partial differential equation

∂u

∂x
− ∂u

∂y
= x .
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We already know the characteristic curves have the form

x = t+ x0, y = −t+ y0 .

The differential equation for u along the characteristics is

du

dt
= x = t+ x0 ,

so

u =
1

2
t2 + x0t+ u0 .

Now suppose we are given the boundary conditions u = x2 for y = 1. We can
express this parametrically as

x0 = s, y0 = 1, u0 = s2.

Then along the characteristic curves we have

x = s+ t , y = 1− t , u =
1

2
t2 + st+ s2 .

Solving for s and t in terms of x and y gives

t = 1− y and s = x− t = x+ y − 1 ,

so finally

u =
1

2
(y − 1)2 + x(x+ y − 1) .

Problem: The function u(x, y) satisfies the first order partial differential equation

y
∂u

∂x
+ x

∂u

∂y
= xy

in the domain x > 0 and y > 0, and the boundary condition u = exp (x2) along
y = 0. Show that the family of characteristics of this equation is given by

x = s cosh t , y = s sinh t .

Hence determine the function u(x, t).

Solution: We have

dx

dt
= y,

dy

dt
= x,

du

dt
= xy ,



80 CHAPTER 5. FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

and the boundary conditions for the partial differential equation give initial condi-
tions for this system of

x(0) = x0 = s, y(0) = y0 = 0, u(0) = u(x0, y0) = exp(s2).

Differentiating the equation dx/dt = y, we find

d2x

dt2
=
dy

dt
= x

and hence

x = Aet +Be−t ,

y = Aet −Be−t ,

where A and B are arbitrary constants. Substituting the boundary conditions at
t = 0 gives

s = A+B ,

0 = A−B .

Hence A = B = s/2, so

x = s
(
et + e−t

)
/2 = s cosh t ,

y = s
(
et − e−t

)
/2 = s sinh t .

Now
du

dt
= xy = s2 sinh t cosh t =

s2

2
sinh 2t ,

so

u =
s2

4
cosh 2t+ c =

s2

4

(
cosh2 t+ sinh2 t

)
+ c ,

where c = c(s) is a constant of integration which may depend on s. When t = 0,
u = exp(s2), so

c = exp(s2)− s2

4

which means (since cosh2(t)− 1 = sinh2(t))

u =
s2

4

(
cosh2 t+ sinh2 t− 1

)
+ exp(s2) =

s2 sinh2 t

2
+ exp(s2) .

Now, s sinh t = y and s2 = s2 cosh2 t− s2 sinh2 t = x2 − y2, so the solution is

u(x, y) =
y2

2
+ exp (x2 − y2) .



Chapter 6

Second Order Partial Differential
Equations

6.1 Important PDEs of mathematical physics

Some second order partial differential equations are of particular importance in
science and engineering:

• The one dimensional wave equation has the form:

∂2u

∂t2
= c2

∂2u

∂x2

where u = u(x, t)

• The two dimensional wave equation has the form:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2

)
, u = u(x, y, t) ,

and the three dimensional wave equation has the form:

∂2u

∂t2
= c2

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
, u = u(x, y, z, t) .

81
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• The one dimensional heat equation is

∂u

∂t
= κ

∂2u

∂x2
.

Note the difference between this and the 1D wave equation. Similarly, the two
and three dimensional versions are

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2

)
and

∂u

∂t
= κ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
,

respectively.

• The Laplacian ∇2u of a function u of space variables x1, x2, . . . xn is defined
by

∇2u =
∂2u

∂x12
+

∂2u

∂x22
+ · · ·+ ∂2u

∂xn2
,

e.g. the Laplacian of a function u = u(x, y, z, t), where x, y and z are space
variables and t is time, is

∇2u =
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
.

In terms of the Laplacian, the wave and heat equations are

∂2u

∂t2
= c2∇2u and

∂u

∂t
= κ∇2u ,

respectively.

• Laplace’s equation is obtained from the heat equation if u is independent of t,
and is written

∇2u = 0.

In two dimensions, Laplace’s equation is therefore

∂2u

∂x2
+
∂2u

∂y2
= 0 .

This equation is important in fluid mechanics.
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• Poisson’s equation is
∇2u = f ,

where f is some function of the independent variables. This equation is im-
portant in electrostatics.

These equations are important, and we will spend the rest of the course finding and
discussing their solutions.

