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Abstract

String phenomenology is the study of string theory while maintaining
contact with experimental data. Due to the lack of evidence for supersym-
metry, we will construct models that contain a modified S basis vector,
S̃. Such string models enlarge the space of possible viable solutions and
may o↵er novel insight into some of the current problems in string phe-
nomenology. In this paper, we discuss a non-supersymmetric model that
produces three generations of the standard model; just like the previous
supersymmetric models, but this new model also produces tachyonic sec-
tors. It is possible to build models that do not contain tachyonic sectors,
and these models may serve as viable models in string phenomenology.

1 Introduction

During the 1970s and the early 1980s, the structure of the standard Model
was established experimentally. The model includes matter and interactions:
strong, weak, and electromagnetic interactions, but it does not include gravity.
The structure of the standard model motivated the studies of grand unified
theories and supersymmetry.
The weak force and electromagnetism give the electroweak interaction, and
QCD is the study of the strong interaction. The standard model does not
include gravity but gravity as described by General relativity and Quantum
field theory are incompatible. String theory provides a framework to unify
these interactions and matter in one anomaly free theory in ten dimensions.
The free fermionic formulation of heterotic string theory presented by Kawai,
Lewellen, and Tye (KLT) and Antoniadas, Bachas, and Kounnas (ABK) [1, 2]
allows us to build string models directly in four dimensions and at low experi-
mentally observable energies such as those of the Standard Model. A method to
derive a Standard-Like Model in the free fermionic formulation was presented
by Faraggi, Nanopoulos and Yuan [3].
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In this paper, we will go through the ABK rules for building a string model
in the free fermionic formulation. Then we will do the GSO projection for a
specific model and derive the massless and tachyonic spectrum of the string
model.

2 Standard Model

The standard model is made of the fundamental particles and the interactions,
not including gravity. Each particle has its antiparticle with same mass but op-
posite charge. The Standard model has the gauge group SU(3)⇥SU(2)⇥U(1)Y .
Each group consists of generators and basis vectors. The generators produce the
gauge bosons of the and the basis vector correspond to the fermions on which
these bosons act. The SU(3) represents the strong interactions; Quantum chro-
modynamics and couples with eight gluon fields. The SU(2)⇥U(1) corresponds
to the electroweak interaction. The SU(2) coupling to the three weak fields, and
a U(1) coupling with the A field in the anomaly free theory.
The fermions in the standard model come in three generations (matter in the
standard model come in three generations). The fermions in the standard model
are spins 1

2 , the quarks which form the proton and neutron also have a spin of
1
2and they also have a colour charge as well. The quarks are never found free
but come in pairs of three and form the particle such as a proton (uud) with
charge + 2

3 . The electrons have the charge �1. A table of the matter in the
standard model particles and interactions is represented below.

Three generations of matter Interactions
(fermions) force carriers

u c t g H
d s b �
e µ ⌧ Z
⌫e ⌫µ ⌫⌧ W

Figure 1: Standard model matter and interactions. The particles also have their
antiparticles.

2.1 Standard Model embedding in the SO(10)

The Standard Model matter charges of 1 generation can be embedded in the
SO(10), spinorial 16 representation of SO(10). We can see how to get the charges
out of this SO(10) representation in Figure 2
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Figure 2: Embedding
the Standard Model
matter states in
SO(10). This hints
at GUT structures of
the standard model.

Credit: Novel Per-
spectives in String
Phenomenology, Alon
E Faraggi [4].

This is how we will produce the 3 generations of the standard model particles
from our string model later when we do the GSO projections. These 16 possi-
bilities correspond exactly to the sixteen left-handed states in a single Standard
Model matter generation. Three generation quasi-realistic models that possess
the SO(10) embedding of the Standard Model matter states were constructed in
the free fermionic formulation of the heterotic–string in four dimensions (This
is shown in the appendix where we produce the 3 generations of the standard
model from the sectors b1, b2, and b3, labelling the generations electron, muon
and tau are the finer details of the model, the same details apply for the other
particles.)
String theory can potentially provide a structure to build a theory that al-
lows us to unify all the forces; so our theory should contain gravity. String
phenomenology is about using string theory to build models to study parti-
cle physics. Using the framework of string theory we can build a theory that
contains all the particles from the standard model and interactions particles
including the spin 2 graviton. We can build supersymmetric heterotic string
theory where the free fermionic formulation is built, and our string model will
be constructed using the free fermionic formulation. We will now construct the
relationship between string theory and modern particle theory.

3 String Theory

String theory could be the theory that can unify all the forces; it is also the
quantum theory of gravity. So we ideally want to derive the results from string
theory which we observe in particle physics and cosmology but we will not look
into cosmology in this paper. The study of gauge theory, heavy-ion physics, and
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condensed matter fall under the ADS/CFT correspondence. We will not go into
the construction of the supersymmetric string theories as these will be very long
but we will cover the main concepts from string theory, on the quantisation of
the string to produce massless states. A primary reference is A first course in
String theory by Barton Zwiebach [5].

From Relativity we know that there are spacetime coordinates xµ = (x0, x1, x2, x3) =
(ct, x1, x2, x3), we also have the invarient interval

�ds2 = �(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

which we can write as
⌘µ⌫dxµdx⌫

where the ⌘µ⌫ is the Minkowski matrix, the only di↵erence is that the ’-’ sign
is on the time component instead on the spatial component.

Compact dimensions, one dimensional circle is x ⇠ x + 2⇡ means that the x
is equal to x + 2⇡ so the space repeats itself every 2⇡ intervals. This can also
be seen as a unit circle of circumference 2⇡. Then the fundamental domain
is x = 0  x<2⇡R. Any point in the entire space has a representation on
the fundamental domain. Spaces will be built by having a fundamental domain
(FD) and adding boundary conditions (B.C) to it. If we again define the FD as
0  x<2⇡R for both x, y we can build a torus. Tours is represented as

(x, y) ⇠ (x+ 2⇡R, y),

(x, y) ⇠ (x, y + 2⇡R),

so the y direction is folded into a circle and the x direction is folded into a circle
and joined together, this forms a torus as shown in Figure 3.
Orbifolds are spaces that arise from identifications of fixed points and will in-
clude compactifying the space as done before, consider the line parametrised
by x, and the identification is x ⇠ �x. The point x = 0 is the fixed point of
the identification. We can choose the half-line to be the fundamental domain
(x � 0) the x = 0 is included in the fundamental domain, and the half-line is the
one dimensional manifold. This orbifold is called R1/Z2, the R1 stands for the
one-dimensional real line, and Z2 describes the identification. This is a space
where applying the transformation twice will give back the original coordinate.
So this orbifold is a line split in half, where x = �x, then we will go from 0 to
x then go back to 0 through �x, the x = 0 is the fixed point.

The strings in string theory are 1 dimensional objects, they have a length pa-
rameterised by � = [0, a] and they move in time ⌧ . The string are 1 dimensional
objects but when they move in time they will create a 2D surface, they leave a
film behind them as they move. The non-relativistic string with mass per unit
length µ0, and tension per unit length T0 will have the Lagrangian,

L = T � V =
1

2
µ0(

@y

@t
)� 1

2
T0(

@y

@x
)
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with,

S =

Z
L dt

. Varying the action of the Lagrangian �s, y! y+�y and imposing the boundary
conditions that at the end points will give the wave equation

@2y

@x2
� µ0

T0

@2y

@t2
v =

s
T0

µ0

.

Figure 3: Credit, A first course in String theory [5].

Figure 4: Credit, A first course in String theory [5], Parameterised spacetime
worldsheet.

Our parameterised space is defined by ⌧ and � so we write the spacetime
coordinates as Xµ = (X0(⌧,�), X1(⌧,�), X2(⌧,�), X3(⌧,�)). The area on the
worldsheet iwill be given by,

dA =

Z p
det(g) d⌧d�

.
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We can now write the action for the relativistic string Nambu-Goto action,

S = �T0

c

Z
dtd�

q
(ẊX 0)2 � ẊX 0 = �T0

c

Z q
�det(gij)

where the gij is the induced metric (the metric on the worldsheet spacetime).

So we have that the Lagrangian is L(Ẋ,X
0
) and we can define the following

derivatives,

P ⌧
µ
=
@L

@Ẋ
=

(Ẋ.X
0
)X

0 � (Ẋ)2X
0

q
(ẊX 0)2 � (Ẋ)2(X 0)2

P�
µ
=

@L

@X 0 =
(Ẋ.X

0
)Ẋ � (Ẋ)2Ẋq

(ẊX 0)2 � (Ẋ)2(X 0)2

we again vary the action of the Lagrangian

dS =

Z
d⌧P�

µ
�Xµ|�1

0 �
Z

d⌧d�(
@P ⌧

µ

@⌧
+
@P�

µ

@�
)

we get equation of motion,

@P ⌧
µ

@⌧
+
@P�

µ

@�
= 0.

