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Abstract: The aim of this report is to analyse some of the sec-
tor enhancements involved in a heterotic string model in which the
SO(10) gauge symmetry is broken to the SU(3) × SU(2) × U(1)

2

gauge group at the string level. We will first show how such models
can be constructed using the free fermionic method and how will
obtain an SO(10) gauge group. We will see that there are a number
of sectors that are produced but specifically we are interested in the
untwisted sector and will be analysing the sectors within this which
produce massless spacetime vector bosons and hence have the capa-
bility to enhance the gauge symmetry. We will use a tree diagram
based method to study these sectors and then, will conclude by pre-
senting any resulting enhancements to the untwisted sectors gauge
group.
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1 Introduction

The standard model is a perturbative quantum field theory and to date is the
chosen method to understand the quantum universe. It provides us with the
tools to understand particle interactions and allows for predictions of properties
of said particles. So why would we need string theory? Well, in short, quantum
field theory can not provide us with a complete understanding of our observ-
able universe. There are four fundamental forces that we observe in nature;
electromagnetism, the weak nuclear force, the strong nuclear force and gravity.
Quantum field theory accounts for the first three, but does not include grav-
ity. The supposed graviton (the particle which would mediate the gravitational
force) itself induces a gravitational field, which then again induces another grav-
itational field ad infinitum. Because quantum field theory is explained through
the use of Feynman diagrams, we get a huge number of loops being added to
these diagrams which leads to divergences which are uncorrectable and hence
the theory breaks down.
Therefore to understand the observable universe with one overarching theory we
must look elsewhere. We now turn to string theory, these quantised strings on
the Planck scale are the building blocks for this theory. This paper is organised
as follows; in section 2 we will take a look at the standard model in brief detail
in order to identify some features of it which we will work off comparitively,
specifically how the standard model fits into a representation of SO(10). In
section 3 we will briefly cover an introduction to string theory in order to cover
the foundations for which this paper will work off. Section 4 is where we will
introduce the free fermionic formulation and show in some detail the ABK rules
which we will be using throughout the rest of the paper. In section 5 we will
look at the NAHE set of basis vectors which were used to produce realistic
string models and take our first look at gauge enhancements. Next, in section
6, we will present the basis vectors that we will use in the paper. These we first
formulated by Faraggi et.al in the 2018 paper which can be found in [1]. Next
we will show an example of some projections of a sector and then show the ’tree’
method for the enhancement sectors for this model. Doing this will allow us to
find the conditions on the sectors for them to enhance the gauge symmetries.
Finally in the last section we will present the results and then finish the paper
by drawing some conclusions from the work that has been done.
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2 The Standard Model

The standard model is an example of a perturbative quantum field theory, which
gives us a very good understanding of the matter states that we observe in nature
and their interactions under the strong and weak nuclear force along with the
electromagnetic force. As eluded to before the standard model is very successful
in its description of the universe (up to its limits), and so if we are to obtain a
string model that describes the universe properly it makes sense that it should
take on some of the properties of the standard model. In this paper we are
analysing standard-like models, meaning they have a gauge group of the form:
SU(3) x SU(2) x U(1)

2
.

We will now go on to show how the standard model can be described in terms
of group theory, and specifically show how it fits into a 16 (or 1̄6) representation
of SO(10). Firstly we see this group is of the form SO(2n), and so is a rank
5 group, hence the five charges labelled at the top of figure.1 from 1-5. These
will each be charged as 1

2 under SO(10). Another important property of the
standard model is that the fermions are chiral, meaning for any fermion field
we can define both left and right projections, defined by:

ψ =

(
ψL
ψR

)
. (1)

And ψLandψR are calculated by using:

ψL = ψPL =
1− γ5

2
ψ (2)

ψR = ψPL =
1 + γ5

2
ψ. (3)

Where γ5 is the Dirac gamma matrix and PL =

(
0 0
0 I

)
and PR =

(
I 0
0 0

)
.

Our fermions are represented as 2-component Weyl Spinors. Now because the
gauge bosons act only on left handed fields, then the SU(2) coupling is chi-
ral, and so we get quark doublets and Lepton doublets for each of the three
generations of fermions. We see that because of this any charges we find for
a right handed fermion field will determine the charges for the corresponding
anti-fermion chiral field. We will represent our particles as fg where g=1,2,3
representing the three generations and the superscript c denotes its conjugate
charge. This will be of importance later once we have extracted states from
the representation. Now we will show an explicit form of the SO(10) spinorial
weight lattice.
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Q1 Q2 Q3 Q4 Q5

+ + + + +
- - + + +
- + - + +
- + + - +
- + + + -
+ - - + +
+ - + - +
+ - + + -
+ + - - +
+ + - + -
+ + + - -
- - - - +
- - - + -
- - + - -
- + - - -
+ - - - -

Figure 1: Spinorial 16 weight lattice of SO(10)

As we can see in Fig.1 the 16 representation splits into three parts which we
express in the following way. The initial state:

(
5
0

)
which represents the 5

charges, of which, 0 are negative. Then the next 10 states:
(
5
2

)
were in a similar

fashion, of the 5 charges 2 are negative and finally the last 5 states:
(
5
4

)
of the

5 charges, 4 are negative.
The weight lattice can be also be expressed as follows:[

16→ 1 5
2
⊕ 10 1

2
⊕ 5̄− 3

2

]
. (4)

Now we will look more in depth at the gauge group representation of the de-
composition, we will use Fig.1 to do this. We are looking to see how SO(10)
decomposes under the SU(3) x SU(2) x U(1)2 subgroup. First we check that
the group is compatible for this decomposition, we check that the rank of the
groups are equivalent before and after (which it is). Then we check the dimen-
sionality of the group, SO(10) is a group with dimensionality of 45 and the
decomposed group has dimension 13 + 16 + 1̄6 which is also 45. Now as we
did earlier, we will use Fig.1 to obtain a list of states from the representation
of the subgroup. We will take the first three columns, labelled Q1, Q2, Q3 to
represent the SU(3)xU(1) group and the last two columns labelled Q4 and Q5

to represent the SU(2)xU(1). Still all with 1
2 charge under the U(1) symmetry.

By doing this we then see that we have the following:[(
3

0

)
+

(
3

2

)][(
2

0

)
+

(
2

2

)]
+

[(
3

1

)
+

(
3

3

)](
2

1

)
. (5)

This is all of the possibilities of the even-even combinations of the SU(3) ×
U(1) × SU(2) × U(1) along with those for the odd-odd combinations. When
they are expanded they give the following full set:
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[(
3

0

)(
2

0

)
+

(
3

0

)(
2

2

)
+

(
3

2

)(
2

0

)
+

(
3

2

)(
2

2

)]
+

[(
3

1

)(
2

1

)
+

(
3

3

)(
2

1

)]
. (6)

Now again referring back to Fig.1 we can match up these states with rows in
this table and we find that for the combinations listed above Fig.1 returns:

(
3

0

)(
2

0

)
= 1

(
3
0

)(
2
2

)
= 1 (7)(

3

2

)(
2

2

)
= 3

(
3
2

)(
2
0

)
= 3 (8)(

3

1

)(
2

1

)
= 6

(
3
3

)(
2
1

)
= 2 (9)

(10)

Hence now we can express equation (4) as the following:

16→
(

3

0

)(
2

0

)
+

(
3

0

)(
2

2

)
+

(
3

2

)(
2

2

)
+

(
3

2

)(
2

0

)
+

(
3

1

)(
2

1

)
+

(
3

3

)(
2

1

)
. (11)

Which can be written in terms of the charges as:

16→ (
3

2
,+1) + (

3

2
,−1) + (−1

2
,+1) + (−1

2
,−1) + (−3

2
, 0) + (

1

2
, 0). (12)

We will say here that from this 16 representation we can extract the standard
model states, but this is an exercise not completed here.
To conclude we will state the things that we would want our string theory to
have that are requirements for a realistic Standard-Like Model. First of all we
require that there are no negative norm states (i.e. any tachyonic states should
be projected out), and that any states in the current standard model that are
observed in nature are included in our theory.

