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Abstract 

  Quantum Mechanics is incompatible with the postulates of General Relativity. It is known that the 

fundamental features of Quantum Mechanics are the quantisation of energy and their probabilistic 

nature. Several methods have been developed to solve the contradictions of both theories, with one 

being the method of approaching Quantum Mechanics from structures of General Relativity. This 

report will focus on reconstructing Quantum Mechanics from Classical Mechanics formulation, with 

the Equivalence Postulate being formulated and applied and is somewhat parallel to the formulation 

of Equivalence Principle for General Relativity.  

 

1. Introduction 

  Quantum Mechanics and General Relativity have played a significant role in the development of 

various disciplines of physics. They have been tested through time and remain dominant in 

explaining laws of nature; of course, in each domain they have always been in excellent agreement 

with experiments. Unfortunately, both theories have contradicted each other as each foundations 

differ significantly; General Relativity relies on differential geometry as language, while Quantum 

Mechanics relies on the probabilistic interpretation of wave function. Uniting both theories remain 

an important topic among the physics community. 

  As shown in works [1], [2], [3] from Alon Faraggi and Marco Matone, Quantum Mechanics can be 

derived from Equivalence Postulate. While the Equivalence Postulate cannot be implemented in 

Classical Mechanics, there exist a formulation of Classical Mechanics which can lead to the 

formulation of the Schrödinger equation. We modify that formulation such that it is compatible to 

Equivalence Postulates and we use the modified equation to derive the quantum variant and 

eventually the Schrödinger equation. 

 

 2. Hamilton-Jacobi Equation 

  In Classical Mechanics, there exists various formulation of which we focus on Hamiltonian 

mechanics. Although Hamilton’s approach is often not as convenient as other methods for solving 

practical problems, nevertheless it is useful for theoretical studies relevant to this report. In this 

section, we will derive Hamilton-Jacobi Equation with a slight modification instead that leads to 

Classical Stationary Hamilton-Jacobi Equation (CSHJE) which can be formulated to the quantum 

analogue of CSHJE known as Quantum Stationary Hamilton-Jacobi Equation (QSHJE). 

  Canonical transformation is a type of coordinate transformation that preserves the form of 

Hamilton’s equation for which the integration of the equations of motion is trivial. Consequently, the 

problem of obtaining the integrated equations of motion is reduced to allow us to obtain the general 

solution of equation via generating function. In Classical Mechanics, generalised coordinates 𝑞 and 

momenta 𝑝 are regarded as being independent quantities. Consider the transformation equation 

with initial condition 𝑞0 coordinates and 𝑝0 momenta, 

𝑞 = 𝑞(𝑞0, 𝑝0, 𝑡), (1) 

and 

𝑝 = 𝑝(𝑞0, 𝑝0, 𝑡), (2) 
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where 𝑝, 𝑞 are canonical variables with 𝑝0, 𝑞0 as a new set. Reminder that 𝑝0, 𝑞0 are constant.  

  Now let 𝐾 = 𝐾(𝑃, 𝑄, 𝑡) be transformed Hamiltonian from 𝐻 = 𝐻(𝑝, 𝑞, 𝑡) via canonical 

transformation, where 

𝑄𝑖
̇ =

𝜕𝐾

𝜕𝑃𝑖
, (3) 

�̇�𝑖 = −
𝜕𝐾

𝜕𝑄𝑖

(4) 

And 

𝐾 = 𝐻 +
𝜕𝐹

𝜕𝑡
, (5) 

where 𝐹 is the generating function. Since the new variables are constant, �̇�𝑖 = �̇�𝑖 = 0 which is only 

true if we set 𝐾 = 0, giving 

0 = 𝐻 +
𝜕𝐹

𝜕𝑡
. (6) 

We now have a differential equation that can be solved for 𝐹. This shows that canonical 

transformation reduces the problem of integrating equation of motion to general solution with 

generating function 𝐹.  