We want to impose the boundary conditions on the string that P�
µ
(⌧,�)�xµ(⌧,�⇤) =

0, we do not want it summed over µ we want individual components going to
zero. Then we have P�0 (⌧,�)�x

0(⌧,�⇤) = 0, P�0 (⌧,�) must be zero as �x0(⌧,�⇤)
is the time component component this can not be zero the string must evolve
in time. P�

i
or @xi(⌧,�) = 0, if @xi = 0 then �xi is a constant.

So if we have a D2 brane in the X1 and X2 direction but not in the X3, we
will have P�1 = 0 and P�2 = 0 on the D brane and �x3 = 0 at the end points
but not P�3 since the string is not free to move in the x3 direction at the end
points.
When we impose the Dirichlet boundary conditions on the string that P�0
the endpoints of the string are fixed in space, then they are fixed on D branes
(however many spatial directions are fixed in), this is an important tool of string
phenomenology.
We will work in the static gauge which means X0(�, ⌧) = c⌧ . Also we will
define the velocity of the string as v? = @X

@t
� (@X

@t
.@X
@S

)@X
@S

. Another thing to
note is that P ⌧µ and P�µ are conserved currents on the world-sheet, where P�µ

we to zero on the world-sheet.
Developing the theory further we can also write the Nambu-Goto action as

SNG = � 1

2⇡↵0

Z
dtd�

p
�det(g)

where ↵0 is the slope parameter, ↵ = 1
2⇡T0
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For an open string wave equation we can split the solution into left and right
parts

Xµ(�, ⌧) =
1

2
(F (⌧ + �) +G(⌧ � �)).

These soloutions can then be written in terms of Fourier modes

Xµ(⌧,�) = Xµ

0 +
p
2↵0↵µ

0 ⌧ + i
p
2↵0

X
n 6= 0

1

n
↵µ

n
e�in⌧ cos(n�)

where ↵µ

0 =
p
2↵0pµ.

The last part of the solution is real and solves the wave equation, classically ↵µ

n

have physical interpretations of being amplitudes of the nth oscillation mode,
but in the quantum theory there will become creation and annihilation opera-
tors. These operators will define a Hilbert space.

Quantum Field Theory

The soloution to the Klein Gordon equation is the scaler field,

�(x) =
1

2⇡3

Z
1p
2E~p

(a~pe
�ip.x + a ⇤~p eip.x)

in the quantum field theory we have the field

�(t, x) =
1

2⇡3

Z
1p
2EP

(a
(
�!
P )

e�iE0t+i
�!
p .x + a+

(
�!
P )

eiEpt�i
�!
p x)

. We also have the commutation relations

[a�!p , a
†
�!
p

0 ] = (2⇡)3�(3)(p� p0)

[ap, ap0 ] = [a†
~p
, a†
~p
0 ] = 0

the |0i is the vacuum state, acting on the vacuum with the creation operatorp
2Epa+p |0i = |~pi produces a particle of momentum ~p. We can also define an

n-particle state

|~p1, ~p2, ..., ~pni =
p
2E ~p1 , 2E ~p2 , ...2E ~pna

†
~p1
a†
~p2
...a†

~pn
|0i

. The annihilation operator is a(~p) and has the property that when it acts on
the vacuum it will produce 0; a(~p)|0i = 0. Further operator the Hamiltonian
and momentum are given by

H =

Z
d3~p

1

(2⇡)3
E~p a†

~p
a~p

P =

Z
d3~p

(2⇡)3
p a†

~p
a~p
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these operator act on the vacuum |0i.

Light cone coordinates

We will use light cone coordinates to quantise the string where x0 and x1 are
replaced by x+ and x� respectively.

x+ =
1p
2
(x0 + x1) x� =

1p
2
(x0 � x1)

In the light cone coordinates we have Xµ = X+, X�, X2, X3, ..., we label the
X+ the time and X� the space coordinate. The spacetime interval is now

�ds2 = �2dx+dx� + (dx2)2 + (dx3)2 = ⌘̂µ⌫dx
µdx⌫

.

⌘̂µ⌫ =

2

664

0 �1 0 0
�1 0 0 0
0 0 1 0
0 0 0 1

3

775

any transformation of the form �+ ! �̃+(�+), �� ! �̃�(��).

Also in light cone coordinates we have the exponential factor eip.x = e�ip
�
x
+�ip

+
x
�
.

So p� is energy and p+ is spatial.

From @0j0µ + @1j1µ = 0 we also have the equation of motion @P
⌧

@⌧
+

@P
�
µ

@�
= 0.

The conserved charge of the string is given by

Qµ ! Pµ(⌧) =

Z
�1

0
d�P ⌧

µ
(⌧,�)

Pµ is the conserved momenta of the string.

3.1 Quantising the string

We will define Schrodinger operators as XI , X0, P I , P+ then the Heisenberg
operators are XI(⌧), X0(⌧), P I(⌧), P+(⌧). We have the hamiltonian which is
given by

H(⌧) =
P+(⌧)P�(⌧)

m2
=

1

2
(P IP I +m2)

the P I are the momenta for the other spatial components.
We have the conformal gauge ⇤Xµ = 0. We also have the commutators from
quantum mechanics mechanics, [xi, pj ] = i�ij or [Xµ, P ⌫ ] = i⌘µ⌫ and from
QTF we have [�(x),�(y)] = i�(~x� ~y). So for the free relativistic string we have
[Xµ(⌧,�),⇧⌫(⌧ 0,�0)] = i⌘µ⌫�(� � �0).The sum over the oscillation modes will
be defined is Ln = L̄n = 0
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The states of the system will be characterised by the eigenvectors of the oper-
ators in our theory.
Going back to the solution of the open string instead of Xµ we have XI ,

XI(⌧,�) = XI

0 +
p
2↵0↵I

0⌧ + i
p
2↵0

X
n 6= 0

1

n
↵I

n
e�in⌧ cos(n�)

the XI(⌧,�)
†
= XI(⌧,�) and (↵I

n
)† = ↵I

n
so the oscillators are hermitian. We

will define ↵I

n
and ↵I

�n to be annihilation and creation operators.
We define the opererator

[↵I

m
,↵J

n
] = m�m+n,0�

IJ

[↵I

m
,↵J

�n
] = m�m,n�

IJ

[↵I

m
,↵J

n

†
] = �m,n�

IJ

the operators commute unless m = �n only then we get a non zero compo-
nent on the right hand side. Also everything from QTF applies, equal time
commutations apply.
We have from the classical string

2p+p� =
1

↵0L
?
0

L?
0 is defined from

(Ẋ ±X 0)2 =
1

2↵0
1

2p+
2↵

X

p,q2R

↵I

p
↵I

q
e�i(p+q)(⌧±�)

L?
0 =

1

2

X

p2Z
↵I

p
↵I

p

this is what will become Virasoro operators, and that we have the mass defined
as

M2 = �p2 = 2P+P� =
1

↵0L
?
0 � pIpI

=
1

↵0 (
1

2

X

p2Z
↵I

p
↵I

p
)� P IP I =

1

↵0 (
1

2
↵I

0↵
I

0 +
X

p�1

(↵I

p
) ⇤ ↵I

p
)� ↵I↵I

this will give

M2 =
1

↵0

1X

p=1

(↵I

p
)⇤(↵I

p
) � 0.

This is what we had from classical string when we quantise the string1 we will
get,

M2 =
1

↵0

1X

p=1

(↵I

p
)†(↵I

p
) + a

1
covered in reference [5]
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where a = 1
2 (D � 2)

P1
p=1 P , which will give D = 26.

(L?
n
)† = L?

�n

[L?
m
, L?

n
] = (m� n)L?

m+n
+

1

2
(D � 2)

Virasoros’ operators generate reparameterisation of the world-sheet, these op-
erators conserve the constraints of the theory, @⌧X.@�X = 0, Ẋ.X 0 = 0, Ẋ2 +
X 02 = 0.

We also find through further calculation that a = �1 which will give 2p+p� =
1
↵0 (L?

0 � 1) which gives H = L?
0 � 1. So mass states will equal

M2|p†, pT i =
1

↵0 (N
? � 1)|p†, pT i = � 1

↵0

where N? (instead of L? we wrote N?) is the creation operator for 1 particle,
acting on the vacuum. When there are no creation operators acting on the
vacuum we get a state with negative mass; a tachyon. Adding more oscillators
will create di↵erent states, adding just one oscillator will create a massless state,
which is of interest to us, since massless states represent particles moving at the
speed of light.
Going back to the tachyon, we say that the vacuum is unstable, we will not
think of these particles as moving faster than the speed of light. There is an
energy density associated with the D branes, and .

