## FOURIER SERIES HANDOUT

These are the Fourier series formulae you should know:

## STANDARD CASE, PERIODIC FUNCTIONS

A function $f(x)$ with period $T$ can be written as a Fourier Series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left\{a_{n} \cos \left(\frac{2 \pi n x}{T}\right)+b_{n} \sin \left(\frac{2 \pi n x}{T}\right)\right\}
$$

To find the $a_{n}$ and $b_{n}$ we do the integrals

$$
\begin{aligned}
& a_{0}=\frac{2}{T} \int_{0}^{T} f(x) d x \\
& a_{n}=\frac{2}{T} \int_{0}^{T} f(x) \cos \left(\frac{2 \pi n x}{T}\right) d x \\
& b_{n}=\frac{2}{T} \int_{0}^{T} f(x) \sin \left(\frac{2 \pi n x}{T}\right) d x
\end{aligned}
$$

The integration has to run over a compete cycle, but we are free to choose the starting point. So instead of $\int_{0}^{T}$ we could do $\int_{-T / 2}^{T / 2}$, which is often easier. If $f(x)$ is even, then all $b_{n}=0$. If $f(x)$ is odd, all $a_{n}=0$.

## HALF-RANGE EXTENSIONS

In problems like these we are given a function in the range $0<x<L$, which is half the function's period (so the period $T=2 L$ ). We can then choose the function's extension in the region $-L<x<0$ either to make the function even or odd.

## Even extension

If we choose the even extension the function is represented as a pure cosine series

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{2 \pi n x}{T}\right)
$$

(remember that $T=2 L$ ). The $a_{n}$ are given by

$$
\begin{aligned}
& a_{0}=\frac{2}{L} \int_{0}^{L} f(x) d x \\
& a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{2 \pi n x}{T}\right) d x
\end{aligned}
$$

## Odd extension

If we choose the odd extension the function is represented as a pure sine series

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{2 \pi n x}{T}\right)
$$

To find the $b_{n}$ we must do the integrals

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{2 \pi n x}{T}\right) d x
$$

(In both formulae, remember that $T=2 L$.)
For a half range expansion you will either want the even or the odd series (it is a common mistake to do both and add the results).

In all cases (both for the full series and for the half-range series) the factor in front of the integral is
$\frac{2}{\text { integration interval }}$

It is often useful to know how the trigonometrical functions behave when the angle is an integer multiple of $\pi$ :

$$
\begin{aligned}
\sin n \pi & =0 \\
\cos n \pi & =(-1)^{n}
\end{aligned}
$$

if $n$ is an integer.