  Let 𝐹 = 𝐹(𝑞, 𝑃, 𝑡). According to canonical transformation, 𝐹 can be written as 

𝑝𝑖 =
𝜕𝐹

𝜕𝑞𝑖
, (7) 

𝑄𝑖 =
𝜕𝐹

𝜕𝑃𝑖
, (8) 

𝐾 = 𝐻 +
𝜕𝐹

𝜕𝑡
. (9) 

Note that the condition of both frames 𝐻 = 𝐻(𝑝, 𝑞, 𝑡) and 𝐾 = 𝐾(𝑃, 𝑄, 𝑡) must be equivalent, thus 

𝑝𝑞𝑖 − 𝐻 = 𝑃𝑄𝑖 − 𝐾 +
𝑑𝐹

𝑑𝑡
. (10) 

Now we can write (6) as  

𝐻(𝑞1, . . . , 𝑞𝑛;  𝑝1, . . . , 𝑝𝑛; 𝑡) +
𝜕𝐹

𝜕𝑡
= 0. (11) 

Let 𝑝𝑖  be 

𝑝𝑖 =
𝜕𝑆𝑐𝑙

𝜕𝑞𝑖
, (12) 

where 𝑆𝑐𝑙(𝑞, 𝑄, 𝑡) is called Hamilton’s principal function. Substitute (12) to (11) to give 

𝐻 (𝑞1, . . . , 𝑞𝑛;  
𝜕𝑆𝑐𝑙

𝜕𝑞1
, . . . ,

𝜕𝑆𝑐𝑙

𝜕𝑞𝑛
; 𝑡) +

𝜕𝑆𝑐𝑙

𝜕𝑡
= 0. (13) 

 



5 
 

 

We now use the basic interpretation of Hamiltonian mechanics 

𝐻 =
𝑝2

2𝑚
+ 𝑉(𝑞, 𝑡) (14) 

To convert equation (13) to  

1

2𝑚
(

𝜕𝑆𝑐𝑙

𝜕𝑞
)

2

+ 𝑉(𝑞, 𝑡) +
𝜕𝑆𝑐𝑙

𝜕𝑡
= 0. (15) 

For a time–independent potential there is the decomposition 

𝑆𝑐𝑙(𝑞, 𝑄, 𝑡) =  𝑆0
𝑐𝑙 (𝑞, 𝑄) −  𝐸𝑡, (16) 

with 𝐸 the energy of the stationary state. The function 𝑆0
𝑐𝑙 is called Hamilton’s characteristic function 

or reduced action that by (13) satisfies the Classical Stationary Hamilton-Jacobi Equation (CSHJE) 

𝐻 (𝑞,
𝜕𝑆0

𝑐𝑙

𝜕𝑞
) − 𝐸 = 0. (17) 

Consider 𝒲(𝑞) ≡ 𝑉(𝑞) − 𝐸, simplify (17) along with (14) to become 

1

2𝑚
(

𝜕𝑆𝑐𝑙

𝜕𝑞
)

2

+ 𝒲(𝑞) = 0. (18) 

It is important to notice that while for an arbitrary canonical transformation one passes from a 

couple of independent variables (q, p) to another one (Q, P), in the case the Hamilton’s principal 

function is used as generating function in (5), one has 𝐾 = 𝐾(𝑄, 𝑃, 𝑡) from (5) vanishes, that is 𝐾 =

0, to produce another relation, 

𝑝 = 𝜕𝑞𝑆𝑐𝑙(𝑞, 𝑄, 𝑡) (19) 

which shows that 𝑝 and 𝑞 become dependent. 