Derivation of the one dimensional wave equation

Imagine we take a string and stretch it between two points. We can derive the
equation governing the waves’ motions along the string subject to the following
assumptions:

1. The mass per unit length ρ is constant. The string is perfectly elastic and
offers no resistance to bending.

2. The force of tension T caused by stretching the string before it is fixed at the
endpoints is so large that gravitational forces can be neglected.

3. The string performs a small transverse motion in a vertical plane containing
the line at equilibrium.

A segment PQ does not move horizontally (in the x direction), so the net horizontal
force (tension) on its ends must cancel, i.e.

TP cos(α) = TQ cos(β) .
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But since there is nothing special about the choice of segment PQ, the same must
be true everywhere, including the fixed endpoints of the string. Thus

TP cos(α) = TQ cos(β) = T = const.

Now consider the motion of the segment PQ in the vertical direction. This arises
due to an unbalanced (non zero net) force TQ sin(β)−TP sin(α), which by Newton’s
second law is equal to the mass of the segment ρ ∆x times its acceleration:

ρ ∆x
∂2u

∂t2
= TQ sin(β)− TP sin(α)

= T (tan(β)− tan(α)) .

We next note that

tan(α) =
∂u

∂x
(x) and tan(β) =

∂u

∂x
(x+ ∆x) .

Therefore

tan(β)− tan(α) =
∂2u

∂x2
∆x

and so
∂2u

∂t2
=
T

ρ

∂2u

∂x2
.

Setting c2 = T/ρ, we obtain the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
.

Note that c has dimensions of velocity and defines the wave speed.

6.2 The wave equation

D’Alembert’s solution of the wave equation

This elegant method for solving the wave equation starts by introducing new coor-
dinates

ξ = x+ ct, η = x− ct

so that

x =
ξ + η

2
and t =

ξ − η
2c

.
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Then, assuming u is a solution, we find that

∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
+
∂u

∂η

∂η

∂x
=

∂u

∂ξ
+
∂u

∂η
,

so

∂2u

∂x2
=

∂

∂ξ

(
∂u

∂x

)
+

∂

∂η

(
∂u

∂x

)
=

∂2u

∂ξ2
+

∂2u

∂η ∂ξ
+

∂2u

∂ξ ∂η
+
∂2u

∂η2

=
∂2u

∂ξ2
+ 2

∂2u

∂ξ ∂η
+
∂2u

∂η2
.

Similarly,
∂u

∂t
=

∂u

∂ξ

∂ξ

∂t
+
∂u

∂η

∂η

∂t
= c

∂u

∂ξ
− c ∂u

∂η
,

and

∂2u

∂t2
=

∂

∂ξ

(
∂u

∂t

)
∂ξ

∂t
+

∂

∂η

(
∂u

∂t

)
∂η

∂t

= c2
∂2u

∂ξ2
− c2 ∂2u

∂η ∂ξ
− c2 ∂2u

∂ξ ∂η
+ c2

∂2u

∂η2

= c2
∂2u

∂ξ2
− 2c2

∂2u

∂ξ ∂η
+ c2

∂2u

∂η2
.

Therefore
∂2u

∂t2
− c2 ∂

2u

∂x2
= −4c2

∂2u

∂ξ ∂η
,

so
∂2u

∂ξ ∂η
= 0

from which u can be found in terms of ξ and η via straightforward integration:

∂u

∂ξ
=

∫
∂2u

∂ξ ∂η
dη = f(ξ)

for some function f , so

u =

∫
f(ξ) dξ +G(η)

= F (ξ) +G(η)

= F (x+ ct) +G(x− ct) .
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This is known as d’Alembert’s solution of the wave equation.

We check this by substituting back into the wave equation itself:

∂u

∂t
= c (F ′(x+ ct)−G′(x− ct)) , ∂2u

∂t2
= c2 (F ′′(x+ ct) +G′′(x− ct))

and
∂2u

∂x2
= F ′′(x+ ct) +G′′(x− ct) . X

Physical interpretation of D’Alembert’s solution

We can interpret d’Alembert’s solution as the superposition of a right-going and a
left-going travelling wave, both having a constant shape and moving with velocity
c, so that they cover a distance ct in time t. This is a complete general solution for
waves moving in an infinite string. For a finite string, the boundary conditions also
have to be taken into account.

The functions F and G can be determined from the initial conditions. Let us assume
a given initial displacement u0(x) and initial velocity v0(x) = 0. Then

F (x) +G(x) = u0(x) ,

cF ′(x)− cG′(x) = 0 ,

so

F (x) = G(x) =
u0(x)

2
.

Thus

u(x, t) =
u0(x− ct) + u0(x+ ct)

2
.