3 Introduction to String Theory

In this chapter we will briefly give an introduction to string theory, we will cover
some basics that we will use and build upon in order to construct our model
later in the free fermionic formulation of the heterotic string. String theory
came about due to the inability of our best current theories which explain the
observable universe, namely General Relativity and Quantum Field Theory.
A main problem being the inability of a quantum field theory to include a
consistent description of the gravitational interactions. String theory is the best
current attempt at unity of the two pillars of modern physics. It can be shown
that in the study of bosonic string theory a graviton can be modelled, and that
this particle is an accurate description of what would be required for a boson
to mediate gravitational interactions.
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We will start by reviewing the origins of string theory, this is the bosonic string
theory. So named as it models only bosonic particles. This theory is built upon
the classical physics of an oscillating string. We incorporate Relativity early on
in the procedure and use the theory to model first, a relativistic point particle
and then on to a relativistic string. We will parameterize the space of the system
and begin to work in the target space defined by: Xµ(τ, σ) which we will use
to define an area-functional for time-space surfaces. Then from here we will
calculate this area functional and use it to go on and define the Nambu-Goto
string action, which is given by:

S = −T0
c

∫ τf

τi

dτ

∫ σ1

0

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2dσ. (13)

We can use variational techniques, specifically making use of Hamilton’s princi-
ple to vary this action and obtain equation of motion for the system. After this
we introduce the light-cone gauge to our theory, we will use this gauge when
we are quantizing our string. On making this choice of gauge it is important
to note a couple of things; firstly that we will lose manifest Lorentz covariance
(meaning we must do some extra work to convince ourselves that at all times
the theory is Lorentz covariant) and secondly using this gauge will incorporate
a constraint which will allow us to be certain that any states we obtain will be
physical (i.e. there will be no negative norm states, ghosts or spurious states).
We will state here the light-cone coordinates that we use:

Xµ = (X0, X1, X2, X3)→ (X+, X−, X2, X3). (14)

Where:

X± =
1√
2

(X0 ±X1). (15)

During this process we find some interesting relations for the relativistic string.
For example, the solution to the obtained wave equation which is given by:

Xµ(τ, σ) = xµ0 +
√

2α′αµ0 τ + i
√

2α′
∞∑
n6=0

( 1

n
αµne

−inτ
)
cos(nσ). (16)

We can use all of the previous work to now look towards obtaining particle states
with the end goal of analysing them in the hope they match states we observe in
everyday life. We begin this by now looking to quantise our relativistic string,
which we will do by the use of operators and canonical commutation relations.
We know that whenever we have a physical system which satisfy the harmonic
commutation relations : [â, â†] = 1 then we can build a Hilbert space by acting
with creation operators. We can show that all our operators are Hermitian
and that they satisfy a closed algebra. We then define a pair of operators as
αµ−m , αµm as creation and annihilation operators respectively. We can then
begin to act on a well defined vacuum with our new operators and begin to
produce states, the first massless excited state of the open string is given by:
αµ−1|k > ⊗|0 >. This state can be interpreted as the photon, it is a massless
vector boson. We can do similar for the closed string were the first massless
excited state we obtain is given by: αµ−1α̃

ν
−1|k > ⊗|0 >. From this we obtain a
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constraint which gives us the following:

L1(ρµνα
µ
−1α̃

ν
−1)|k >= 0. (17)

Where, ρµν is a second rank tensor of the SO(1,D-1) Lorentz group. This tensor
can be split into its symmetric and asymmetric parts were we will find that the
traceless part of the symmetric part of this second rank tensor describes the
graviton. And for completeness, the trace part describes the dilaton.
So we have seen in this brief introduction that bosonic string theory can be used
to describe particles from both the areas of physics that the theory is attempting
to unify, this stands us in good stead to move on.

4 The Free-Fermionic Formulation

Earlier on when we discussed string theory we only talked about a theory which
contained bosonic states, and especially it includes tachyonic states which are
not realistic and so we will need to modify this. This was done using supersym-
metry, and in our particular case, heterotic string theory with N=1 supersym-
metry. We start this process by utilising a symmetry of the worldsheet, namely
the worldsheet supersymmetry which will relate the fermions to the bosons.
We will do this by introducing an anti-commutating dynamic variable ψµα(τ, σ).
If we recall from our understanding of the standard model, we know that a
quantum state of identical fermions is antisymmetric under the exchange of two
fermions and hence the variable must be anti-commutating. We can think of
this variable as being analogous to the bosonic dynamical variable Xµ(τ, σ),
this variable commutes, and so we can say now that ψµα(τ, σ) defines a world-
sheet fermion fo a given value of µ. The theory has reduced dimensionality
D=10 which we will expand upon later, and then under quantization we see
that we obtain two sectors: The Ramond sector, where the fermions are peri-
odic over one loop phases and the Neveu-Schwarz sector where the fermions are
anti-periodic over one loop phases. The closed superstring is then constructed
by combining left and right moving copies of the open superstring. These are
called type II superstring theories. For us, instead of combining a left and a
right superstring, we combine a left moving bosonic string with a right moving
superstring, this is known as heterotic string theory. There are certain require-
ments that we put on our theory in order for us to call them “realistic”, these
include N=1 supersymmetry in 4 spacetime physical dimensions and the left and
right moving modes in the theory are completely decoupled. Lets now consider
the right moving superstring fields: Xµ

+ and ψµ+ where µ = 0, ..., 9. We still have
dimensionality D=10. Now the left moving sector, consisting of effectively 10
left moving bosonic fields Xµ

− where µ = 0, ..., 9. Noting here that bosons carry
unit charge and the fermions carry half-unit charge. So for the two sides of the
theory we need to make sure that we obtain the critical dimension D=10 on
either side. This is an example of a conformal anomaly, which we can correct
by manipulating the worldsheet charge via addition of worldsheet fermions. We
add 32 Majorana-Weyl right-moving free fermions λi where i = 1, ..., 32, note
that these do not have a spacetime index as free fermions do not contribute to
this property. At this point we can write down the string action:
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S =
1

π

∫ (
2∂−Xµ∂+X

µ + iψµ∂−ψµ + i

32∑
i=1

λi∂+λ
i
)
d2σ. (18)

4.1 The ABK Rules

Now that we have formulated the basics we can now proceed, recall that a
requirement for our theory was to have properties of four flat space-time dimen-
sions, and N=1 supersymmetry, this is problematic because at the moment we
are in D=10. This problem was solved by Antoniadis, Bachas and Kounnas [6]
whose work is directly built into four spacetime dimensions and along with a
simple set of rules can be used to find the spectrum of realistic four dimensional
models. We will go through the above in this part of the paper. Now we will
address the compactification from D=10 to D=4, we will treat this in the same
way as we did before and so arrive at the conclusion that we need 18 Majorana-
Weyl left moving fields (λj) and 12 Majorana-Weyl right moving fields (λi). So
finally we can write our complete set of right and left moving fermions as:

Right movers:{ψµ1 , ψ
µ
2 , χ

1...6, y1...6, ω1...6}. (19)

Left movers:{ȳ1...6, ω̄1...6, λ̄1...32}. (20)

All of the extra quantum numbers associated with the string are carried by
periodic and anti-periodic free fermions, which gives a representation of the
worldsheet supersymmetry which is non-linear. The right and left movers listed
above come directly from the fermionization of these internal degrees of freedom
on an E8 x E8 heterotic string, which, for ease we can also complexify in the
following way:

Φ =
1√
2

(fn + ifm). (21)

Where Φ is a complex fermion and fn,m are real fermions.
Now we have this we will write out the set of basis vectors that we will be using
throughout the remainder of this paper:

Right movers:{ψµ, χ1,2, χ3,4, χ5,6, y1...6, ω1...6}. (22)

Left movers:{ȳ1...6, ω̄1...6, ψ̄1,2,3,4,5, η̄1,2,3, φ̄1,2,3,4,5,6,7,8}. (23)

The set of fermions : {y1...6, ω1...6|ȳ1...6, ω̄1...6} will be defined as the real fermions
whilst all others will be complex. Antoniadis et. al [6] then formulated a set
of rules which would be sufficient to define a heterotic string model, these rules
state that we must define two things:

1). Basis vectors that specify boundary conditions for the internal free fermions.
2). Coefficients (one-loop phases) for each intersection of the basis vectors.

These rules themselves also have conditions on them which we need to define
now.
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4.1.1 Rules on the Basis Vectors

The model is generated by a set of basis vectors ai, given as:

ai = f j , ..., fn, (24)

where any fermion that appears in the vector will have periodic boundary con-
ditions and those fermions which don’t appear will have anti-periodic boundary
conditions, we can write this mathematically as:

a(f) =

 1 : Periodic
0 : Anti-periodic
1
2 : Twisted by a phase -i

for each of the fermions f. We will now define the additive group Ξ:

Ξ =
∑
i

miai where; mi = 0,...,Ni -1. (25)

We will now state that the product, Niai = 0mod2 and that we can define Nij
as the least common multiple of both Ni and Nj it will become clear as to why
we have done this when we now lay out the following five rules on the basis
vectors.

1). The basis vector 1̄ is present in the model (all the basis vectors are periodic.)
2). There exist an even number of real fermions
3).

∑
i mi ai = 0 ⇐⇒ mi = 0mod Ni ∀ i

4). Nij = 0mod4 [or aiaj = 0mod2]
5). Ni ai ai = 0mod8 [or ai ai = 0mod4] .

4.1.2 Rules on the Co-efficients

Once the space of states is defined, we then need to specify the phases: C
(
bi
bj

)
for all intersections of the basis vectors. The equations needed to calculate these
co-effiecients are written as follows:

1). C

(
bi
bj

)
= δbie

2πi
Nj = δbie

πi
2 (bibj) · e

2πi
Ni

m

2). C

(
bi
bi

)
= e

−iπ
4 bibjC

(
bi
~1

)
3). C

(
bi
bj

)
= e

iπ
2 bibjC

(
bj
bi

)∗
4). C

(
bi

bj + bk

)
= δbiC

(
bi
bj

)
C

(
bi
bk

)
.

And we should also state the GSO projection that we will be using in order to
determine the surviving massless states in the spectrum, the GSO projections
were put forward in the 1977 paper by Gliozzi, Scherk and Olive [3]. The
projection can be expressed as follows:

eiπbi·Fα |S >α= δαC

(
α

bi

)∗
|S >α . (26)
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Where the |S >α is a state in the sector ’α’. ’α’ sector that we are analysing,
and ’bi’ are the basis vectors that we are using to do the projection from the
sector ’α’. Finally we will define δα for the sector α as:

δα =


1 If α(ψµ) = 0

−1 If α(ψµ) = 1

0 Otherwise

5 NAHE Basis Free Fermionic Models

The free fermionic formulation that we have looked into so far produces many
models with GUT symmetry, one that produces many realistic physical models
with three generations is the so called NAHE set. Here we will look at the
NAHE set of basis vectors which can be used to produce the 16 + 1̄6 that we
require by enhancing the gauge group. The NAHE set was first formulated by
Nanopoulos, Antoniadis, Hagelin, Ellis in the 1988 paper [10], the set of basis

vectors break the SO(44) gauge group down to E6 x E8 x SO(4)
3

x U(1)
2
. From

this we will show that we can get the 16 + 1̄6 representation out of this. The
NAHE set consists of the following basis vectors:

ν1 = ~1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,2,3,4,5, φ̄1,...,8}
(27a)

ν2 = ~S = {ψµ, χ1,2, χ3,4, χ5,6} (27b)

ν3 = ~b1 = {ψµ, χ1,2, y3,4, y5,6|ȳ3,4, ȳ5,6, η̄1, ψ̄1,2,3,4,5} (27c)

ν4 = ~b2 = {ψµ, χ3,4, y1,2, ω5,6|ȳ1,2, ω̄5,6, η̄2, ψ̄1,2,3,4,5} (27d)

ν5 = ~b3 = {ψµ, χ5,6, ω1,2, ω3,4|ω̄1,2, ω̄3,4, η̄2, ψ̄1,2,3,4,5}. (27e)

(27f)

We will note that for the initial set of basis vectors gives us the SO(44) gauge
group, these 44 internal free fermions represent the correction to the conformal
anomaly that we encountered earlier. We will start initially with the following
set of basis vectors:

B = {~1, ~S, ~b1}, (28)

where;

~b1
R

= {ψ̄1,2,3,4,5η̄1ȳ3,4,5,6} = 1

~b1
R

= {η̄2,3ȳ1,2ω̄1,2,3,4,5,6φ̄1,...,8} = 0.

We can use equation(26) to perform the GSO projection and see which states
survive and can then analyse the resulting gauge group. This is done as follows:

eiπb1·FNS{ψµφ̄a1
2
φ̄b1

2
}|S >0= −|S >0 . (29)
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And we conclude that all others are projected out, we can also note that we
have enhanced the gauge group: SO(44) → SO(16) x SO(28). Now we will
add another of our basis vectors and repeat the process, here we find that when
using:

~b2
R

= {ψ̄1,2,3,4,5η̄2ȳ1,2ω̄5,6} = 1

~b2
R

= {η̄1,3ȳ3,4,5,6ω̄1,2,3,4φ̄1,...,8} = 0.

With the GSO projection condition:

eiπb2·FNS{ψµφ̄a1
2
φ̄b1

2
}|S >0= −|S >0 . (30)

Which leads us to the states:

ψµ1
2

|0 >L ⊗{ψ̄1,2,3,4,5}{ψ̄1,2,3,4,5}∗|0 >R= −|S >0

ψµ1
2

|0 >L ⊗{η̄2ω̄5,6ȳ1,2}{η̄2ω̄5,6ȳ1,2}∗|0 >R= −|S >0

ψµ1
2

|0 >L ⊗{η̄1ȳ3,4,5,6}{η̄1ȳ3,4,5,6}∗ = −|S >0

ψµ1
2

|0 >L ⊗{η̄3ω̄1,2,3,4φ̄1,...,8}{η̄3ω̄1,2,3,4φ̄1,...,8}∗ = −|S >0

And so all of the states listed above survive the GSO projection and we get
another enhancement to the gauge group, which is as follows:

SO(44) → SO(16) x SO(28) → SO(10) x SO(6)
2

x SO(22) .