3.1.1 Quantising the closed string

Solving the wave equation for the closed strings will give

Xµ = Xµ

L
(⌧ + �) +Xµ

R
(⌧ � �)

where u = ⌧ + � and v = ⌧ � �, which can be written as

Xµ = Xµ

L
(u) +Xµ

R
(v)

and with the boundary condition for the closed stringXµ(⌧+�+2⇡) = Xµ(⌧+�)
we get the condition,

XL(u+ 2⇡)�XL(u) = XR(v)�XR(v � 2⇡)

the sum of the right and left moving waves does not have to be periodic and
we think of u and v as completely di↵erent functions, than individually the
left and right hand side has to be equal to a number, since they are equal
and depend on di↵erent functions so the only way they will be equal is if they
equal a number.The derivatives of the left and right hand side with @u and @v
respectively gives zero.
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We can write the solutions for the left and right side of the fields as

Xµ

L
(u) = XLµ

0 +

r
↵µ

2
↵̄µ

0u+ i

r
↵µ

2

X

n0

1

n
↵̄µ

n
e�inu

Xµ

R
(u) = XRµ

0 +

r
↵µ

2
↵µ

0v + i

r
↵µ

2

X

n 6=0

1

n
↵µ

n
e�inv

solving the closed string equation we get

r
↵µ

2
↵µ

0 (2⇡) =

r
↵µ

2
↵̄µ

0 (2⇡) ! ↵µ

0 = ↵̄µ

0

we would solve the equations here like it was done for the open string.

The Virasoro operators acting on the closed strings will give

(L?
0 � L̄?

0 )| i = 0

(N? � N̄?)| i = 0

the mass formula will give

M2 =
2

↵0 (N
? + N̄? � 2).

Constructing the first state of the closed string N? = N̄? = 0 this is the
ground state, M2 = 4

↵0 this is again a tachyon. Next state is N? = 1 which
gives massless states M2 = 0. This is going to give a graviton, dilation, and
Ramond. We will not go into detail here about these states but these things
can be studied separately in other textbooks.

3.1.2 Fermionic and Superstring

In the classical theory we have Xµ(⌧,�), we will now add a function for the
fermions  µ

↵
where ↵ = 1, 2, so we have 2 fields (We can think of the action

S = SNG(X) + S( µ

↵
)). Fermion action

S( ) =
1

2⇡

Z
d⌧d�[ I

1(
@

@⌧
+

@

@�
) I

1 +  I

2(
@

@⌧
� @

@�
) I

2 ]

the  I

1 
I

1 will equal zero so the action has to be written in this form. Variation
of this will give

�S =
1

⇡

Z
d⌧d�[� I

1(@⌧ +@�) 
I

1 + � 
I

2(@⌧ +@�) 
I

2 ]+
1

2⇡

Z
d⌧ [ I

1� 
I

1 � I

2� 
I

2 ]
⇡

0
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the E.O.M will be given by

(@⌧ + @�) 
I

1 = 0  I

1 = �I

1(⌧ � �)

this wave moves to the right

(@⌧ � @�) 
I

2 = 0  I

2 = �I

2(⌧ + �)

moves to the left.
From the boundary conditions and the R.H.S of the variation

 I

1� 
I

1(⌧,�⇤)�  I

2� 
I

2(⌧,�⇤) = 0

to solve we relate  1 and  2 by  I

1(⌧,�) = ± I

2(⌧,�) and the same is true for
the � I

1(⌧,�) = ±� I

2(⌧,�).
We declare that  1 and  2 by

 I

1(⌧, 0) =  I

2(⌧, 0)

and at the ⇡ B.C we can have ±,

 I

1(⌧,⇡) = +±  I

2(⌧,⇡) Ramond sector.

= �±  I

2(⌧,⇡) Neveu-Schwarz sector.

here the fundamental domain is � 2 [0, 2⇡] and

 1 � 2 [0,⇡]

 2 � 2 [�⇡, 0]

what this means that the fermionic function is either periodic or anti-periodic,
so at ⇡,  (⌧,⇡) =  (⌧,�⇡) or  (⌧,⇡) = � (⌧,�⇡) relating to R & NS sectors.
Another thing to note which has not been derived here is we are now working
in D = 10, since there are fermion contributions the critical dimensions reduces
to 10 dimensions.

Now for the NS we have the solution

 (⌧,�) ⇡
X

r2Z+1/2

bI
r
e�ir(⌧��),

and the mass states produced from these states will be

↵0M2 = N? � 1

2

therefore the states produced by acting on the vacuum (|NS, 0i) with creation
operators will be,

M2 = �1

2
N? = 0 |NS, 0i

M2 = 0 N? = 1/2 bI� 1
2
|NS, 0i

M2 =
1

2
N? = 1 bI� 1

2
bJ� 1

2
,↵I

�1|NS, 0i
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states with N? integer and half integer are fermionic and bosonic respectively.
We have the same process for the R sector but produces di↵erent results.

At this point, we have seen that we replace the point particle with strings, then
quantising the string can be used to produce states, specifically massless states,
and how there is a tachyonic state present which we viewed as relating to an
unstable vacuum. This theory needs to be developed further before we can pro-
duce the gauge groups that of the standard model, how the ABK formulation
is constructed is covered in the references, we will now move on to building our
models in the ABK formulation.
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4 The Free Fermionic Formulation
The ABK Rules and GSO Projections

Our models will be constructed using the free fermionic formulation (FFF),
from heterotic string theory. To get to the FFF we start from the bosonic
string in D = 26 spacetime dimensions, we quantise the string. This is open
string theory, and all open string theories contain closed string, and quantum
closed strings give rise to graviton states. We then add supersymmetry to the
string which will allow both fermionic and bosonic states, it will also reduce
the dimensions down to 10. Then quantised fermionic string will result in the
Ramond (R) and Nevu-Schwarz (NS) sectors. We will then be able to construct
closed superstring theories called type II superstring theories (which also results
in two other versions type IIA and IIB).
Supersymmetric heterotic string theory is the theory we will use, which has
supersymmetry to introduce world-sheet fermions for every boson. This theory
has 10 dimensions but compactifications will produce the 4D spacetime we ob-
serve. We want the theory to produce gauge groups that resemble the standard
model. One can learn the ABK rules and start to construct models without
deep knowledge of how to construct supersymmetric string theories or knowing
how to derive the ABK rules, we shall construct these models now.

4.1 ABK rules

A model is defined by specifying two ingredients:
1. A set of boundary conditions basis vectors
2. The one loop phases C

�
bi

bj

�
for the intersections of the basis vectors.

These are the explicit rules of the ABK models, this is our starting point.
We have basis vectors b1, . . . , bn or in the model we will go on to analyse
1, S, b1, b2, b3,↵,�, � which will contain the fermions in the following equation
with a set of boundary conditions,

 µ

1,2{�1y1w1}, {�2y2w2}, {�3y3w3}, {�4y4w4}, {�5y5w5}, {�6y6w6}|
ȳ1w̄1, ȳ2w̄2, ȳ3w̄3, ȳ4w̄4, ȳ5w̄5, ȳ6w̄6, ( ̄

1 ̄2 ̄3 ̄4 ̄5⌘̄1⌘̄2⌘̄3�̄1�̄2�̄3�̄4�̄5�̄6�̄7�̄8)| {z }
(1)

where the bar on top of the letters represents the right movers. It contains
20 real left moving and 44 real right moving fermions; the under-braced are
complex fermions. Each individual fermion has a boundary conditions which
we specify. The phases defined on these fermions will be either 1 periodic (Ra-
mond) or 0 anti periodic (Nevu Scharwz) or 1

2 .

For example: The basis vector bi will be defined as follows,

bi = {↵( µ

1,2),↵(�
1)↵(�2),↵(�3)↵(�4),↵(�5)↵(�6)|↵(�̄1),↵(�̄2),↵(�̄3),↵(�̄4)}
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where each fermion has the a boundary condition associated with it ↵(f), it is
the phase defined by f ! �ei⇡↵(f)f . The fermions also form an additive group
⌅ which are defined by

⌅ =
nX

n=i

mibi.

4.1.1 ABK rules on the basis vectors

1.
P

mibi = 0 if and only 8mi = 0 mod Ni

where Ni is the smallest positive integer where Nibi = 0

2. Nijbibj = 0 mod 4
where Nij is the least common multiplier of bi and bj .

3. Nibibi = 0 mod 8

4. Number of fermions are even.

5. Basis vector 1 contains all the fermions, hence the boundary conditions
on all fermions is 1 periodic (Ramond).

The scalar product between the basis vectors is defined as,

bi.bj =

2

4

0

@
X

ComplexLeft

+
1

2

X

RealLeft

1

A�

0

@
X

ComplexRight

+
1

2

X

Realright

1

A

3

5 bi(f)bj(f)

(2)
where bi(f) and bj(f) are the fermion numbers.