Solution of the wave equation by separation of variables

One of the most powerful techniques for solving a partial differential equation is the
separation of variables. Given a partial differential equation in two variables (x, t),
we can look for a solution of the form

u(x, t) = F (x)G(t)

for functions F and G of one variable. Then

∂2u

∂x2
=
d2F (x)

dx2
G(t) and

∂2u

∂t2
= F (x)

d2G(t)

dt2
,
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so the wave equation becomes

F (x)
d2G(t)

dt2
= c2

d2F (x)

dx2
G(t) .

Separating the variables we have

c2

F

d2F

dx2
=

1

G

d2G

dt2
.

Now note that the left hand side is independent of t, while the right hand side is
independent of x. Since they are equal, they must both be independent of both x
and t. Hence there is a constant λ such that

c2

F

d2F

dx2
=

1

G

d2G

dt2
= λ .

We therefore have two ordinary differential equations, one for F and one for G:

d2F

dx2
− λ

c2
F = 0 and

d2G

dt2
− λG = 0 .

To proceed further we need to look at the initial and boundary conditions. If we
are considering a stretched string fixed at both ends, which we take to be x = 0 and
x = L, then the boundary conditions are

u(0, t) = u(L, t) = 0,

so
F (0) = 0 and F (L) = 0

since u(x, t) = F (x)G(t).

Now the equation
d2F

dx2
− λ

c2
F = 0

has the general solution

F (x) = Aex
√
λ/c2 +Be−x

√
λ/c2 .

The boundary conditions give

F (0) = A+B = 0 ,

F (L) = AeL
√
λ/c2 +Be−L

√
λ/c2 = 0 .



88 CHAPTER 6. SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

Clearly, if A and B are real and eL
√
λ/c2 is real, then eL

√
λ/c2 and e−L

√
λ/c2 are

different, so A and B have to be zero, which doesn’t correspond to a physically in-
teresting situation. We can remedy this by instead requiring

√
λ/c2 to be imaginary

and writing

λ = −ω2 = −k2c2 ⇒
√
λ/c2 = ik ,

with k a real constant called the wave number. The general solution of the equation
for F (x) is then

F (x) = C cos(kx) +D sin(kx) .

Appealing again to the boundary conditions, we have

F (0) = 0 ⇒ C = 0 ,

F (L) = 0 ⇒ D sin(kL) = 0 .

But D 6= 0 otherwise F = 0 which would again be uninteresting. Therefore

sin(kL) = 0 , i.e. kL = nπ

which is a physically interesting solution. Thus a nontrivial solution which satisfies
the boundary conditions is

Fn(x) = sin
(nπx
L

)
.

Turning now to the equation for G, which with λ = −k2c2 = −n2π2c2/L2 is

d2Gn

dt2
+
(nπc
L

)2
Gn = 0 ,

we find

G(t) = A cos

(
nπct

L

)
+B sin

(
nπct

L

)
.

Thus a solution for u(x, t) is

un = sin
(nπx
L

)(
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

))
,

where n is any integer.
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6.3 Normal modes and superposition

The solution un of the wave equation is called the n-th normal mode. It is a harmonic
motion with wavelength L/n and frequency cn/(2L); note that the frequencies are
all multiples of c/(2L), the fundamental frequency.

For a given n, a snapshot of un at some time t might look as follows: The nth
overtone has n nodes. A node is a point on the string (other than an end point)
which does not move.

Any arbitrary sum of normal modes is a solution of the wave equation, so the general
solution is

u(x, t) =
∞∑
n=1

sin
(nπx
L

)(
An cos

(
nπct

L

)
+Bn sin

(
nπct

L

))
.

This is an example of the principle of superposition, which allows us to obtain new
solutions of a homogeneous linear equation by adding multiples of known solutions.
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To find the coefficients in the general solution, we need the initial conditions. These
are usually that the initial position u(x, 0) and the initial velocity u̇(x, 0) are known.
From the general solution, we have that

u(x, 0) =
∑
n

An sin
(nπx
L

)
and

u̇(x, 0) =
∑
n

nπc

L
Bn sin

(nπx
L

)
.

If we suppose that u̇(x, 0) = 0 (i.e. that the string is initially at rest) then Bn = 0
and the general solution becomes

u(x, t) =
∑
n

An sin
(nπx
L

)
cos

(
nπct

L

)
.

To find the solution for any time, we need to find the coefficients An which we do
by solving the equation

u(x, 0) =
∑
n

An sin
(nπx
L

)
.