Now let us apply a similar equation (12) 

𝑝 =
𝜕𝑆0

𝑐𝑙

𝜕𝑞
, (20) 

rather than with 𝑝 and 𝑞 being independent. This allows us to look for another coordinate 

transformation in the form 

𝑆0
𝑐𝑙(𝑞)   →   �̃�0

𝑐𝑙(�̃�) (21) 

with �̃�0
𝑐𝑙(�̃�) denoting a reduced action of system as 𝐾(𝑄, 𝑃, 𝑡) → 0. Since one requirement of 

canonical transformation is the independence of set coordinates, the transformation (21) is not a 

canonical transformation as 𝑝 and 𝑞 are dependent. Even if we specify the structure of 

transformation, �̃�0
𝑐𝑙(�̃�) = 𝑐𝑛𝑠𝑡 shows that (21) is a degenerate transformation. The existence of 

such degenerate transformation is an odd one – applying reduced actions from two systems shows 

that there is no coordinate transformation making the two systems equivalent. However, it is 

possible to connect different systems by a coordinate transformation without applying constant 

reduced action. This means that in Classical Mechanics equivalence under coordinate 
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transformations is frame dependent, and from page 15-16 of [1] it has been shown to leads to the 

conclusion that there is a distinguished frame in the CSHJE description. 

 

3. 𝒗 – transformation 

We now introduce a locally invertible coordinate transformation onto the case of the reduced action 

𝑆0  

𝑞 → 𝑞𝑣 = 𝑣(𝑞). (22) 

Set 

𝑆0
𝑣(𝑞𝑣) = 𝑆0(𝑞(𝑞𝑣)). (23) 

Equation (23) defines a new reduced action 𝑆0
𝑣 derived by the 𝑣-transformation.  

Now, considering 

𝑆0 → 𝑆0
𝑣 = 𝑆0 ∘ 𝑣−1, (24) 

which is equivalent to (23) and retain its generality. Note that equation (24) is equivalent to saying 

that for every 𝑣 = 𝑆0
𝑣−1 ∘ 𝑆0 there exist the induced map 𝑣−1∗

∶  𝑆0  ↦ 𝑣−1∗
(𝑆0). In other words, 𝑆0

𝑣 

is the pullback of 𝑆0 by 𝑣−1∗
. 

  Let us simplify the formalism previously obtained in this section with the induced transformation in 

the form (24). For the following form 

𝑝𝑣 = 𝜕𝑞𝑣𝑆0
𝑣(𝑞𝑣), (25) 

we have 

𝑝 → 𝑝𝑣 = (𝜕𝑞𝑞𝑣)
−1

𝑝. (26) 

The result shows that the formalism will be covariant.  

  

4. Legendre Transformation and Duality 

  In Classical Mechanics, there exist a feature where considering canonical transformations and 

phase space produces 𝑝 − 𝑞 duality which is broken under explicit solutions of equation of motions. 

However, this is not always true for Hamiltonians where the solutions still show explicit  𝑝 − 𝑞 

duality. Rather, we want to know whether the descriptions of 𝑝 and 𝑞 share the same structure 

which we currently lack a formulation in Classical Mechanics. 

  To understand the duality of 𝑝 and 𝑞 and their structure, we need to investigate the formalism of 

Classical Mechanics. Doing so allows us to connect the issue of dependence – independence of the 

canonical variables with dynamical features. As shown in one of the reports from Alon Faraggi and 

Marco Matone, a connection is given between conservation of energy and 𝑝 − 𝑞 duality by 

considering that Hamiltonian equations reduce independent variables to dependent ones. Part of 

the investigation is analysing relation between the structures of equations of independent canonical 

variables and dependent canonical variables. The result shows that the duality 𝑝 ↔ 𝑞 is broken into 

𝑞 → −𝑝, 𝑝 → 𝑞. (27) 



7 
 

This proofs that 𝑝 − 𝑞 duality in Classical Mechanics is related to structures of equations of 

independent canonical variables in one side and dependent canonical variables in other side. 

According to Heisenberg’s Uncertainty Principle, position and momentum cannot be simultaneously 

measured. This tells us that the issue of dependence and independence of the canonical variables 

will be a basic feature in formulating quantum analogue of CSHJE and the 𝑝 − 𝑞 duality of Hamilton 

mechanics is a restrictive one. This lack of Hamiltonian formalism indicates that an alternative 

transformation is needed for descripting manifest 𝑝 − 𝑞 duality. In this next section, we now 

consider canonical variables on equal footings which is more helpful in formulating the Equivalence 

Postulate. Such duality can only arise from the involutive nature of Legendre transformation, and we 

will use such principle to derive QSHJE. 