4.1.2 Rules on one loop phases

1.

C

✓
bi
bj

◆
= �bie

2⇡inj
Nj = �bie

i⇡bibj
2 e

i2⇡mi
Ni (3)

2.

C

✓
bi
bi

◆
= �e

i⇡bibi
4 C

✓
bi
1

◆
(4)

3.

C

✓
bi
bj

◆
= e

i⇡bibj
2

✓
bj
bi

◆⇤
(5)

4.

C

✓
bi

bj + bk

◆
= deltabiC

✓
bi
bj

◆
C

✓
bi
bk

◆
(6)

�bi = ei⇡bi( 
µ) =

(
�1 bi( µ) = 1

+1 bi( µ) = 0
(7)
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4.1.3 Matching Virasoro Condition

For every sector we construct using the basis vectors, we need to find out if it
contains massless states or tachyonic using the formula,

M2
L
= �1

2
+
↵L.↵L

8
+NL = �1 +

↵R.↵R

8
+NR = M2

R
, (8)

Where the NL and NR are the fermionic osscillators that act on the vacume
|0i↵.
where ↵L and ↵R are the left moving and right moving part of the basis vector;
worked out by equation 2.

For the periodic fermions there is a doubly degenerate vacume |±i.

v↵0↵ ; |±i

where v↵ is the frequency of the osscillators and is given for a fermion f and its
conjugate f⇤ by:

vf =
1 + ↵(f)

2
vf⇤ =

1� ↵(f)

2
(9)

The frequencies and the fermionic oscillators are related by

NL =
X

vL =
X

L�osc

vf +
X

L�osc

vf⇤

NR =
X

vL =
X

R�osc

vf +
X

R�osc

vf⇤

For the NS vacuum

↵(f) = 0 ! vf = v⇤
f
=

1

2

4.2 GSO Projections

ei⇡bj .F↵ |si↵ = �↵C

✓
↵

bj

◆⇤
|si↵ (10)

where bj is the basis vector and ↵ is the sector and |si↵ is the state being anal-
ysed. We calculate bj .F↵ by equation 2.

5 String model

5.0.1 All of the Basis vectors

These are the basis vectors in our model, it is generated by eight basis vectors.
Real fermions are paired based on having the same boundary conditions in each
sector to form complex fermions,

fnfm =
1p
2
(fn + ifm). (11)
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Also another thing is that left and left fermions together form a complex fermion
i.e (w2w4), right and right fermions form a complex fermion i.e (w̄2w̄4), and left
and a right fermion forms a complex fermion i.e (y4ȳ4). These fermions that
have a left and right moving fermion can form a doubly degenerate vacuum,
but they can not be used in the GSO projection as a complex fermion either in
the right or left sector. This becomes important in the GSO projections. The
following basis vectors are written as paired fermions.

1 = { µ

1,2, {�iyiwi}, {ȳiw̄i},  ̄1,...,5, ⌘̄1, ⌘̄2, ⌘̄3, �̄1,...,8} i = 1, .., 6

S̃ = { µ

1,2,�
1,2,�3,4,�5,6, �̄1, �̄4, �̄5, �̄6}

b1 = { µ

1,2,�
1,2, y3y6, y4ȳ4, y5ȳ5, ȳ3ȳ6,  ̄1,2,3,  ̄4,5, ⌘̄1}

b2 = { µ

1,2,�
3,4, y1w5, y2ȳ2, w6w̄6, ȳ1w̄5,  ̄1,2,3,  ̄4,5, ⌘̄2}

b3 = { µ

1,2,�
5,6, w2w4, w1w̄1, w3w̄3, w̄2w̄4,  ̄1,2,3,  ̄4,5, ⌘̄3}

↵ = {y1w5, w1w̄1, y2ȳ2, w2w4, y3y6, w3w̄3, y4ȳ4, y5ȳ5, w6w̄6,  ̄123, �̄1, �̄23, �̄4}
� = {y2ȳ2, y4ȳ4, w2w4, ȳ1w̄5, ȳ3ȳ6,  ̄1,2,3, �̄1, �̄2,3, �̄4}
� = {y1w5, w1w̄1, y5ȳ5, w̄2w̄4, ȳ3ȳ6,  ̄1,2,3

1
2

,  ̄4,5
1
2

, ⌘̄11
2
, ⌘̄21

2
, ⌘̄31

2
, �̄2,31

2
, �̄41

2
, �̄51

2
}

5.0.2 GSO coe�cients

The GSO coe�cients for our projections are given in the matrix below.

For example �S C
�
b2

S

�
= (�1)(�1) = +1, where �S is ei⇡S( µ) = �1 .

1 S b1 b2 b3 ↵ � �
1
S̃
b1
b2
b3
↵
�
�

0

BBBBBBBBBB@

+1 +1 �1 �1 �1 +1 +1 i
+1 �1 +1 +1 +1 �1 �1 i
�1 �1 �1 �1 �1 �1 �1 +1
�1 �1 �1 �1 �1 +1 �1 +1
�1 �1 �1 �1 �1 �1 +1 +1
+1 +1 +1 �1 +1 +1 +1 +1
+1 +1 �1 �1 �1 �1 �1 �1
+1 �1 +1 �1 +1 �1 �1 +1

1

CCCCCCCCCCA

5.1 Old and New NAHE Set

Free fermionic heterotic string models with three generations were being built
since the late eighties [4]. These models have the same underlying structure,
the basis vectors spanning these di↵erent models had the common NAHE-set,
denoted as {1, S, b1, b2, b3}. The gauge group at the level of the NAHE-set is
SO(10)⇥ SO(6)3 ⇥E8, with 48 multiplets in the spinorial 16 representation of
SO(10), obtained from the (observable matter sectors) sectors b1,b2 and b3. The
S-vector { µ,�1,2,�3,4,�5,6} generates the spacetime supersymmetry, which is
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reduced to N = 2 by addition of the basis vector b1 and further reduced to
N = 1 by the addition of b2. The GSO projection of b3 will either preserve or
remove the remaining supersymmetry. The next step is to add basis vectors,
typically denoted as {↵,�, �}. The addition of these basis vectors breaks the
SO(10) gauge symmetry to SU(3)⇥SU(2)⇥U(1)2 and at the same time reduces
the number of generations to three. Where the weak hypercharge is given by
the combination

U(1)Y =
1

2
U(1)C +

1

3
U(1)L.

Each of the sectors b1, b2 and b3 produces one generation of the standard model,
the 16 multiplets of SO(10).
The basis vector 1 is required by the consistency conditions rules to be in-
cluded in the model and generates a model with SO(32) gauge group fro the
Neveu-Schwarz (NS) sector. The spacetime supersymmetry generator is the
basis vector S.
We will construct our model with the modified NAHE-set, where the S vector
is replaced by the S̃ vector. The S̃ vector will remove supersymmetry from the
model. The modified NAHE-set along with the addition of the basis vectors
↵,�, � will reproduce the Standard Model gauge group (so we get the 3 gen-
erations standard model families). The basis vectors b1, b2, b3 will project out
the untwisted tachyons for the NS sector. The states form the sectors S̃ + bi
will not produce massless states and will be too heavy, we are only concerned
with producing the lowest energy states (but not tachyonic states as these are
unphysical, in general, the NAHE-set will produce tachyons, you can choose the
GSO in such a way to project all the tachyons out in some cases). The model
analysed in this paper will produce tachyonic sectors, hence the tachyons are
not projected out.
The NAHE-set will produce the same results in some respect to the model
with normal NAHE-set, the similarity is that the standard model spectrum
is reproduced, despite the fact that the two vacua being very di↵erent one is
supersymmetric and one is not. The NAHE-set will produce the SO(10) gauge
group from  12345, and then with the addition of basis vectors ↵,�, � our model
we will break down the gauge group from SO(10) ! SU(5)⇥ U(1) which then
gives SU(3)⇥ SU(2)⇥ U(1)C U(1)L.
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5.2 Sector analysis

Here we will analyse a sector from this model as an example of how to use the
method to analyse the spectrum. I have chosen the sector b1+b3+↵+3�, since
this is a sector that contains an oscillator for it to be massless. The left side of
this spectrum is massless and right side requires an oscillator, so this example
contains all of the method.
The fermions in the sector b1 + b3 + ↵+ 3� are:

S : {�12,�56, y2ȳ2, y5ȳ5, w1w̄1, w6w̄6, �̄1,  ̄123
1/2,  ̄

45
�1/2, ⌘̄

1
1/2, ⌘̄

2
�1/2, ⌘̄

3
1/2, �̄

234
1 /2, �̄5�1/2}

where I have written the fermions in their complex pairs.