This can be done by expressing u(x, 0) in terms of its Fourier sine series.

Example: Suppose we have a vibrating string in which the initial deflection u(x, 0)
is triangular:

u(x, 0) = u0(x) =

{
2kx/L if 0 6 x < L/2 ,
2k(L− x)/L if L/2 6 x < L .
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If we suppose that u̇(x, 0) = 0, the solution is

u(x, t) =
∑
n

An sin
(nπx
L

)
cos

(
nπct

L

)
,

where

An =
2

L

∫ L

0

u0(x) sin
(nπx
L

)
dx

=
2

L

(∫ L/2

0

2kx

L
sin
(nπx
L

)
dx+

∫ L

L/2

2k(L− x)

L
sin
(nπx
L

)
dx

)

=
4k

L2

(∫ L/2

0

x sin
(nπx
L

)
dx+

∫ L

L/2

(L− x) sin
(nπx
L

)
dx

)
.

Now integration by parts gives∫ L/2

0

x sin
(nπx
L

)
dx =

[
−Lx
nπ

cos
(nπx
L

)]L/2
0

+

∫ L/2

0

L

nπ
cos
(nπx
L

)
dx

= − L2

2nπ
cos
(nπ

2

)
+

[
L2

n2π2
sin
(nπx
L

)]L/2
0

= − L2

2nπ
cos
(nπ

2

)
+

L2

n2π2
sin
(nπ

2

)
,

and ∫ L

L/2

(L− x) sin
(nπx
L

)
dx

=

[
−L(L− x)

nπ
cos
(nπx
L

)]L
L/2

−
∫ L

L/2

L

nπ
cos
(nπx
L

)
dx

=
L2

2nπ
cos
(nπ

2

)
−
[
L2

n2π2
sin
(nπx
L

)]L
L/2

=
L2

2nπ
cos
(nπ

2

)
− L2

n2π2
sin (nπ) +

L2

n2π2
sin
(nπ

2

)
.

Therefore

An =
4k

L2

(
2L2

n2π2
sin
(nπ

2

))
=

8k

n2π2
sin
(nπ

2

)
.

This gives

An =


0 if n = 2m,

(−1)m8k

(2m+ 1)2π2
if n = 2m+ 1 .
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The solution is therefore

u(x, t) = 8k
∞∑
m=0

(−1)m

(2m+ 1)2π2
sin

(
(2m+ 1)πx

L

)
cos

(
(2m+ 1)πct

L

)
.

6.4 The heat equation

The one dimensional heat equation is

∂u

∂t
= κ

∂2u

∂x2
,

where κ is the conductivity, a constant. It describes the temperature u(x, t) in a
long thin bar of length L which is insulated along its sides (so that heat can only
flow along the bar). Various boundary conditions may be imposed, but we shall
only consider the case where the ends of the bar are held constant:

u(0, t) = T0, u(L, t) = T1 for all t.

One immediate solution is the equilibrium solution

ue(x, t) =
T0(L− x) + T1x

L
= T0 +

T1 − T0
L

x

in which the temperature varies uniformly with gradient (T1−T0)/L, and heat flows
from the hotter end of the bar to the colder.

Now, if u is any solution with the given boundary conditions, then v = u − ue is
also a solution of the heat equation, since

∂v

∂t
=

∂u

∂t
− ∂ue

∂t
= κ

∂2u

∂x2
± κ ∂

2ue
∂x2

= κ
∂2v

∂x2
,

but has boundary conditions

v(0, t) = v(L, t) = 0 for all t,

which is easier to solve for.

To find the general solution for v, we again separate the variables and try

v(x, t) = F (x)G(t) .
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Substituting into the heat equation gives

F (x)
dG(t)

dt
= κ

d2F (x)

dx2
G(t) ,

and rearranging in a similar way to the solution of the wave equation gives the
ordinary differential equations,

1

κG

dG

dt
= λ =

1

F

d2F

dx2

where κ is a constant.

Now, if λ > 0, as before, the only solution satisfying the boundary condition is
F = 0. Thus we write λ = −k2 and find that to satisfy the boundary conditions we
must have k = nπ/L. Hence the solution for F (x) has the form

Fn(x) = sin
(nπx
L

)
.

Similarly, the equation for G(t) becomes

dGn

dt
= −κn

2π2

L2
Gn(t)

with solution

Gn(t) = exp

(
−κn2π2t

L2

)
.

Thus the general solution for v is

v(x, t) =
∞∑
n=1

An sin
(nπx
L

)
exp

(
−κn2π2t

L2

)
.