Consider the dual reduced action 𝑇0(𝑝) : 

𝑇0 = 𝑞
𝜕𝑆0

𝜕𝑞
− 𝑆0,          𝑆0 = 𝑝

𝜕𝑇0

𝜕𝑝
− 𝑇0 (28) 

where 𝑇0(𝑝) are the Legendre transformation of 𝑆0(𝑞). 

Also note that 

𝑝 =
𝜕𝑆0

𝜕𝑞
,          𝑞 =

𝜕𝑇0

𝜕𝑝
. (29) 

Now consider the Legendre transform of the Hamilton principal function 𝑆 

𝑇 = 𝑞
𝜕𝑆

𝜕𝑞
− 𝑆,          𝑆 = 𝑝

𝜕𝑇

𝜕𝑝
− 𝑇 (30) 

𝑝 =
𝜕𝑆

𝜕𝑞
,          𝑞 =

𝜕𝑇

𝜕𝑝
. (31) 

For the stationary case  

𝑆(𝑞, 𝑡) = 𝑆0(𝑞) − 𝐸𝑡, 𝑇(𝑝, 𝑡) = 𝑇0(𝑝) + 𝐸𝑡. (32)  

 

Now consider the differential 

𝑑𝑆 =
𝜕𝑆

𝜕𝑞
𝑑𝑞 +

𝜕𝑆

𝜕𝑡
𝑑𝑡 = 𝑝𝑑𝑞 +

𝜕𝑆

𝜕𝑡
𝑑𝑡, (33) 

𝑑𝑇 =
𝜕𝑇

𝜕𝑝
𝑑𝑝 +

𝜕𝑇

𝜕𝑡
𝑑𝑡 = 𝑞𝑑𝑝 +

𝜕𝑇

𝜕𝑡
𝑑𝑡. (34) 

This implies 

𝑑𝑆 = 𝑑(𝑝𝑞 − 𝑇) = 𝑝𝑑𝑞 + 𝑞𝑑𝑝 − 𝑞𝑑𝑝 −
𝜕𝑇

𝜕𝑡
𝑑𝑡, (35) 

Which can be simplified as 

𝜕𝑆

𝜕𝑡
= −

𝜕𝑇

𝜕𝑡
. (36) 
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The above equation shows that 𝑆 and 𝑇 have time variables and can be used to determine the self-

dual state on the later section. Furthermore, it shows that 𝑇𝑐𝑙 satisfies the dual version of the 

classical HJ equation. 

5. Möbius symmetry and Legendre duality 

  We now use the second derivative of the Legendre transformation to discover a 𝐺𝐿(2, ℂ)-

transformation. More specifically, we analyse the Legendre transformation of 𝑇0 induced by 𝑣 via 𝑆0 

since 𝑆0 and 𝑇0 and Legendre pair. Note that the transformation 𝑆0(𝑞) → �̃�0(𝑞) does not have to be 

𝑣-type and in this case 𝑣-transformation is determined to be a symmetry of the Legendre transform 

of 𝑇0. 

  Let us consider the Möbius transformation 

𝑞𝑣 =
𝐴𝑞 + 𝐵

𝐶𝑞 + 𝐷
, (37) 

Equation (23) with (37) implies that  

𝑝𝑣 = 𝜌−1(𝐶𝑞 + 𝐷)2𝑝, (38) 

where 𝜌 ≡ 𝐴𝐷 − 𝐵𝐶. Note that  

𝛿𝑣𝑇0 = 𝜌−1(𝐴𝐶𝑞2 + 2𝐵𝐶𝑞 + 𝐵𝐷)𝑝. (39) 

Equation (37) and (38) are equivalent to 

𝑞𝑣√𝑝𝑣 = 𝜖(𝐴𝑞√𝑝 + 𝐵√𝑝),     √𝑝𝑣 = 𝜖(𝐶𝑞√𝑝 + 𝐷√𝑝), (40) 

where 𝜖 = ±√1/𝜌 . 