The ABK rules on the basis vectors, are satisfied.

Next step is to check if the sector is massless; or how many oscillator it requires,
we use the Virasoro condition for this

M2
L
= �1

2
+

sL.sL
8

+NL = �1 +
sR.sR

8
+NR = M2

R

here sL sR are the left and right part of the sector s and NL NR are the total
amount of the left and right oscillators. So the left part of the sector contains

↵L.↵L = {1
2

X
real left +

X
complex left}↵L.↵L

= �12↵2 + �56↵2 +
1

2
(y2)↵2 +

1

2
(y5)↵2 +

1

2
(w1)↵2 +

1

2
(w6)↵2

= 1 + 1 +
1

2
+

1

2
+

1

2
+

1

2
= 4

a 1
2 is multiplied with real fermions, two real fermions form one complex fermion,

which ever way you count you get the same value at the end. We have that the
left part of the sector is massless

M2
L
= �1

2
+

4

8
= 0

no oscillator needed here.
For the right moving part we repeat the same procedure,

sR.sR =
1

2
(ȳ2)↵2 +

1

2
(ȳ5)↵2,

1

2
(w̄1)↵2,

1

2
(w̄6)↵2, �̄1)↵2, ( ¯ 123

1/2)↵
2 + ( ¯ 45

�1/2)↵
2

+ ( ¯⌘11/2)↵
2, ( ¯⌘31/2)↵

2, ¯⌘2�1/2)↵
2, ¯�2341/2↵

2, ¯�5�1/2)↵
2

=
1

2
+

1

2
+

1

2
+

1

2
+ 1 +

3

4
+

2

4
+

1

4
+

1

4
+

1

4
+

3

4
+

1

4
= 6

thus,

M2
R
= �1 +

6

8
+NR = 0
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here NR = 1
4 .

We can apply one right moving oscillator with boundary condition ↵(f) =
�1/2,

⌫f =
1 + ↵(f)

2
=

1

4
,

or a complex conjugate oscillator

⌫f
⇤ =

1� ↵(f)

2
=

1

4
.

The oscillators that can be applied are  ̄123
1/2,  ̄

45
�1/2, ⌘̄

1
1/2, ⌘̄

2
�1/2, ⌘̄

3
1/2, �̄

234
1 /2, �̄5�1/2.

At this point we also know that the state is

�̄a1/4|si

so in this state there is only on right moving oscillator which produce a mass of
1/4.

The next step is to do the GSO projections, we will do GSO projections for all
the vectors 1, S̃, b1, b2, b3,↵,�, �. The GSO projections for the first basis vector
1

ei⇡1.FS |si = �sC

✓
Fs

1

◆⇤
= �b1+b3+↵+3�C

✓
b1 + b3 + ↵+ 3�

1

◆⇤
.

To work this out we need to use the rules on the one loop phases given at the
start of the section.

�sC

✓
Fs

1

◆⇤
= �s

✓
ei⇡

1.Fs
2 C

✓
1

Fs

◆⇤◆⇤

= �se
�i⇡

1.Fs
2 C

✓
1

Fs

◆

�se
�i⇡

1.Fs
2 C

✓
1

1 + b3 + ↵+ 3�

◆
,

�se
�i⇡

1.Fs
2 �1C

✓
1

b1

◆
C

✓
1

b3 + ↵+ 3�

◆
,

�se
�i⇡

1.Fs
2 �1C

✓
1

b1

◆
�1C

✓
1

b3

◆
C

✓
1

↵+ 3�

◆
,

�se
�i⇡

1.Fs
2 �1C

✓
1

b1

◆
�1C

✓
1

b3

◆
�1C

✓
1

↵

◆
C

✓
1

3�

◆
,

and the 3� can be broken in a similar way, the �1 = �1 can be grouped to give
(�1)3 and the �s = +1 from the definition since it does not have a  µ,

= (i).(�1)3.(�1).(�1).(+1).(�i) = �1

.
We now know that the GSO projection of the basis vector 1 have to give -1.
Each fermion that is periodic can occupy one of the two states |±i,

|+i = ei⇡1.↵(f) = +1 |�i = ei⇡1.↵(f) = �1.
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The notation we will use is
�
i

j

�
, i is the total number of periodic fermions states

and j is the number of |�i states, for example

✓
2

1

◆
= |+i|�i,

✓
2

0

◆
= |+i|+i,

and ✓
2

even

◆
= |+i|+i or |�i|�i.

Let us begin the GSO projections.

1 Ramond Sector Projection

GSO projections is
ei⇡1.Fsei⇡1.↵(�̄)|si = �|si

in the 1 projection ei⇡1.↵(�̄) = �1 for all oscillators (1.↵(�̄a) means that what are
the boundary conditions for this fermion in the basis vector 1; which is 1 since
all fermion have periodic B.C = 1 on the basis vector 1 ), hence we require that
the number of negative periodic fermion states is even, so ei⇡1.Fs = ei⇡1.#|�i has
to give a positive ’+’ contribution. The states that survive the GSO projections
are
✓

7

even

◆

�12,�56,y2ȳ2,y5ȳ5,w1w̄1,w6w̄6,�̄1

 ̄123
1/2,  ̄

45
�1/2, ⌘̄

1
1/2, ⌘̄

2
�1/2, ⌘̄

3
1/2, �̄

234
1/2, �̄

5
�1/2.

S̃ Projection

The GSO for the S̃ vector is

ei⇡S̃.Fsei⇡S̃↵(�̄)|si = �|si.

There are two di↵erent possibilities here, the first is we act on oscillators which
are present in the S̃, these are �̄41/2, �̄

5
�1/2 which will produce

ei⇡S̃.↵(�̄a) = ei⇡.1 = �1

and the other is we act on fermionic oscillators which do not exist in the S̃,
ei⇡S̃↵(�̄

a) = ei⇡.0 = +1.
The states are

✓
3

even

◆�

�12,�56,�̄1

✓
4

even

◆�

y2ȳ2,y5ȳ5,w1w̄1,w6w̄6

{�̄41/2, �̄5�1/2},
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✓
3

odd

◆�

�12,�56,�̄1

✓
4

odd

◆�

y2ȳ2,y5ȳ5,w1w̄1,w6w̄6

{ ̄123
1/2,  ̄

45
�1/2, ⌘̄

1
1/2, ⌘̄

2
�1/2, ⌘̄

3
1/2, �̄

23
1/2}.

We will carry on the projections all the way, of the 2 state only for brevity,
since this is an example of applying the method to derive the spectrum. Once
we know the rules and how to do the projections, we can always go back and
derive the full spectrum.

b1 Projection

ei⇡b1.Fsei⇡b1↵(�̄
a)|si = +|si.

In b1 sector there are  ̄123,  ̄45, ⌘̄1 oscillators present. The following states are
not all the di↵erent states produced at this point, but only the ones which
contain  ̄123,  ̄45, ⌘̄1 as these are the states that will survive till the end,
✓

1

0

◆�

�12

✓
2

1

◆�

�56,�̄1

✓
1

1

◆�

y5ȳ5

✓
3

even

◆�

y2ȳ2,w1w̄1,w6w̄6

{ ̄123
1/2,  ̄

45
�1/2, ⌘̄

1
1/2},

✓
1

1

◆�

�12

✓
2

even

◆�

�56,�̄1

✓
1

0

◆�

y5ȳ5

✓
3

even

◆�

y2ȳ2,w1w̄1,w6w̄6

{ ̄123
1/2,  ̄

45
�1/2, ⌘̄

1
1/2}.

b2 Projection

ei⇡b2.Fsei⇡b2↵(�̄
a)|si = �|si.

The states break further
✓

1

0

◆�

�12

✓
2

1

◆�

�56,�̄1

✓
1

1

◆�

y5ȳ5

✓
2

even

◆�

y2ȳ2,w6w̄6

✓
1

0

◆�

w1w̄1

{ ̄123
1/2,  ̄

45
�1/2},

✓
1

1

◆�

�12

✓
2

even

◆�

�56,�̄1

✓
1

0

◆�

y5ȳ5

✓
2

even

◆�

y2ȳ2,w6w̄6

✓
1

1

◆�

w1w̄1

{ ̄123
1/2,  ̄

45
�1/2},

again these were not all the states that are produced but are the ones that will
survive to the end.

b3 Projection

The GSO projection for this sector is

ei⇡b3.Fsei⇡b3↵(�̄
a)|si = +|si.