Adding the equilibrium solution, we obtain the general solution for u,

u(x, t) =
T0(L− x) + T1x

L
+
∞∑
n=1

An sin
(nπx
L

)
exp

(
−κn2π2t

L2

)
.

The solution of the heat equation has a similar form to that we found for the
wave equation, except that the function of t is a negative exponential rather than a
trigonometric function. Consequently, each of the terms dies away as time increases,
with the higher harmonics decreasing most rapidly. Hence the solution converges to
the equilibrium solution as t→∞.
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More generally, we can prove the following result, valid in any number of dimensions:

Convergence of solutions of the heat equation:
Suppose the heat equation in a finite n dimensional domain D has an equilibrium
solution ue(x1, . . . , xn) satisfying the boundary conditions. Then for any initial con-
dition, the solution u(x1, . . . , xn, t) converges uniformly to the equilibrium solution
ue as t→∞.

Problem: Initially an insulated bar of length L is in thermal equilibrium with
one end at T1

◦C > 0 and the other at 0 ◦C. The hot end is suddenly immersed in
freezing water. Find the temperature distribution at time t.

Solution: Since the system is initially in thermal equilibrium, the initial temper-
ature distribution along the bar has the linear form

T (x, 0) = T1

(
1− x

L

)
.

Now the boundary conditions are that T (0, 0) = 0 and T (L, 0) = 0. Thus, at time
t, the temperature is

T (x, t) =
∞∑
n=1

An sin
(nπx
L

)
exp

(
−tκn2π2

L2

)
,

where the coefficients An are given by the Fourier sine series of the initial (t = 0)
temperature distribution:

An =
2

L

∫ L

0

T (x, 0) sin
(nπx
L

)
dx =

2T1
L

∫ L

0

(
1− x

L

)
sin
(nπx
L

)
dx

=
2T1
L

([
−L
nπ

cos
(nπx
L

)]L
0

+
L

nπ

[x
L

cos
(nπx
L

)]
− 1

nπ

∫ L

0

cos
(nπx
L

)
dx

)

=
2T1
L

(
− L

nπ
cos(nπ) +

L

nπ
+

L

nπ
cos(nπ)− L

(nπ)2

[
sin
(nπx
L

)]L
0

)
=

2T1
L

(
L

nπ

)
=

2T1
nπ

.

Hence the solution is

T (x, t) =
2T1
π

∞∑
n=1

1

n
sin
(nπx
L

)
exp

(
−κn2π2t

L2

)
.



6.5. LAPLACE’S EQUATION 95

6.5 Laplace’s equation

In two dimensions, Laplace’s equation is

∇2u =
∂2u

∂x2
+
∂2u

∂y2
= 0 .

Most commonly, the values of u are specified on the boundary, giving a boundary
value problem known as Dirichlet problem. Sometimes, the normal derivative of u
to the boundary may be specified instead. (The normal derivative measures the rate
of change of u in the direction orthogonal to the boundary.) This gives a Neumann
problem.

Laplace’s equation in a rectangle

Suppose that the domain of x and y in which we wish to find the solution is a
rectangle

0 6 x 6 a , 0 6 y 6 b ,

and that the boundary conditions are

u(0, y) = u(a, y) = u(x, 0) = 0 and u(x, b) = g(x) .

Again, we can solve this problem by separation of variables. Set

u = F (x)G(y)

and substitute into Laplace’s equation to get

F (x)
d2G(y)

dy2
+
d2F (x)

dx2
G(y) = 0 .

Rearranging this equation to separate the variables gives

1

F

d2F

dx2
= − 1

G

d2G

dy2
= λ

where λ is a constant.

If λ = k2 is positive, we obtain the general solution for F :

F (x) = Aekx +Be−kx,
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but the boundary conditions give F (0) = F (a) = 0, so we must have the trivial
solution F (x) = 0. Therefore, we take λ to be negative, say λ = −n2π2/a2, so

d2F

dx2
= −n

2π2

a2
F .

This equation has a nontrivial solution

Fn(x) = sin
(nπx

a

)
which satisfies the boundary conditions. The corresponding function Gn(y) then
satisfies the differential equation

d2Gn

dy2
=
n2π2

a2
Gn .

Since u(x, 0) = 0 for every x, we require Gn(0) = 0 . We therefore deduce that

Gn(y) = An sinh (nπy/a) ,

hence the general solution is

u(x, y) =
∞∑
n=1

An sin
(nπx

a

)
sinh

(nπy
a

)
.