Immediately we can see that we have an SO(10) gauge symmetry now which is
good news for our standard model states, but we can continue further with our
enhancements annd apply the final basis vector from this NAHE set.

~b3
R

= {ψ̄1,2,3,4,5η̄3ω̄1,2,3,4} = 1

~b3
R

= {η̄1,2ȳ1,...,6ω̄5,6φ̄1,...,8} = 0

and again we compute the GSO projection and again we will find that the
surviving states will have −|S >0 the same form. therefore the states which
survive are given by:

ψµ1
2

|0 >L ⊗{ψ̄1,2,3,4,5}{ψ̄1,2,3,4,5}∗|0 >R= −|S >0

ψµ1
2

|0 >L ⊗{η̄2ω̄5,6ȳ1,2}{η̄2ω̄5,6ȳ1,2}∗|0 >R= −|S >0

ψµ1
2

|0 >L ⊗{η̄1ȳ3,4,5,6}{η̄1ȳ3,4,5,6}∗ = −|S >0

ψµ1
2

|0 >L ⊗{η̄3ω̄1,2,3,4}{η̄3ω̄1,2,3,4}∗ = −|S >0

ψµ1
2

|0 >L ⊗{φ̄1,...,8}{φ̄1,...,8}∗ = −|S >0 .

Again we have a gauge enhancement which we will write as:

SO(44) → SO(10) x SO(6)
2

x SO(22) → SO(10) x SO(6)
3

x SO(16) .
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5.1 Construction of Realistic Models using NAHE

We will now briefly take a look at the realistic models that we can obtain from
breaking SO(10). First we will state explicitly that the SO(10) gauge group is
generated by the fermions labelled : ψ̄1,2,3,4,5, as SO(10) is an example of an
SO(2n) group where n=5. So the physical states that we can obtain are given
by:

ψµ1
2

|0 >L ⊗{ψ̄1,2,3,4,5}{ψ̄1,2,3,4,5}∗|0 >R .

We could for example pick a charge configuration for this group of fermions in
order to examine breaking patterns.
If we choose, say: α = 11100 then we will obtain:

ψµ1
2

|0 >L ⊗{ψ̄1,2,3}{ψ̄1,2,3}∗|0 >R −SO(6)

ψµ1
2

|0 >L ⊗{ψ̄4,5}{ψ̄4,5}∗|0 >R −SO(4) .

This is the Pati-Salam breaking of SO(10) → SO(6)× SO(4)
If for example we choose the configuration as: β = 1

2
1
2
1
2
1
2
1
2 then we will ob-

tain some combination of the states where the fermions may or may not be
conjugates:

ψµ1
2

|0 >L ⊗{ψ̄1,2,3,4,5}(∗){ψ̄1,2,3,4,5}(∗)|0 >R .

We will solve this issue by using the GSO projection, which again for us here
returns the −|S > and so now we can see that from the three possible combi-
nations of the conjugates that we could obtain, the only one that survives the
projection is:

ψµ1
2

|0 >L ⊗{ψ̄1,2,3,4,5}{ψ̄1,2,3,4,5}∗|0 >R .

Which gives the breaking SO(10)→ x SU(5)×U(1) to the flipped-SU(5) gauge
group.
We can also see by inspection, that if after we have applied α to our group we
then apply β then we obtain the SLM gauge group. The SLM gauge group is
of the form: SU(3) x U(1) x SU(2) x U(1).

5.2 An Extension to NAHE set

We will now move on to an extension of the NAHE set of basis vectros, our aim
here is to again enhance the gauge group following the same method as before.
The surviving vacuum after we have completed the projections with the basis
vectors above is given by:

[(
4
0

)
+
(
4
2

)
+
(
4
4

)]{(
2
0

)[(
5
0

)
+
(
5
2

)
+
(
5
4

)](
1
0

)
+
(
2
2

)[(
5
1

)
+
(
5
3

)
+
(
5
5

)](
1
1

)}
.

Along with the vacuum’s conjugate term:[(
4
1

)
+
(
4
3

)]{(
2
0

)[(
5
0

)
+
(
5
2

)
+
(
5
4

)](
1
1

)
+
(
2
2

)[(
5
1

)
+
(
5
3

)
+
(
5
5

)](
1
0

)}
.
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We will define a vector ~X = {~0|ψ̄1,2,3,4,5η̄1η̄2η̄3} this is what we will use to
extend the NAHE set of basis vectors. We will see that however we fix our GSO
projecection coefficient we will always lose the CPT conjugate term, hence one
of the consequences of introducing ~X is that for any specific GSO coefficient we
obtain half the number of states.

We will show this explicitly once for ~X acting on the surviving vacuum, the
signs that will be assigned as subscripts to the fermions in the will indicate the
charge they are carrying with respect to the GSO condition. We will also state
before we start that we have fixed the GSO coefficient to be positive for this.

~b1 = {ψµ, χ1,2, y3,4, y5,6|ȳ3,4, ȳ5,6, η̄1, ψ̄1,2,3,4,5}
~X = {~0|ψ̄1,2,3,4,5η̄1,2,3} .

The effect this has on the vacuum is:[(
4
0

)
+
(
4
2

)
+
(
4
4

)]
+

{(
2
0

)
+

[(
5
0

)
+
(
5
2

)
+
(
5
4

)]
+

(
1
0

)
+

+
(
2
2

)
+

[(
5
1

)
+
(
5
3

)
+
(
5
5

)]
−

(
1
1

)
−

}
.

Where both of the representations here are positive overall and hence survive,
compared with:[(

4
1

)
+
(
4
3

)]
+

{(
2
0

)
+

[(
5
0

)
+
(
5
2

)
+
(
5
4

)]
+

(
1
1

)
− +

(
2
2

)
+

[(
5
1

)
+
(
5
3

)
+
(
5
5

)]
−

(
1
0

)
+

}
.

Where both of the representations here are negative overall with respect to the
GSO coefficient and hence are projected out. The same thing happens for the
other basis vectors in the NAHE set.

Now we will analyse the ~X-sector to determine if there are any enhancements
to the gauge group.