The states that survive the projection are
✓

1

0

◆�

�12

✓
1

1

◆�

�56

✓
1

0

◆�

�̄1

✓
1

1

◆�

y5ȳ5

✓
2

even

◆�

y2ȳ2,w6w̄6

✓
1

0

◆�

w1w̄1

{ ̄123
1/2,  ̄

45
�1/2},
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✓
1

1

◆�

�12

✓
1

0

◆�

�56

✓
1

0

◆�

�̄1

✓
1

0

◆�

y5ȳ5

✓
2

even

◆�

y2ȳ2,w6w̄6

✓
1

1

◆�

w1w̄1

{ ̄123
1/2,  ̄

45
�1/2}.

↵ Projection

The GSO projection for this sector is

ei⇡↵.Fsei⇡↵↵(�̄
a)|si = +|si.

The states that survive the projection are
✓

1

0

◆�

�12

✓
1

1

◆�

�56

✓
1

0

◆�

�̄1

✓
1

1

◆�

y5ȳ5

✓
2

even

◆�

y2ȳ2,w6w̄6

✓
1

0

◆�

w1w̄1

{ ̄123
1/2},

✓
1

1

◆�

�12

✓
1

0

◆�

�56

✓
1

0

◆�

�̄1

✓
1

0

◆�

y5ȳ5

✓
2

even

◆�

y2ȳ2,w6w̄6

✓
1

1

◆�

w1w̄1

{ ̄123
1/2}.

� Projection

The GSO projection for this sector is

ei⇡�.Fsei⇡�↵(�̄
a)|si = +|si.

The states that survive the projection are
✓

1

0

◆�

�12

✓
1

1

◆�

�56

✓
1

0

◆�

�̄1

✓
1

1

◆�

y5ȳ5

✓
1

1

◆�

y2ȳ2

✓
1

1

◆�

w6w̄6

✓
1

0

◆�

w1w̄1

{ ̄123
1/2},

✓
1

1

◆�

�12

✓
1

0

◆�

�56

✓
1

0

◆�

�̄1

✓
1

0

◆�

y5ȳ5

✓
1

1

◆�

y2ȳ2

✓
1

1

◆�

w6w̄6

✓
1

1

◆�

w1w̄1

{ ̄123
1/2}.

� Projection

The GSO projection for this sector is

ei⇡�.Fsei⇡�↵(�̄
a)|si = �i|si.

All the states from the previous sector survive the GSO projections. For each
oscillator there is a separate state, so each of the 2 states splits into 3 states, in
total we end up with 6 states.
If we were to go back and finish doing all the projections then we will have
additional 2 states,
✓

1

1

◆�

�12

✓
1

0

◆�

�56

✓
1

1

◆�

�̄1

✓
1

1

◆�

y5ȳ5

✓
1

0

◆�

y2ȳ2

✓
1

1

◆�

w6w̄6

✓
1

0

◆�

w1w̄1

{�̄41/2},

✓
1

0

◆�

�12

✓
1

1

◆�

�56

✓
1

1

◆�

�̄1

✓
1

0

◆�

y5ȳ5

✓
1

0

◆�

y2ȳ2

✓
1

1

◆�

w6w̄6

✓
1

1

◆�

w1w̄1

{�̄41/2}.

Overall we get 8 states. This concludes the projections for this sector.
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6 Tachyonic sector analysis

This is the sector where we can not achieve a massless state so this sector
produces tachyons. The sector is defined as : S̃ + b1 + b2 + b3 + ↵+ � + 2�

S :
�
y4ȳ4, y2ȳ2, w2w4, w̄2w̄4, �̄1, �̄23�̄6

 
.

The Virasoro condition

M2
L
= �1

2
+

2

8
+NL = �1 +

6

8
+NR = M2

R
,

M2
L
= �1

4
NL = �1

4
+NR = M2

R
,

the Left and the right part of the equation are the same, so we can get a tachyon
state. Here we can not get an oscillator that produces +1/4 to make the state
massless, since we do not have ↵(f) = 1/2 boundary condition fermions in this
sector.

GSO Projections

The projections are done the same way as in the previous sector. All fermions
are periodic in this sector and there are no oscillators.

1 Projection

ei⇡1.Fs |si = �|si
✓

8

odd

◆�

y4ȳ4,y2ȳ2,w2w4,w̄2w̄4,�̄1,�̄23�̄6

.

S̃ Projection

ei⇡S̃.Fs |si = �|si
✓
1

0

◆

�̄1

✓
7

odd

◆�

y4ȳ4,y2ȳ2,w2w4,w̄2w̄4,�̄23�̄6

.

b1 Projection

ei⇡b1.Fs |si = �|si
✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
6

even

◆�

y2ȳ2,w2w4,w̄2w̄4,�̄23�̄6

b2 Projection
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ei⇡b2.Fs |si = �|si
✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
5

even

◆�

w2w4,w̄2w̄4,�̄23�̄6

b3 Projection

ei⇡b3.Fs |si = �|si
✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
2

even

◆

w2w4,w̄2w̄4

✓
3

even

◆�

�̄23�̄6

↵ Projection

ei⇡↵.Fs |si = �|si
✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
2

2

◆

w2w4,w̄2w̄4

✓
1

0

◆

�̄6

✓
2

even

◆

�̄23

,

✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
2

0

◆

w2w4,w̄2w̄4

✓
1

1

◆

�̄6

✓
2

1

◆

�̄23

.

� Projection

The state is the same after this projection.

ei⇡�.Fs |si = �|si
✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
2

2

◆

w2w4,w̄2w̄4

✓
1

0

◆

�̄6

✓
2

even

◆

�̄23

,

✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
2

0

◆

w2w4,w̄2w̄4

✓
1

1

◆

�̄6

✓
2

1

◆

�̄23

.

� Projection

ei⇡�.Fs |si = �|si
✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
1

1

◆

w2w4

✓
1

1

◆

w̄2w̄4

✓
1

0

◆

�̄6

✓
2

2

◆

�̄23

,

✓
1

0

◆

�̄1

✓
1

1

◆

y4ȳ4

✓
1

0

◆

y2ȳ2

✓
1

1

◆

w2w4

✓
1

1

◆

w̄2w̄4

✓
1

0

◆

�̄6

✓
2

0

◆

�̄23

.

This concludes the GSO projections for this sector.
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6.1 NS sector

The Neveu-Schwarz (NS) sector is where all the fermions have 0 boundary con-
ditions on all fermions, so the NS sector contains no fermions. Once we apply
the Virasoro condition to this sector we get,

M2
L
= �1

2
+
↵L.↵L

8
+NL = �1 +

↵R.↵R

8
+NR = M2

R

↵L.↵L = 0 and ↵R.↵R = 0 since there are no fermions in this sector.

M2
L
= �1

2
+

0

8
+NL = �1 +

0

8
+NR = M2

R

To satisfy this equation and produce the massless sector we require NL = 1
2

and NR = 1, that it requires one left moving fermionic oscillator and two right
moving fermionic oscillator or one right moving bosonic oscillator. You can also
get a tachyonic state, by only having one right moving fermionic oscillator. This
will produce particles with negative mass.

The 4 masless states from this sector,

 µ

1
2

¯�X
⌫

1 |0iNS (12)

 µ

1
2
�̄a1

2
�̄b1

2
|0iNS (13)

{�iyiwi}�̄a1
2
�̄b1

2
|0iNS (14)

{�iyiwi} ¯�X
⌫

1 |0iNS (15)

and one tachyonic state.

�̄a1
2
|0iNS (16)

GSO Projections

ei⇡biFNS |0iNS = �NS C

✓
NS

bi

◆
= �bi

This condition has to be satisfied for each basis vector.

 µ

1
2

¯�X
⌫

1 |0iNS

Where ¯�X
⌫

1 is the bosonic creation operator with frequency ⌫f = 1, survives the
GSO projections and gives spin 2 graviton.

 µ

1
2
�̄a1

2
�̄b1

2
|0iNS {a, b = 1, ..., 44}
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This state will produce the vector gauge bosons, there are observable and hid-
den groups which are produced as follows.

Observable standard model gauge group SU(3)xSU(2)xU(1)CxU(1)L.

•  µ 123 123⇤ µ⇣̄ ⇣̄⇤|0iNS will produce SU(3)CxU(1)C .

•  µ 45 45⇤ µ⇣̄ ⇣̄⇤|0iNS will produce SU(2)LxU(1)L.

The U(1)CxU(1)L symmetry breaks to the weak hypercharge U(1)Y ,

U(1) =
1

3
U(1)C +

1

2
U(1)L

The  µ⇣̄ ⇣̄⇤|0iNS will produce the the observable U(1), where ⇣̄ are complex
right moving fermions e.g ⇣̄ = 1p

2
(ȳ3 + iȳ6).