Finally, we consider the boundary condition at y = b which gives

∞∑
n=1

An sinh

(
nπb

a

)
sin
(nπx

a

)
= u1(x) .

We can then deduce the coefficients An by computing the Fourier sine series of u1(x).

Note: A similar analysis allows us to find other solutions which are zero except on
one side of the rectangle. For example, if we require u(x, 0) = u0(x) and u(x, b) = 0,
the solution is

u(x, y) =
∞∑
n=1

Bn sin
(nπx

a

)
sinh

(
nπ(b− y)

a

)
,

with
∞∑
n=1

Bn sinh

(
nπb

a

)
sin
(nπx

a

)
= u0(x) .
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Example: Suppose u satisfies Laplace’s equation in the rectangle 0 6 x 6 1,
0 6 y 6 2, and the boundary conditions

u(0, y) = u(1, y) = 0, u(x, 0) = −1 and u(x, 2) = sin(3πx) .

We first look for a solution uA with uA(x, 0) = 0 and uA(x, 2) = sin(3πx). From the
above,

uA(x, y) =
∞∑
n=1

An sin (nπx) sinh (nπy) ,

with
∞∑
n=1

An sinh (2nπ) sin (nπx) = sin(3πx) .

Then clearly A3 = 1/ sinh(6π) and An = 0 for n 6= 3, so

uA(x, y) =
sin(3πx) sinh(3πy)

sinh(6π)
.

Next we look for a solution uB with uB(x, 0) = −1 and uB(x, 2) = 0. The coefficients
Bn are given by

∞∑
n=1

Bn sinh(2nπ) sin(nπx) = −1 .

We find

Bn sinh(2nπ) =
2(cos(nπ)− 1)

nπ

which gives Bn = 0 if n is even, and Bn = −4/nπ if n is odd. The solution is
therefore

uB(x, y) = − 4

π

∞∑
m=0

sin((2m+ 1)πx) sinh((2m+ 1)π(2− y))

(2m+ 1) sinh(2(2m+ 1)π)
.

Adding the solutions for the two different boundary conditions gives

u(x, y) =
sin(3πx) sinh(3πy)

sinh(6π)
− 4

π

∞∑
m=0

sin((2m+ 1)πx) sinh((2m+ 1)π(2− y))

(2m+ 1) sinh(2(2m+ 1)π)
.
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Laplace’s equation on a disc

Consider the Dirichlet problem in the disc x2 + y2 6 a2, with boundary condition

u(a cos θ, a sin θ) = f(θ),

where, for consistency, f is 2π-periodic.

It is convenient to use polar coordinates (r, θ) where

x = r cos θ, y = r sin θ ⇒ r2 = x2 + y2, tan θ = y/x

and express u in terms of r and θ.

In polar coordinates, the Laplacian of u(r, θ) takes the form

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

We use separation of variables, and set

u(r, θ) = F (r) Ψ(θ)

where Ψ(θ) is 2π-periodic, so Ψ(2π) = Ψ(0). Substituting into Laplace’s equation,
we find (

d2F (r)

dr2
+

1

r

dF (r)

dr

)
Ψ(θ) +

F (r)

r2
d2Ψ(θ)

dθ2
= 0

and hence
r2

F

(
d2F

dr2
+

1

r

dF

dr

)
= − 1

Ψ

d2Ψ

dθ2
= λ ,

which give the differential equations

r2
d2F

dr2
+ r

dF

dr
− λF = 0 ,

d2Ψ

dθ2
+ λΨ = 0 .

If λ = −k2 < 0, we find

Ψ(θ) = Aekθ +Be−kθ
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which cannot be periodic, so λ must be positive. If λ = 0, we have the constant
solution Ψ0(θ) = A0, whereas, if λ = n2, we have

Ψn(θ) = An cos(nθ) +Bn sin(nθ) ,

which is 2π-periodic.

The equation for F is an Euler equation. If λ = 0 we have solutions F (r) = 1
and F (r) = ln r, but since F (r) must be bounded, we can only take the constant
solution, F0(r) = 1. If λ = n2, we find solutions

F (r) = rn and F (r) = r−n,

but again, to keep F (r) bounded, we cannot have the solution r−n, so we must have
Fn(r) = rn. We therefore have the general solution

u(r, θ) = A0 +
∞∑
n=1

rn (An cos(nθ) +Bn sin(nθ))

with boundary conditions

A0 +
∞∑
n=1

Ana
n cos(nθ) +

∞∑
n=1

Bna
n sin(nθ) = f(θ)

from which we can compute the coefficients An and Bn.