We must first check the form of the states that will be produced on analysis of
this sector, we will use the Virasoro mass constraint and find that we can obtain
states of the form: ψµ|0 > ⊗|0 >. The projection goes as follows:

Sector analysis ~X = {~0|ψ̄1,2,3,4,5η̄1,2,3}
Projection
Vector

Enhancement GSO Projection

~1 ψµ−

[(
8
0

)
+
(
8
2

)
+
(
8
4

)
+
(
8
6

)
+
(
8
8

)]
+

ei·π(
~1·~FX)|S >X= −|S >

~S ψµ−

[(
8
0

)
+
(
8
2

)
+
(
8
4

)
+
(
8
6

)
+
(
8
8

)]
+

ei·π(
~S·~FX)|S >X= −|S > ∗

~b1 ψµ−

[(
6
0

)
+
(
6
2

)
+
(
6
4

)
+
(
6
6

)]
+

[(
2
0

)
+
(
2
2

)]
ei·π(

~b1·~FX)|S >X= −|S > ∗

~b2 ψµ−

{[(
5
0

)
+
(
5
2

)
+
(
5
4

)](
1
0

)[(
2
0

)]
+
[(

5
1

)
+
(
5
3

)
+
(
5
5

)](
1
1

)[(
2
2

)]}
ei·π(

~b2·~FX)|S >X= −|S > ∗
~b3 ψµ−

{[(
5
0

)
+
(
5
2

)
+
(
5
4

)](
1
0

)(
1
0

)(
1
0

)
+
[(

5
1

)
+
(
5
3

)
+
(
5
5

)](
1
1

)(
1
1

)(
1
1

)}
ei·π(

~b2·~FX)|S >X= −|S > ∗

Where here any of the GSO conditions that have been marked with a star (*)
indicate that this was our choice of projection and is now fixed due to us making
it so. If we count the states that we have found then we can see that in the
coefficient

[(
4
0

)
+
(
4
2

)
+
(
4
4

)]
we have a total of 1+10+5 states. We also see that
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the states are split into the sum of two parts and so in total we have 16 + 1̄6
states, and now we will analyse any affect this has on the gauge symmetry.
The gauge group we had before was given by:

SO(10)×U(1)
3 × SO(4)

3 × SO(16). (31)

The Enhancements are presented in the following table:

Gauge group enhancement for the sector: ~X = {~0|ψ̄1,2,3,4,5η̄1,2,3}
ψ̄1,...,5 : SO(10) η̄1,2,3 : U(1)

3
φ̄1,...,8 : SO(16) ȳi, ω̄i : SO(4)

3

16 1
2

1
2

1
2 1 1

16 − 1
2 −

1
2 −

1
2 1 1

So the system does not transform under the last two gauge groups. We will now
need to impose a condition on the U(1) generators such that there are three
linear, orthogonal combinations of them and requiring that two of the combi-
nations produce trivial charges and one does not. We will make the choice:

U(1)z : U(1)1 + U(1)2 + U(1)3 =
3

2
U(1)y : U(1)1 −U(1)2+ = 0

U(1)x : U(1)1 + U(1)2 − 2U(1)3 = 0

So the SO(10) group that does transform will do so with a combination of one of
the U(1) charges, it will pick the non-trivially charged U(1). The combination
SO(10)× U(1)z has a rank of 6 and dimensionality equal to 45 + 1 + 16 + 1̄6
which is equal to 78. These two properties also represent the gauge group E6.
Therefore we can conclude that this extension to the NAHE set has enhanced
our gauge group to:

SO(10)×U(1)
3 × SO(4)

3 × SO(16)→ E6 ×U(1)
2 × SO(4)

3 × SO(16). (32)

It can also be shown that by using the same method as described above, adding
the basis vector: ~Z = {~0|φ̄1,...,8} enhance the SO(16) → E8. and so we finish
this extended NAHE section with the final gauge group:

E6 ×U(1)
2 × E8 × SO(4)

3
. (33)

This concludes the section on the NAHE set, where we saw that we could obtain
four full 16 representations of SO(10) and then enhance the gauge symmetries
that we found. All of this was from breaking an SO(44) gauge group which
represented the basis vectors in our set.
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6 The String Model

The main goal of this paper is to analyse models with the standard-like subgroup
SU(3) x SU(2) x U(1)

2
, which arise from the unbroken SO(10) GUT symmetry.

In the free fermionic construction, the SO(10) symmetry has 12 basis vectors
associated with its classification. These are the first 12 vectors listed below,
and then in order to produce Standard-Like Models a further 2 basis vectors
are required (the final two vectors in the list). It should be noted that the two
additional basis vectors break the gauge symmetry to the Pati-Salam (SO(6) x
SO(4)) and to the Flipped-SU(5) subgroups. And because the Standard-Like
Models incorporates both of these then they will be included in the overall set
of basis vectors.

We are specifically looking to enhance the untwisted sector which is given by:

ψ̄1,2,3,4,5, η̄1,2,3, φ̄1,2,3,4,5,6,7,8. (34)

Which has the associated gauge-group:

SU(3)×U(1)× SU(2)×U(1)×U(1)1 ×U(1)2 ×U(1)3 × SU(2)×U(1)×
SO(4)× SU(2)×U(1)×U(1)×U(1).

Where the groups pair to the basis vectors in the following way:

ψ̄1,2,3 = SU(3)×U(1), ψ̄4,5 = SU(2)×U(1) (35)

η̄1,2,3 = U(1)1 ×U(1)2 ×U(1)3, φ̄1,2 = SU(2)×U(1) (36)

φ̄3,4 = SO(4), φ̄5,6 = SU(2)×U(1) (37)

φ̄7 = U(1), φ̄8 = U(1). (38)

This model, which we will be analysing, was constructed in the paper by Faraggi,
Rizos and Sonmez (2018) [1] and is generated using the following set of basis
vectors. We will use these throughout the rest of the paper in order to perform
projections in a similar manner to those that we did explicitly earlier in the
paper.
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ν1 = ~1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,2,3,4,5, φ̄1,...,8}
(39a)

ν2 = ~S = {ψµ, χ1,2, χ3,4, χ5,6} (39b)

ν2+i = ~ei = {yi, ωi|ȳi, ω̄i}, i = 1, ..., 6 (39c)

ν9 = ~b1 = {χ3,4, χ5,6, y3,4, y5,6|ȳ3,4, ȳ5,6, η̄1, ψ̄1,2,3,4,5} (39d)

ν10 = ~b2 = {χ1,2, χ5,6, y1,2, y5,6|ȳ1,2, ȳ5,6, η̄2, ψ̄1,2,3,4,5} (39e)

ν11 = ~z1 = {0|φ̄1,2,3,4} (39f)

ν12 = ~z2 = {0|φ̄5,6,7,8} (39g)

ν13 = α = {0|ψ̄4,5, φ̄1,2} (39h)

ν14 = β = {0|ψ̄1,2,3,4,5, η̄1,2,3, φ̄1,2,5,6 =
1

2
, φ̄3,4,7 = 1, φ̄8 = 0}. (39i)

6.1 The string Spectrum

We are looking for massless spacetime vector bosons and preserving N=1 super-
symmetry in the spectrum of this model. We will look at the conditions that
we impose in order to obtain only states that are massless and then progress to
using the a tree diagram method to determine any gauge enhancements on the
sectors which produce massless states. We will state the set of sectors which
could produce massless spacetime vector bosons, this being the requirement for
an enhancement of the gauge symmetry. This setof sectors was calculated and
presented in the paper by Faraggi et. al (2018) [1].
The Virasoro condition for sectors which produce physical states is given as:

M2
L = −1

2
+
ξL · ξL

8
+NL = −1 +

ξR · ξR
8

+NR = M2
R ≥ 0. (40)

Where we can see that the vacuum is split into its left and right moving parts,
and we have imposed that the masses of the states must exceed or equal zero.
NL/R are the sums over the left/right moving oscillators which are acting on
the left/right vacuum respectively.
We will now define the matrix G, which contains all the sectors which could
produce spacetime vector bosons and therefore could produce enhancements to
the gauge symmetry:
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G =



x z1 z2 z1 + z2
x+ 2β z1 + x+ 2β x+ z2 + 2β x+ z1 + z2 + 2β

α α+ z1 α+ z2 α+ z1 + z2
α+ 2β α+ x+ z1 z2 + α+ 2β z1 + z2 + x+ α+ 2β
α+ x z1 + x+ α+ 2β x+ α+ 2β z2 + x+ α+ 2β

±β z1 ± β z2 ± β z1 + z2 ± β
x± β x+ z1 ± β x+ z2 ± β x+ z1 + z2 ± β

α± β z1 + α± β z2 + α± β z1 + z2 + α± β
x+ α± β x+ z1 + α+±β x+ z2 + α± β x+ z1 + z2 + α± β



.