 µ⌘̄a⌘̄a⇤|0iNS (a = 1, 2, 3)

{a = 1,2,3} This will also produce the observable U(1).

The vector gauge bosons of the hidden group are:

•  µ�̄1�̄1|0iNS U(1)7

•  µ�̄4�̄4⇤|0iNS U(1)8

•  µ�̄5�̄5⇤|0iNS U(1)9

•  µ�̄6�̄6|0iNS U(1)10

•  µ�̄23�̄23⇤|0iNS SO(4)H ) SU(2)HxU(1)H

•  µ�̄78�̄78|0iNS SO(4)H

{�iyiwi}�̄a1
2
�̄b1

2
|0iNS

This state corresponds to the spacetime scalers which are neuteral under U(1)
symmetries, in this model the scalers are:

• �1,2 ̄45⌘̄1⇤|0iNS

• �1,2⌘̄2⌘̄3⇤|0iNS

• �3,4⌘̄1⌘̄3⇤|0iNS

• �3,4  ̄45⌘̄2⇤|0iNS

• �5,6  ̄45⌘̄3⇤|0iNS

• �5,6⌘̄1⌘̄2⇤|0iNS
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These scaler have charges under the observable gauge group the full table for
the NS-sector is in the appendix, but we go through one example here of how
to get the charges and di↵erent scalers from each state.

SU(3)C U(1)C SU(2)L U(1)L U(1)⌘1 U(1)⌘2 U(1)⌘3 ȳ3,6 ȳ1w̄5 w̄2,4

h̄ �56  ̄45 ⌘̄1⇤|0i = 1 0 2 +1 -1 0 0 0 0 0
h �56  ̄45⇤ ⌘̄1|0i = 1 0 2 -1 +1 0 0 0 0 0

Here 1 under SU(3)C means a singlet of SU(3), since there is no  123 present
in these states, the charge under U(1)C is 0. The  ̄45 will form a doublet of
SU(2) and have charge ±1, depending on if it is a complex conjugate or not
denoted by the * sign.

{�iyiwi} ¯�X
⌫

1 |0iNS

This state corresponds to gauge bosons but is projected out during the GSO
projections. So this state will produce nothing in this model.

6.1.1 The tachyonic state

The state
�̄a1

2
|0iNS

is projected out. Usually the S vector responsible for supersymmetry will project
this tachyon out, but, we had a S̃ (no supersymmetry) which keeps the tachyon
since it contains �̄1456. The b1, b2, b3 will project the tachyon instead, so no
tachyons are produced from the NS sector. With this we conclude the projec-
tions for this sector.
Since this non-supersymmetric model projects the tachyons out, we can say
that non-supersymmetric models are viable for building future models.

6.2 Remaining Massless Sectors

6.2.1 Sectors b1, b2, b3

A full list of states and quantum numbers is given in the Appendix. From these
sectors, we have obtained the 3 generations2 of left moving chiral fermions, the
charges and corresponding particles are given in the table 1 Appendix. The
particles are SU(2) doublets and the antiparticle are SU(2) singlets.

2
The 3 generations produced are not going to explicitly state electron, muon, and tau, etc.

These specific details are not covered in the model presented here.
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6.2.2 Other massless sectors

The remaining massless sector will be spilt into two groups vector representa-
tions of the hidden gauge group and sectors that give states which are chiral
representations of the hidden gauge group. The appendix contains the massless
sectors.

The S̃ basis vector, produces the states |Si�̄a|Si which which are masless.
Sectors that give massless states are: � + �, � + 3�, ↵ + �, ↵ + 3�, b3 + 2�,
b2+2�,b1+b2+↵+2�,b1+2�3, b1+b3+↵+2�, b1+b2+↵+2�, b1+b2+b3+↵+2�,
S̃+ b3 +2�, S̃+ b2 +2�, S̃+ b2 + b3 +↵+2�, S̃+ b1 +2�, S̃+ b1 + b3 +↵+2�,
S̃+ b1+ b2+↵+2�, S̃+ b1+ b2+↵+�, S̃+ b1+ b2+ b3+�+2�, 1+ b2+↵+�,
1+ b3+↵+3�, 1+ b2+ b3+2�, 1+ b2+ b3+2�, 1+ b1+�+ �, 1+ b1+�+3�,
1 + b1 + b3 + 2�,1 + b1 + b2 + 2�, 1 + S̃ + �, 1 + S̃ + 3�, 1, S̃ + ↵ + � + �,
1 + S̃ +↵+ � +3�, 1 + S̃ + b3 +↵+ �, 1,+S̃ + b2 +↵+ �, 1 + S̃ + b2 +↵+3�,
1 + S̃ + b1 + b2 + 2�, 1 + S̃ + b1 + b3 + 2�, 1 + S̃ + b1 + b2 + 2�.

Sectors that gave massless states with fermions oscillators acting either on the
left or the right hand side, b2 + b3 + � + �, b2 + b3 + � + 3�, b1 + b3 + ↵ + �,
b1 + b3 + ↵ + 3�, b1 + b2 + ↵ + �, S̃ + b2 + b3 + � + �, S̃ + b2 + b3 + � + 3�,
S̃+ b1+ b3+↵+�, S̃+ b1+ b3+↵+3�, S̃+ b1+ b2+ b3+↵+2�, 1+ b1+ b2+ b3,
1 + S̃ + b1 + b2 + b3.

6.3 Tachyonic Sector

The model gives rise to new tachyonic sector as a result of using the NAHE-set,
these sectors were not produced in previous models (NAHE-set) which includes
the supersymmetry. The sector S̃+ b1+ b2+ b3+↵+�+2� produces tachyons.

w2w4 y2ȳ2 y4ȳ4 w̄2w̄4 �̄1 �̄2 �̄3 �̄6

-1 0 -1 -1 0 0 0 0
0 0 -1 0 -1 -1 -1 -1

Figure 5: The fermions in the sector and the states.

This sector represents that the model is unstable since it gives rise to tachyonic
states which are unrealistic, the tachyon corresponds to an unstable vacuum.
So this model that we have constructed turned out not to be viable.

3
Only state up to b1 + 2� have been written in the Appendix A.3.
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7 Conclusion

We have now analysed the entire massless spectrum of the model. This model
has produced features similar to that of the old NAHE-set, the tachyons in the
NS sector was projected out without the supersymmetry, and the spectrum of
the standard model from the sectors b1, b2, b3 was produced. The NS sector
tachyon is projected out, not by S̃ but by the projections of b1, b2, b3. Also as a
result of the S̃ the sectors S̃ + bi where i = 1, 2, 3 were too heavy, no massless
states can be produced here.
There was a tachyonic sector in this model produced from the basis vectors
S̃ + b1 + b2 + b3 + ↵+ � + 2�, it is possible to project the tachyon sectors out,
an example of producing non-supersymmetric models in the FFF that do not
produce tachyonic sectors is presented in [6].
This turned out to be a nonviable model but it produced the structures of
the standard model and projected the tachyon out from the NS sector. Also,
we know that we can fix the problem of the tachyonic sector by appropriate
choices of GSOs and or changing the model slightly. These non-supersymmetric
models increase the range of models that can be built. In that string theory is
relevant and there is no supersymmetry then we want these models in the ABK
formulation to still be valid, as shown here that non-supersymmetric models are
relevant since they produce the same physics as the supersymmetric models,
with a few di↵erences.
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A The Spectrum of the Model

A.1 The untwisted Neveu-Schwarz sector

F Sector Name (C,L) QC QL Q⌘̄1 Q⌘̄2 Q⌘̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SO(4)xSU(2) QH Q
�̄1 Q

�̄4 Q
�̄5 Q

�̄6

b NS h1 (1,2) 0 -1 1 0 0 0 0 0 (1,1) 0 0 0 0 0
h̄1 (1,2) 0 1 -1 0 0 0 0 0 (1,1) 0 0 0 0 0
h2 (1,2) 0 -1 0 1 0 0 0 0 (1,1) 0 0 0 0 0
h̄2 (1,2) 0 1 0 -1 0 0 0 0 (1,1) 0 0 0 0 0
h3 (1,2) 0 -1 0 0 1 0 0 0 (1,1) 0 0 0 0 0
h̄3 (1,2) 0 1 0 0 -1 0 0 0 (1,1) 0 0 0 0 0
�12 (1,1) 0 0 1 -1 0 0 0 0 (1,1) 0 0 0 0 0
�̄12 (1,1) 0 0 -1 1 0 0 0 0 (1,1) 0 0 0 0 0
�13 (1,1) 0 0 1 0 -1 0 0 0 (1,1) 0 0 0 0 0
�̄13 (1,1) 0 0 -1 0 1 0 0 0 (1,1) 0 0 0 0 0
�23 (1,1) 0 0 0 1 -1 0 0 0 (1,1) 0 0 0 0 0
�̄23 (1,1) 0 0 0 0 1 -1 0 0 (1,1) 0 0 0 0 0

Table 1: The untwisted Neveu-Schwarz scalar states.