Problem: Verify that the function defined in polar coordinates by

u(r, θ) = r3 cos(3θ)

is a solution of Laplace’s equation.

Solution:

∂u

∂r
= 3r2 cos(3θ),

∂2u

∂r2
= 6r cos(3θ) and

∂2u

∂θ2
= −9r3 cos(3θ) ,

so

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

= 6r cos(3θ) + 3r cos(3θ)− 9r cos(3θ) = 0 . X
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6.6 Harmonic functions and complex variables

A solution of Laplace’s equation is called a harmonic function. Harmonic functions
have the following properties.

Regularity: Suppose u satisfies Laplace’s equation in the interior of a domain D.
Then u is smooth in the interior of D, by which we mean all partial derivatives
(of all orders) of u exist and are continuous in the interior of D.

Note that this condition holds even if u is discontinuous at the boundary!

The maximum principle: Suppose u satisfies Laplace’s equation in the interior
of a domain D. Then the maximum value of u occurs on the boundary of D.
i.e. u has no local maximum in the interior of D.

The maximum principle has an intuitive interpretation. Recall that Laplace’s
equation describes the temperature inside a uniform body in thermal equilibrium.
Clearly, there can be no local maximum of the temperature inside the body, or else
heat would flow out from that point.

Solution of Laplace’s equation using complex variables

In two dimensions there is a connection between the solution to Laplace’s equation
and complex functions, i.e. functions of a complex variable z ≡ x+ iy.

Recall that the real and imaginary parts of a differentiable or analytic complex
function satisfy the Cauchy-Riemann equations,

∂u

∂x
=
∂v

∂y
and

∂v

∂x
= − ∂u

∂y
.

Conversely, if all the partial derivatives of f(z) exist and satisfy the Cauchy-Riemann
equations, then f is analytic.

Example: Let

f(z) = z2; f(x+ iy) = x2 − y2 + 2ixy.
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Thus u(x, y) = x2 − y2 , v(x, y) = 2xy and

∂u

∂x
= 2x =

∂v

∂y
,

∂v

∂x
= 2y = −∂u

∂y
.

Thus z2 is an analytic function.

Now suppose u(x, y) is the real part of an analytic function f(x+ iy), and v(x, y) is
the imaginary part. Then

∂2u

∂x2
=

∂

∂x

(
∂u

∂x

)
=

∂

∂x

(
∂v

∂y

)
=

∂2v

∂x ∂y

and
∂2u

∂y2
=

∂

∂y

(
∂u

∂y

)
=

∂

∂x

(
− ∂v

∂x

)
= − ∂2v

∂y ∂x
.

Hence

∇2u(x, y) =
∂2u

∂x2
+
∂2u

∂y2
=

∂2v

∂x ∂y
− ∂2v

∂y ∂x
= 0 ,

so u is a solution of Laplace’s equation. Similarly, we can also show that v is a
solution of Laplace’s equation.

u(x, y) and v(x, y) are known as conjugate harmonic functions. Given either u or
v it is possible to find the other, up to an arbitrary constant. Suppose we know
u(x, y). Then

∂v

∂x
= −∂u

∂y
⇒ v(x, y) = −

∫
∂u(x, y)

∂y
dx+ f(y)

and
∂v

∂y
=
∂u

∂x
⇒ −

∫
∂2u(x, y)

∂y2
dx+

df

dy
=
∂u

∂x
,

so
df

dy
=
∂u

∂x
+

∫
∂2u(x, y)

∂y2
dx .

Example: Let
u(x, y) = x3 − 3xy2 .

Then
∂2u(x, y)

∂x2
= 6x and

∂2u(x, y)

∂y2
= −6x ,
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so u satisfies Laplace’s equation. Then v(x, y) is given by

v(x, y) = −
∫
∂u(x, y)

∂y
dx+ f(y) =

∫
6xy dx+ f(y)

= 3x2y + f(y) .

Now
∂v

∂y
= 3x2y +

df

dy
and

∂u

∂x
= 3x2 − 3y2 ,

so
df

dy
= −3y2 ⇒ f(y) = −y3 + c .

Therefore
v(x, y) = 3x2y − y3 + c

and the complex function f(z) is

f(z) = u(x, y) + iv(x, y) = x3 + 3ix2y − 3xy2 − iy3 + ic = (x+ iy)3 + ic

= z3 + ic .