Now take the second derivative of (28) with respect to 𝑠 = 𝑆0(𝑞) to obtain 

1

𝑞√𝑝

𝜕2(𝑞√𝑝)

𝜕𝑠2
=

1

√𝑝

𝜕2𝑝

𝜕𝑠2
, (41) 

 

 

which is also equivalent to the ‘’canonical equation’’ 

(
𝜕2

𝜕𝑠2
+ 𝒰(𝑠)) 𝑞√𝑝 = 0 = (

𝜕2

𝜕𝑠2
+ 𝒰(𝑠)) √𝑝. (42) 

Here 𝒰(𝑠) is the ‘’canonical potential’’ 

𝒰(𝑠) =  
1

2
 {

𝑞√𝑝

√𝑝
, 𝑠} =  

1

2
 {𝑞, 𝑠}, (43) 

with 

{ℎ(𝑥), 𝑥} =
ℎ′′′

ℎ′
−

3

2
(

ℎ′′

ℎ′ )

2

= (ln ℎ′)′′ −
1

2
(ln ℎ′)′2 (44) 

denoting the Schwarzian derivative. 
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 Reminder of the involutivity of the Legendre transformation and its duality 

𝑆0  ↔  𝑇0           𝑞 ↔  𝑝. (45) 

This implies another 𝐺𝐿(2, ℂ)- symmetry with the 𝑢-transformation corresponding to Möbius 

transformation instead 

𝑝𝑢 →
𝐴𝑝 + 𝐵

𝐶𝑝 + 𝐷
. (46) 

Repeat the process like equation (37) onward to obtain the dual version of (42) with respect to 𝑡 =

𝑇0(𝑝) 

(
𝜕2

𝜕𝑡2
+ 𝒱(𝑡)) 𝑝√𝑞 = 0 = (

𝜕2

𝜕𝑡2
+ 𝒱(𝑡)) √𝑞, (47) 

where 

𝒱(𝑡) =  
1

2
 {

𝑝√𝑞

𝑞
, 𝑡} =  

1

2
 {𝑝, 𝑡}. (48) 

Continuing with the 𝑣-transformation variant, we notice that equations (42) and (43), which is from 

(41), shows that the Schwarzian derivative is twice the potential function 𝑉(𝑥). In the form of the 

equation, 

{𝛾(ℎ), 𝑥} = {ℎ, 𝑥}, (49) 

where 

𝛾(ℎ) =
𝐴ℎ + 𝐵

𝐶ℎ + 𝐷
. (50) 

By considering the chain rule of the Schwarzian derivative along with (49) and (50), we got  

{𝑓, 𝑥} = {ℎ, 𝑥}, (51) 

where 𝑓 = 𝛾(ℎ). 

 

This implies the following relation under 𝑣-transformation 

𝒰𝑣(𝑠𝑣) =  
1

2
 {𝑞𝑣, 𝑠𝑣} =

1

2
{𝛾(𝑞), 𝑠} = 𝒰(𝑠), (52) 

where equation (23) implies that 𝑠𝑣 = 𝑠. This shows that 𝒰 is invariant under 𝐺𝐿(2, ℂ) Möbius 

transformation of 𝑞. 

One property of canonical equation (42) is that it can be used to solve dynamical problems by 

treating it as equation of motion. Let 𝑦1(𝑠) and 𝑦2(𝑠) be linearly independent solutions of the 

canonical equation 

𝑞√𝑝 = 𝐴𝑦1(𝑠) + 𝐵𝑦2(𝑠),         √𝑝 = 𝐶𝑦1(𝑠) + 𝐷𝑦2(𝑠). (53) 
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Take the ratio of (53) to become 

𝑞 =
𝐴ℎ(𝑠) + 𝐵

𝐶ℎ(𝑠) + 𝐷
, (54) 

where ℎ(𝑠) = 𝑦1(𝑠)/𝑦2(𝑠). Note the similarity with (50). Consider the inverse of 𝑞 and 𝛾(ℎ) and we 

got the following equation 

𝑆0(𝑞) = ℎ−1(𝛾−1(𝑞)). (55) 

 This shows that reduced action 𝑆0
𝑣 are inverse of ratio of two linearly independent solutions given 

by the canonical equation. Note that while the canonical is a second-order linear differential 

equation, i.e., it needs two initial conditions to obtain solution, (54) requires three initial conditions 

to be solved. 