A.2 observable matter sectors

F Sector Name (C,L)xSU(2)L QC QL Q⌘̄1 Q⌘̄2 Q⌘̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SO(4)xSU(2) QH Q
�̄1 Q

�̄4 Q
�̄5 Q

�̄6

f b1 Q1 (3, 2) 1/2 0 +1/2 0 0 -1/2 0 0 (1,1) 0 0 0 0 0
L1 (1, 2) -3/2 0 +1/2 0 0 -1/2 0 0 (1,1) 0 0 0 0 0
uc

1 (3̄, 1) -1/2 -1 +1/2 0 0 +1/2 0 0 (1,1) 0 0 0 0 0
dc1 (3̄, 1) -1/2 1 +1/2 0 0 +1/2 0 0 (1,1) 0 0 0 0 0
ec1 (1, 1) 3/2 1 +1/2 0 0 +1/2 0 0 (1,1) 0 0 0 0 0
⌫c1 (1, 1) 3/2 -1 +1/2 0 0 +1/2 0 0 (1,1) 0 0 0 0 0

f b2 Q2 (3, 2) 1/2 0 0 +1/2 0 0 +1/2 0 (1,1) 0 0 0 0 0
L2 (1,2) -3/2 0 0 +1/2 0 0 +1/2 0 (1,1) 0 0 0 0 0
uc

2 (3̄, 1) -1/2 -1 0 +1/2 0 0 -1/2 0 (1,1) 0 0 0 0 0
dc2 (3̄, 1) -1/2 1 0 +1/2 0 0 -1/2 0 (1,1) 0 0 0 0 0
ec2 (1,1) 3/2 1 0 +1/2 0 0 -1/2 0 (1,1) 0 0 0 0 0
⌫c2 (1,1) 3/2 -1 0 +1/2 0 0 -1/2 0 (1,1) 0 0 0 0 0

f b3 Q3 (3, 2) 1/2 0 0 0 +1/2 0 0 -1/2 (1,1) 0 0 0 0 0
L3 (1,2) -3/2 0 0 0 +1/2 0 0 -1/2 (1,1) 0 0 0 0 0
uc

3 (3̄, 1) -1/2 -1 0 0 +1/2 0 0 +1/2 (1,1) 0 0 0 0 0
dc3 (3̄, 1) -1/2 1 0 0 +1/2 0 0 +1/2 (1,1) 0 0 0 0 0
ec3 (1,1) 3/2 1 0 0 +1/2 0 0 +1/2 (1,1) 0 0 0 0 0
⌫c3 (1,1) 3/2 -1 0 0 +1/2 0 0 +1/2 (1,1) 0 0 0 0 0

Table 2: The observable matter sectors, that produce the Standard model fam-
ilies
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A.3 Other Masless sectors

F Sector Name (C,L) QC QL Q⌘̄1 Q⌘̄2 Q⌘̄3 Qȳ3,6 Qȳ1w̄5 Qw̄2,4 SO(4)xSU(2) QH Q
�̄1 Q

�̄4 Q
�̄5 Q

�̄6

f � + � (1,1) 0 0 0 0 0 0 1/2 1/2 (1,1) 0 -1/2 0 0 0
(1,1) 0 0 0 0 0 0 -1/2 -1/2 (1,1) 0 -1/2 0 0 0
(1,1) 0 0 0 0 0 0 -1/2 -1/2 (1,1) 0 -1/2 0 0 0
(1,1) 0 0 0 0 0 0 1/2 1/2 (1,1) 0 -1/2 0 0 0

f � + 3� (1,1) 0 0 0 0 0 0 1/2 1/2 (1,1) 0 1/2 0 0 0
(1,1) 0 0 0 0 0 0 -1/2 -1/2 (1,1) 0 1/2 0 0 0
(1,1) 0 0 0 0 0 0 -1/2 -1/2 (1,1) 0 1/2 0 0 0
(1,1) 0 0 0 0 0 0 1/2 1/2 (1,1) 0 1/2 0 0 0

f ↵+ � (1,1) 0 0 0 0 0 -1/2 0 -1/2 (1,1) 0 -1/2 0 0 0
(1,1) 0 0 0 0 0 1/2 0 1/2 (1,1) 0 -1/2 0 0 0
(1,1) 0 0 0 0 0 -1/2 0 -1/2 (1,1) 0 -1/2 0 0 0
(1,1) 0 0 0 0 0 1/2 0 1/2 (1,1) 0 -1/2 0 0 0

f ↵+ 3� (1,1) 0 0 0 0 0 -1/2 0 -1/2 (1,1) 0 1/2 0 0 0
(1,1) 0 0 0 0 0 1/2 0 1/2 (1,1) 0 1/2 0 0 0
(1,1) 0 0 0 0 0 -1/2 0 -1/2 (1,1) 0 1/2 0 0 0
(1,1) 0 0 0 0 0 1/2 0 1/2 (1,1) 0 1/2 0 0 0

f b3 + 2� (1,1) 0 0 1/2 1/2 0 0 0 1/2 (2,1) 0 0 -1/2 1/2 0
(1,1) 0 0 1/2 1/2 0 0 0 1/2 (2,1) 0 0 -1/2 1/2 0
(1,1) 0 0 1/2 1/2 0 0 0 -1/2 (2,1) 0 0 1/2 -1/2 0
(1,1) 0 0 1/2 1/2 0 0 0 -1/2 (2,1) 0 0 1/2 -1/2 0
(1,1) 0 0 1/2 1/2 0 0 0 -1/2 (1,1) +1 0 1/2 1/2 0
(1,1) 0 0 1/2 1/2 0 0 0 -1/2 (1,1) -1 0 1/2 1/2 0
(1,1) 0 0 1/2 1/2 0 0 0 1/2 (1,1) +1 0 -1/2 -1/2 0
(1,1) 0 0 1/2 1/2 0 0 0 1/2 (1,1) -1 0 -1/2 -1/2 0

f b2 + 2� (1,1) 0 0 1/2 0 1/2 0 1/2 0 (2,1) 0 0 1/2 -1/2 0
(1,1) 0 0 1/2 0 1/2 0 1/2 0 (2,1) 0 0 1/2 -1/2 0
(1,1) 0 0 1/2 0 1/2 0 -1/2 0 (2,1) 0 0 -1/2 1/2 0
(1,1) 0 0 1/2 0 1/2 0 -1/2 0 (2,1) 0 0 -1/2 1/2 0
(1,1) 0 0 1/2 0 1/2 0 -1/2 0 (1,1) -1 0 -1/2 -1/2 0
(1,1) 0 0 1/2 0 1/2 0 1/2 0 (1,1) +1 0 1/2 1/2 0
(1,1) 0 0 1/2 0 1/2 0 1/2 0 (1,1) -1 0 1/2 1/2 0
(1,1) 0 0 1/2 0 1/2 0 -1/2 0 (1,1) +1 0 -1/2 -1/2 0

f b1 + 2� (1,1) 0 0 0 0 0 -1/2 0 0 (1,1) 0 0 1/2 -1/2 0
(1,1) 0 0 0 0 0 -1/2 0 0 (1,1) 0 0 1/2 -1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (1,1) 0 0 -1/2 1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (1,1) 0 0 -1/2 1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (2,2) -1 0 -1/2 -1/2 0
(1,1) 0 0 0 0 0 -1/2 0 0 (1,1) +1 0 1/2 1/2 0
(1,1) 0 0 0 0 0 -1/2 0 0 (1,1) -1 0 1/2 1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (1,1) +1 0 -1/2 -1/2 0

f b1 + 2� (1,1) 0 0 0 0 0 -1/2 0 0 (1,1) 0 0 1/2 -1/2 0
(1,1) 0 0 0 0 0 -1/2 0 0 (1,1) 0 0 1/2 -1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (1,1) 0 0 -1/2 1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (1,1) 0 0 -1/2 1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (2,2) -1 0 -1/2 -1/2 0
(1,1) 0 0 0 0 0 -1/2 0 0 (1,1) +1 0 1/2 1/2 0
(1,1) 0 0 0 0 0 -1/2 0 0 (1,1) -1 0 1/2 1/2 0
(1,1) 0 0 0 0 0 +1/2 0 0 (1,1) +1 0 -1/2 -1/2 0

Table 3: The massless sectors
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