6.7* The Laplace transform method of solving par-

tial differential equations

Recall that the Laplace transform turns an ordinary differential equation into an
algebraic equation. It turns out that applying the Laplace transform to a partial
differential equation turns it into an ordinary differential equation. This is because
we transform the given equation with respect to one of the independent variables
(usually t), so that only derivatives with respect to the other variable remain in the
transformed equation.

Let us illustrate the method by means of an example:

Consider heat conduction along a semi-infinite bar. Then the heat equation is

∂u

∂t
= κ

∂2u

∂x2
for x > 0, t > 0 .

Let us suppose the initial condition u(x, 0) = A, a uniform temperature distribution,
and boundary conditions

u(0, t) =

{
B for 0 < t < t0 ,
0 for t0 < t .
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This corresponds to the temperature of the end of the bar (x = 0) being quenched
from B to 0 at t = t0.

To proceed, we employ the Laplace transform to obtain

sLu− u(x, 0) = κ
d2

dx2
Lu .

Writing Lu as ũ, the equation is

d2ũ

dx2
− s

κ
ũ = −A

κ
,

which has a particular integral

ũp =
A

s
.

Thus the general solution is

ũ = α(s) exp
(
−
√
s/κ x

)
+ β(s) exp

(√
s/κ x

)
+
A

s
,

where α and β are functions of s and are determined from the initial and boundary
conditions. Clearly, however, we must take β = 0, otherwise ũ → ∞ as x → ∞,
which would result in a physically unreasonable situation. To get α we recall that

u(0, t) = [1−H(t− t0)]B .

Then

ũ(0, s) = α(s) +
A

s
= B

(
1

s
− e−st0

s

)
,

so

α(s) =
B − A
s
− Be−st0

s
,

hence

ũ =
B ((1− exp(−st0))

s
exp

(√
s/κx

)
.

The inverse Laplace transform gives us the solution u(x, t). In this case, this is not
trivial to find, but it turns out that it can be expressed in terms of the error function

erf(x) =
2√
π

∫ x

0

exp(−y2) dy .
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6.8* Canonical forms

Aside from being important equations in their own right, the wave equation, heat
equation and Laplace’s equation are prototypes for all second order linear equations
in two variables.

Consider the linear partial differential equation with constant coefficients,

Auxx + 2Buxy + Cuyy = 0 .

A linear change of variables(
x
y

)
=

(
α β
γ δ

)(
ξ
η

)
transforms this equation into the equation

Puξξ + 2Quξη +Rηη = 0 .

where P , Q and R are given in terms of A, B and C by

P = α2A+ 2αβB + β2C ,

Q = αγA+ (αδ + βδ)B + βδC ,

R = γ2A+ 2γδB + δ2C .

By a judicious choice of α, β, γ and δ, we can transform the equation into one of
the three forms:

Elliptic: If AC − B2 > 0, we can set P = R = 1 and Q = 0, giving Laplace’s
equation, uξξ + uηη = 0.

Hyperbolic: If AC − B2 < 0, we can set P = 1, R = −1 and Q = 0, giving
the wave equation uξξ − uηη = 0. Alternatively, we can set P = R = 0 and
Q = 1/2, giving d’Alembert’s form of the wave equation, uξη = 0.

Parabolic: If AC −B2 = 0, we can set P = 1 and Q = R = 0, giving uξξ = 0.

For a general linear equation, the coefficients can depend on x and y,

A(x, y)uxx + 2B(x, y)uxy + C(x, y)uyy +D(x, y)ux + E(x, y)uy + F (x, y) = 0 .

However, assuming that the sign of AC − B2 does not change, we can still apply a
linear transformation at each point to reduce the terms in the second derivatives to
canonical form.
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In the parabolic case, with constant coefficients, we obtain

uξξ +D(ξ, η)uξ + E(ξ, η)uη + F (ξ, η)u = 0 .

Assuming the coefficient E of uη never vanishes, we can write

uη = f(ξ, η, u, uξ, uξξ),

which gives a class of equation including the heat equation.

The canonical form is useful since many of the properties of an equation depend
only on whether the equation is elliptic, hyperbolic or parabolic. In particular:

1. The type of boundary condition depends only on the canonical form of the
equation.

2. Essentially the same numerical methods can be used for all equations of the
same canonical form. Hence we only need to develop computer programs to
solve these three types.

Example: The partial differential equation

5uxx + 2uxy + uyy + ux = 0

is elliptic, since 5× 1− 12 = 34 > 0.

Example: The partial differential equation

uxx + 2uxy + uyy + ux = 0

is parabolic, since 1× 1− 12 = 0.