 

6. Self-dual state 

  The establishment of 𝑆0 − 𝑇0 duality indicates correspondence of 𝑢- and 𝑣- transformation. This 

duality and their transformations indicate that for a given system 𝒲 there are two equivalent 

descriptions of 𝑆0 and 𝑇0. This raises a question of whether dual structures select the distinguished 

states.  

Consider the special case of 𝒲 where pictures of 𝑆0 and 𝑇0 overlaps as shown below 

𝑞 → �̃�  =  𝛼𝑝, 𝑝 → �̃�  =  𝛽𝑞. (56) 

This implies that 

𝜕�̃�0

𝜕�̃�
= 𝛼

𝜕𝑆0

𝜕𝑞
,

𝜕�̃�0

𝜕�̃�
= 𝛽

𝜕𝑇0

𝜕𝑝
, (57) 

or 

𝜕�̃�0

𝜕𝑞
= 𝛼𝛽

𝜕𝑆0

𝜕𝑞
,

𝜕�̃�0

𝜕𝑝
= 𝛼𝛽

𝜕𝑇0

𝜕𝑝
. (58) 

Integrate (58) to get 

�̃�0(�̃�) =  𝛼𝛽𝑇0(𝑝) +  𝑐𝑛𝑠𝑡, �̃�0(�̃�) =  𝛼𝛽𝑆0(𝑞) +  𝑐𝑛𝑠𝑡, (59) 

showing that �̃�0(�̃�) and �̃�0(�̃�) are Legendre transformation of 𝑆0(𝑞) and 𝑇0(𝑝) respectively.  

 

Notice that roles of 𝑝 and 𝑞 have no effect on their functionals when interchanged twice, so we can 

write the following equation 

�̃̃�0 = 𝑆0,         �̃̃�0 = 𝑇0, (60) 

so that 

(𝛼𝛽)2 = 1 →  𝛼𝛽 = ±1 (61) 

The distinguished states are shown to be invariant by (56) and (59) thus 

�̃�0(�̃�) = 𝑆0(𝑞),         �̃�0(�̃�) = 𝑇0(𝑝). (62) 
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Substitute (61) and (62) to (59) and by considering the equation 𝑆 = 𝑆0 − 𝐸𝑡 and 𝑇 = 𝑇0 + 𝐸𝑡, we 

will get 

𝑆 = ±𝑇 + 𝑐𝑛𝑠𝑡. (63) 

 

Notice the sign of (36), for this implies (61) is actually 

 𝛼𝛽 = −1. (64) 

thus 

𝑆 = −𝑇 + 𝑐𝑛𝑠𝑡. (65) 

Since 𝑆 = 𝑝𝑞 − 𝑇, (65) becomes 

𝑝𝑞 = 𝛾, (66) 

where 𝛾 = 𝑐𝑛𝑠𝑡. 

Substitute (66) to (56) to give 

𝑞 → �̃�  =  
𝛼𝛾

𝑞
, 𝑝 → �̃�  =  

𝛽𝛾

𝑝
. (67) 

  Note that equation (56) remains invariant with the highest symmetry for 𝑝 ↔ 𝑞, which is true if   

𝛼 = 𝛽. Compare with (64) to obtain 𝛼 = 𝛽 = ±𝑖 which gives the highest symmetric state associated 

with (56). This shows that the stability of Legendre transformation is related to time evolution, and 

by imposing conditions related to highest symmetry like 𝑞𝑣 = 𝑞𝑢 and 𝑝𝑢 = 𝑝𝑣, we have found the 

relation between time evolution and 𝑆 and 𝑇 pictures. This implies that the imaginary factor does 

appear in the relation between 𝑆0 and solutions of the Schrödinger Equation. On the other hand, 

this factor also implies that time evolution in Quantum Mechanics is related to imaginary numbers 

and thus related to 𝑆 and 𝑇 pictures. 