(41)
There are 36 sectors here in total which could produce massless spacetime vector
bosons which could lead an enhancement of the gauge symmetry. The total set
is split up into four distinct sections, where the top two rows are the sectors that
don’t enhance the SO(10) and the following nine rows do. They are arranged
in the following ways respectively to their row in G. 3-5 enhance the symmetry
to the Pati-Salam, rows 6-7 enhance it to Flipped-SU(5) and the last two rows
8-9, break SO(10) to the Standard-Like Models with subgroup SU(3) x SU(2)

x U(1)
2
.

6.2 Tree Diagram Method

In this section we will look into this tree diagram method which is used to analyse
enhancement sectors in the model. The method still includes the projections
that were done earlier but they cover all possible bases for the answer. The states
are written explicitly at each tier and then by following a specific pathway to
the bottom of the tree we can then analayse the specific state and judge whether
the gauge group has been enhanced, also we can write down the conditions for
any particular enhancements in terms of the GSO projection coefficients.
The point of this project was again to analyse sectors which can enhance the
gauge symmetry from the untwisted sector, to do this we will analyse sectors
that produce massless spacetime vector bosons. We will, in analogy to bosonic
string theory, need to apply a Virasoro mass constraint. This is done as follows:

[
M

~X
L

]2
= −1

2
+
αL · αL

8
+NL = −1 +

αR · αR
8

+NR =
[
M

~X
R

]2
≥ 0. (42)

We see here how we have used the fact that the heterotic string is constructed
with the left and right movers completely decoupled, and treated independent
of each other. We first calculate the dot product of the basis vectors in the
equation and then we find the values of NL/R. The quantity NL tells us the
sum of the oscillators acting on the left or the right vacuum. For example if
NL = 1 then this tells us we either need one bosonic oscillator acting on this
side of the state or two fermionic oscillators. This mass condition must always
be greater than or equal to zero as we require that the theory produces only
physical states, specifically we look for sectors that contain massless spacetime

18



vector bosons and so we will require equation(42) to equal zero. Once we have
determined the form of the states that we are going to use we can begin using
the tree method, the representation at the very top of the tree will be equal
to the most general combinatoric notation of the fermions we include and any
oscillators that are present. We can see that we may possibly require an os-
cillator acting on the right vacuum, recalling that fermionic oscillators carry 1

2
worldsheet charge then we can add integer numbers of these oscillators to the
right vacuum depending on the value of the sum NR. We will also say that we
use specific fermions to make our oscillators, we use ones which do not occur
in the sector representation. We will also see later in the paper that there are
exceptions to this, were different oscillators are required, this will be covered in
detail at the point they are needed.

We will make clear the notation that we are going to need when using these
trees in order to analyse the enhancement sectors. First we will establish that
we are still using the combinatoric notation as we have done throughout the
report. We will make note of certain features of the tree in an example that will
follow.
We will see the tree is comprised of nodes and branches, at the end of the
branches are the spinorial representations of the state which may have been
broken. Along the branch there will always be a term representing the basis
vector that we are using to do the projection and associated with it, a sign.
This sign indicates the form of the GSO coefficient for the projection. We use
all of this information to then determine the composition of the state at the end
of a node. We continue in this fashion for every possibility of the sector, until
we can either make no more difference or we have used up all of the basis vectors.

We will now cover the breaking of the states at the nodes and we will now list
three rules that concisely describe the process of breaking the states:
1). Does the projection vector ‘see’ any of the fermions listed in our sector?
-If no: assign a positive charge.
-If yes: We will assign either a positive or negative charge.
2). If the projector does ‘see’ fermions from the sector we assign:
-Positive charge for an even combination of charges with integer boundary con-
ditions.
-Negative charge for a negative combination of charges with integer boundary
conditions.
3). We must always conserve the combination of the negative charges i.e. some-
thing which have an odd combination must break in a way were its constituent
parts form a sum that is odd. Along with the total number of the state being
conserved. Example:

(
6
D

)
→
(
5
E

)(
1
D

)
(or vice versa).

When we arrive at the endpoint of a leg of the tree we can then analyse the state
that we have, in doing this we can determine if we have enhanced the gauge
symmetry or not. We will now move on to an example sector.
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7 The ~X sector

Here we will begin as explained before, we will first state the sector that we are
investigating: ~X = {~0|ψ̄1,2,3,4,5η̄1,2,3}. So when we put this into the Virasoro
mass condition we find that NL = 1

2 and NR = 0 and so we get states of the
form:

→ ψµ|0 >L ⊗|0 >R .

So we state explicitly for this example that there are eight right moving fermions
and an oscillator with spacetime index acting on the left vacuum meaning we
have produced spacetime vector bosons here and hence there could be an en-
hancement to the sector. This presents itself as: ψµ

(
8

ALL

)
which is the most

general form. We will then move on to do our first projection. This will be
with the unit vector: ~1, this vector is required for completeness by the ABK
rules and is such that all fermions are periodic. We now for the first time have
branching in our tree, this is due to the ± degeneracy in the GSO condition on
our system, and we must assign the positive-negative states accordingly. The
~X sector is of the same form as that of the NAHE set that we examined earlier
in the report, we will state that here this sector is a composite vector consisting
of:

~X = 1 + S +

6∑
i=1

(ei + z1 + z2) = {~0|ψ̄1,2,3,4,5η̄1,2,3}. (43)
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Figure 2: This is part of the tree diagram for analysis of the ~X sector.
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It is first important to make a couple of things clear about the diagrams, they
have proved a very useful calculational tool for the analysis of enhancement
sectors in these models, but they do have some downsides. Firstly, they are
very cumbersome to produce due to their size. This has certain consequences,
for instance along with every term at a node on the tree the state does also
have a CPT (charge, parity and time) conjugate term associated with it. But
in order to get a meaningfull amount of information on a diagram these had to
be omitted, but it must be emphasised here that they will be used. Also the
oscillator which should be acting on the state which we found by calculation
using the Virasoro mass constraint is omitted. This is partly because of the
extra space this term would take up, but also the software package that was
used to construct these trees, namely “XFig” did not accomodate their input.
But as long as we accompany any of these tree diagrams with the necessary
information to complete the full picture we can continue to use it.

In this figure we have included an example of the procedure that we are fol-
lowing to complete the analysis on the sector. We see that once we get to the
alpha projection on the sector we need to truncate the diagram which we do
with the red vertical lines, all of the states here are still under the same pro-
jection from α. It is worth noting as well that there is still the β projection
to be done on this sector but a we can see it would be almost impossible to
fit this onto the same diagram in this report. We will elaborate on finding the
final states under the β projection next, to do this we will choose one specific
path down the tree and then perform the β projection for one of the given paths.

In order for us to understand the form of the β projection we need to refer back
the ABK rules, we will use this to pick out the combinations of the states that
are possible under this projection. Making note of the form of β from equation
(39i), we see that this vector will not change the form of the state but it will
determine how the state can be charged. So we use the modular invariance con-
straints to see that Nijbi ·bj = 0 mod 4 and hence any result of the β projection
that will be positive after the projection must have some combination of either;
0, 4,8,... negative charges. Whereas in a similar fashion any result after the β
projection that will be negative after the projection will have either; 2,6,12,...
negative charges. We will see more clearly when we perform this explicitly how
these conditions come about.
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Figure 3: Visual representation of the modular constraint on the charge com-
position of a state, under 1

4 charges.

So for our example we have that after some projections in a specific path we
ended up with the alpha projection that left us with the state:

[( 3

D

)(
2

D

)(
1

0

)(
1

0

)(
1

0

)]
. (44)

And when we expand this and write out the state and express its combinatoric
representation explicitly we find:

[(3

1

)
+

(
3

3

)](2

1

)(
1

0

)(
1

0

)(
1

0

)
+
[(3

0

)
+

(
3

2

)](2

1

)(
1

1

)(
1

1

)(
1

1

)
. (45)

The second term in the above equation is the CPT conjugate for the state which
must be included. And so suppose for example we would like to find the positive
β projection after the negative α projection then, from our state that we had
we will need the negatives to be either: 0,4 or 8. And so with this information
we get:

α−β+ =

[(
3

3

)(
2

1

)(
1

0

)(
1

0

)(
1

0

)
+

(
3

0

)(
2

1

)(
1

1

)(
1

1

)(
1

1

)]
. (46)

And this is our final state for particular choices in this particular sector. Now
we must examine the state and see if this state we have obtained enhances the
gauge symmetry or not. We will do this in a similar way to what we did before,
the composition of the states can be shown in the following table:

Gauge group enhancement for the sector: ~X = {~0|ψ̄1,2,3,4,5η̄1,2,3}
ψ̄1,2,3 :
SU(3)

tr(ψ̄1,2,3) : U(1) ψ̄4,5 : SU(2) tr(ψ̄4,5) : U(1) η̄1,2,3 : U(1)1 ×
U(1)2 ×U(1)3

1 - 32 2 0 1
2

1
2

1
2

1 3
2 2 0 − 1

2 −
1
2 −

1
2
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So we can see that the state does not transform under SU(3) but does under
SU(2).
If we take the SU(2) × U(1) group we see that this is a rank 3 group with
dimensionality 3+1+(2+2) = 8. Where the brackets denote the doublet repre-
sentation of the transformed SU(2) group. After some inspection of the results
we can say that we have the following enhancement of the untwisted unbroken
subgroup of SO(10):

SU(3)×U(1)× SU(2)×U(1)→ SU(3)
2 ×U(1)

4
.

This was an example of one of the gauge enhancements that is possible in this
sector, there are however more. The rest will be provided in the results section
that will follow.
Lastly we must now state the conditions for us to get this, we will follow the
specific path of the tree stating the GSO conditions as we go in order to have
exact constraints. So in our example if we require that from this sector we want
to this gauge enhancement then we will require the following:

(~1 = -), (~b1 = +), (~b2 = -),(~z1 = ~z2 = ~ei = +), (~α = - ), (~β = +).

We will need to make use of a proof regarding the GSO projection coefficients
in order to complete the next part of the result as the vector ~X is a composite
basis vector.

With these conditions we can now go on to fix the GSO conditions in the
following way:

GSO projections for the sector ~X = {~0|ψ̄1,2,3,4,5η̄1,2,3}
Projection Vector Possible GSO Con-

straint
Our GSO Constraint

~1 δ1−c
(
1
X

)
± δ1−c

(
1
X

)
+

~S δS−c
(
S
X

)
± δS−c

(
S
X

)
−

~b1 −δb1−c
(
b1
X

)
± −δb1−c

(
b1
X

)
+

~b2 −δb2−c
(
b2
X

)
± −δb2−c

(
b2
X

)
−

~z1 δz1−c
(
z1
X

)
± δz1−c

(
z1
X

)
−

~z2 δz2−c
(
z2
X

)
± δz2−c

(
z2
X

)
−

~ei δei−c
(
ei
X

)
± δei−c

(
ei
X

)
−

~α −δα−c
(
α
X

)
± −δα−c

(
α
X

)
−

~β −δβ−c
(
β
X

)
± −δβ−c

(
β
X

)
+

c

(
1

X

)
= c

(
ei
X

)
= c

(
zi
X

)
=

(
β

X

)
= 1

c

(
b

X

)
= c

(
α

X

)
= −1.

This section has provided us with a full worked example for how the results that
will be presented will all be calculated by hand.
And so we can now write the new enhanced gauge symmetry for the sector
under these conditions as:
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SU(2)×U(1)→ SU(3).

Which gives an enhancement on the unbroken untwisted sector as:

SU(3)×U(1)× SU(3)×U(1)1 ×U(1)2 ×U(1)3 × SU(2)×U(1)×
SO(4)× SU(2)×U(1)×U(1)×U(1).

8 Results

In this penultimate chapter we will state the results of the possible enhance-
ments to the untwisted sector of the unbroken SO(10) subgroup, we will use the
tree diagram method that we have shown previously, but we will not include
the diagrams here.
We will split this section, as was done in G up into four groups, according to
how they break the SO(10) symmetry of the model. The First set of results
will correspond to sectors which do not enhance SO(10) subgroup. Next will be
the results from some of the sectors which break the SO(10) symmetry to the
Pati-Salam group, the sectors for breaking SO(10) to the flipped-SU(5) group
were not completed in this report but can be completed in exactly the same way
as we have done here. Finally the results for of the sectors where the SO(10)
subgroup is broken to the Standard-Like Model will be presented. For any of
the sectors which require an oscillator acting on the right vacuum , we will state
that the oscillator acting will be: {φ̄} = {ψ̄1,2,3}, except for the final result
which will be explained at that point.

We now look to the first set of results:

• The ~X sector

~X = {~0|ψ̄1,2,3,4,5η̄1,2,3}

States of the form: ψµ|0 >L ⊗|0 >R .

Sector condition
(X|~ei)=(X|zk)=+

Enhancement Condition Resulting Enhancement

(X|α) = (X|β) = +|S > SU(3)× SU(2)×U(1)
5 → SU(4)× SU(2)

2 ×U(1)
3

(X|α) 6= (X|β) = −|S > SU(3)× SU(2)×U(1)
5 → SU(4)× SU(2)

2 ×U(1)
3

(X|α) 6= (X|β) = +|S > SU(3)× SU(2)×U(1)
5 → SU(3)× SU(3)×U(1)

4

(X|α) = (X|β) = −|S > SU(3)× SU(2)×U(1)
5 → SU(5)×U(1)

5
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For example the state that appears third in the table would require fixing
the GSO conditions as follows:

c

(
1

X

)
= c

(
ei
X

)
= c

(
zi
X

)
= c

(
β

X

)
= 1 (47)

c

(
bi
X

)
= c

(
α

X

)
= −1 (48)

Where i = 1, ..., 6 and k = 1, 2.

• The ~X + 2~β sector

~X + 2~β = {~0|φ̄1,2,5,6}

States of the form: ψµ|0 >L ⊗{φ̄} 1
2
|0 >R

Sector condition

( ~X + 2~β|~b1)=( ~X + 2~β|b2)=+

Enhancement Condition Resulting Enhancement

( ~X + 2~β|α) 6= ( ~X + 2~β|β) = +i|S > SU(2)×U(1)× SU(2)×U(1)→ SU(3)× SU(2)×U(1)

• The ~z1 + ~z2 + ~X + 2~β sector

~z1 + ~z2 + ~X + 2~β = {~0|φ̄3,4,7,8}

States of the form: ψµ|0 >L ⊗{φ̄} 1
2
|0 >R

Sector condition

(~z1 + ~z2 + ~X + 2~β|~b1)=( ~X + 2~β|b2)=+

(~z1 + ~z2 + ~X + 2~β|~z1)6=( ~X + 2~β|b2)

(~z1 + ~z2 + ~X + 2~β|~z2)6=( ~X + 2~β|α)

Enhancement Condition Resulting Enhancement

(~z1 + ~z2 + ~X + 2~β|α) = ( ~X + 2~β|β) = −i|S > SU(3)× SU(2)×U(1)
3 → SU(4)×U(1)

3

• The ~z1 sector

~z1 = {~0|φ̄1,2,3,4}

States of the form: ψµ|0 >L ⊗{φ̄} 1
2
|0 >R
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Sector condition

(~z1|~b1)=(~z1|b2)=-
(~z1|~z1)6=(~z1|z2)

Enhancement Condition Resulting Enhancement

(~z1|α) 6= (~z1|β) = SU(2)× SU(2)×U(1)
2 → SU(3)× SU(2)×U(1)

(~z1|α) = (~z1|β) = SU(2)× SU(2)×U(1)
2 → SU(4)× SU(2)×U(1)

Now we will move on to the results from the sector which breaks the SO(10) to
SO(6)× SO(4):

• The ~α sector

~α = {~0|ψ̄4,5φ̄1,2}

States of the form: ψµ|0 >L ⊗{φ̄} 1
2
|0 >R

Sector condition

(~α|~b1)=(~α|b2)

Enhancement Condition Resulting Enhancement

(~α|~z2) = (~α|~β) = +i SU(2)× SU(2)×U(1)
2 → SU(3)× SU(2)×U(1)

(~α|~z2) 6= (~α|~β) = −i SU(3)× SU(2)
2 ×U(1)

2 → SU(4)× SU(2)×U(1)

• The ~α+ ~z1 sector

~α+ ~z1 = {~0|ψ̄4,5φ̄3,4}

States of the form: ψµ|0 >L ⊗{φ̄} 1
2
|0 >R

Sector condition

(~α+ ~z1|~b1)=(~α+ ~z1|b2)
(~α+ ~z1|~α)=(~α+ ~z1|β)

Enhancement Condition Resulting Enhancement

(~α+ ~z1|~α) = (~α+ ~z1|~β) = − SU(3)× SU(2)
2 ×U(1)

3 → SU(4)× SU(2)×U(1)
2

• The ~α+ ~z2 sector

~α+ ~z2 = {~0|ψ̄4,5φ̄1,2,5,6,7,8}

States of the form: ψµ|0 >L ⊗|0 >R

27



Sector condition

(~α+ ~z2|~b1)=(~α+ ~z2|b2)
(~α+ ~z2|~α)=(~α+ ~z2|β)

Enhancement Condition Resulting Enhancement

(~α+ ~z2|~α) = (~α+ ~z1|~β) = − SU(2)
3 ×U(1)

3 → SU(4)× SU(2)×U(1)
4

Now we look at the sectors which break the SO(10) symmetry to that of
SLM.

• The α+ β Sector

~α+ ~β = {~0|ψ̄1,2,3η̄1,2,3φ̄5,6 = 1
2 , ψ̄

4,5φ̄1,2 = − 1
2 , φ̄

3,4,7 = 1}

States of the form: ψµ|0 >L ⊗{φ̄} 1
4
|0 >R.

This sector has far more degeneracy than the others, as we can see the
state requires an oscillator to act on it. This particular sector is different
to the other that we have encountered as we need to perform the addition
of two basis vectors that have half integer boundary conditions. We will
do this explicitly to show the requirements for the this tree. We will use
equations (39h, 39i) for the basis vectors, and now we will evaluate the
Virasoro mass condition.

αL · αL = 0 and αR · αR = 6. (49)

Putting these values into the Virasoro mass condition equation we see
that in order to obtain massless states we must have the sum of oscillators
acting on the left: NL = 1

2 and the sum of oscillators acting on the right:
NR = 1

4 . This is how we obtained the form of our states. The different
thing about this state is how the right moving oscillator is charged, with
it being 1

4 we see that instead of the fermions involved being from those
outside of the enhancement sector they are in fact from the set of basis
vectors that make up the sector. We also need to take into account the
sign of the boundary conditions of the fermions in the sector as well, for
example the oscillator:

{φ̄} = {ψ̄1,2,3}(∗). (50)

So a 1
2 charged oscillator which is defined by 1

2 boundary conditions fulfills
the Virasoro requirements and we can continue with the tree. We see that
this oscillator is the conjugate, this is because its boundary condition
is positive whilst if it were negative then it would not be a conjugate
oscillator. These trees are far more complicated and are left here, but in
principle would be completed in the same manner as earlier sectors were.
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9 Conclusions

So now that we have listed all the results that were obtained for the report we
will briefly conclude by talking about how we could move on from here, and
discuss further what we found.
The paper began with a brief overview of the modern physics that we use to
describe the standard model, this included an investigation into the Lorentz
gauge group SO(10) and how states from the standard model can fit into a
representation of it. This was important as it gave us some insight into the rel-
evance of this group. Then set up the next part of the paper by reviewing the
bosonic string theory and we can extend that specific formalism by employing
supersymmetry, specifically by making use of the symmetries of the worldsheet.
Then we covered the construction of the heterotic string which would become
our choice of supersymmetric string for use in this analysis. We reviewed the
free fermioninc formulation in greater detail and encounted the set of rules which
would allow us to build a consistent theory directly in four dimensions, these
were the ABK rules. From here we went on to look at the NAHE set of basis
vectors which was our first encounter with realistic models, we did analysis of
gauge group enhancements and laid the ground-work for the techniques that we
would make use of later on in the paper.
Next we moved on to the specific model that we studied, this was the Standard-
Like Model, straight away we talked through the basis vectors that generate
these models and specifically the necessity of specific vectors. From here we
looked at the string spectrum obtained from these models, and we made it clear
that we were going to be analysing sectors which produced massless spacetime
vectors bosons. The sectors which did this can have their gauge symmetry en-
hanced, and it was this that we were to study.
Once we established that we wanted to study the gauge symmetry of the un-
twisted sector we then needed a mechanism to do this, and we found one in
the use of tree diagrams. We detailed the methodology behind these diagrams
and presented an example sector for clarity, it was using this method that we
obtained the results for this paper.
Finally we listed the results of the projections in the given sectors and judged
if the symmetry had been enhanced or not.
To conclude the report we will remark how the results we have obtained could
then be used further, we can say that for any of the tree diagrams that we
made, we followed a specific path down the tree fixing GSO constraints as we
go. Then for every sector we could pick one enhancement produced by one spe-
cific state, fix the GSO constraints and use these in the next sector and so on
until we have a consistent Standard-Like Model as we did in equation (47)(48).
We could extend this to build a consistent untwisted sector of a SLM by fixing
these conditions and then eliminating any of the other paths from the other
sectors which did not adhere to these constraints.
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