  Because of the highest symmetry imposed by the conditions, the self-dual states are now 

distinguished. Thus, the states with equation (66) corresponds to  

𝑆0(𝑞) = 𝛾 ln 𝛾𝑞𝑞,         𝑇0(𝑝) = 𝛾 ln 𝛾𝑝𝑝 . (68) 

Reminder that, for 

𝑆0 + 𝑇0 = 𝑝𝑞 = 𝛾, (69) 

we obtain the following relationships of constants 

𝛾𝑝𝛾𝑞𝛾 = 𝑒. (70) 

By coinciding the solutions of canonical equation (42) and its dual version (47) with 𝑝 = 𝛾/𝑞, we got 

𝒰(𝑠) =  −
1

4𝛾2
=  𝒱(𝑡). (71) 
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Combine (71) with (42) and (47) to obtain the canonical equations with self-dual states. 

(
𝜕2

𝜕𝑠2
−

1

4𝛾2) 𝑞√𝑝 = 0 = (
𝜕2

𝜕𝑠2
−

1

4𝛾2) √𝑝 (72) 

(
𝜕2

𝜕𝑡2
−

1

4𝛾2) 𝑝√𝑞 = 0 = (
𝜕2

𝜕𝑡2
−

1

4𝛾2) √𝑞 (73) 

 

 

7. Equivalence Principle and its implementation 

  We now deal with the core of the Equivalence Principle (EP). Like the method of obtaining 

Hamilton-Jacobi equation as seen in section 2 and 3, we look for transformations of dependent 

variables 𝑞 and 𝑝 which reduce to the free system with zero energy. 

Recall from section 3 we obtain the following statement regarding the transformation 𝑆0 → 𝑆0
𝑣: 

Given a locally invertible coordinate transformation 𝑞 → 𝑞𝑣 = 𝑣(𝑞) onto the case of the reduced 

action 𝑆0, set   

𝑆0
𝑣(𝑞𝑣) = 𝑆0(𝑞(𝑞𝑣)) (74) 

to find the coordinate transformation with the system containing 𝑉 − 𝐸 = 0. 

Now set 𝒲0(𝑞0) as the state corresponding to 𝒲 = 0 along with the new notations 𝑞0 ≡ 𝑞𝑣 and 

𝑆0
0 ≡ 𝑆0

𝑣 to express the following transformation 

𝑞 → 𝑞0 = 𝑆0
0−1

∘ 𝑆0(𝑞). (75) 

This suggests the following EP: 

For each pair 𝒲𝑎, 𝒲𝑏, there is a 𝑣–transformation 𝑞𝑎 → 𝑞𝑏 = 𝑣(𝑞𝑎) such that 

𝒲𝑎(𝑞𝑎) → 𝒲𝑏(𝑞𝑏). (76) 

  With the Equivalence Principle defined, we now look at implementing EP into Classical Mechanics 

(CM). Set the following transformation based on (76) 

𝒲(𝑞) → 𝒲𝑣(𝑞𝑣), (77) 

which is induced by  

𝑆0
𝑐𝑙(𝑞) → 𝑆0

𝑐𝑙 𝑣(𝑞𝑣) = 𝑆0
𝑐𝑙(𝑞(𝑞𝑣)). (78) 

Now substitute (77) and (78) into CSHJE expressed in (18) to obtain 

1

2𝑚
(

𝜕𝑆0
𝑐𝑙 𝑣(𝑞𝑣)

𝜕𝑞𝑣 )

2

+ 𝒲𝑣(𝑞𝑣) = 0. (79) 

Compare (18) with (79) and with the knowledge from (78), we got 

𝒲(𝑞) → 𝒲𝑣(𝑞𝑣) = (𝜕𝑞𝑣𝑞)
2

𝒲(𝑞), (80) 
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that is, 

𝒲𝑣(𝑞𝑣)(𝑑𝑞𝑣)2 = 𝒲(𝑞)(𝑑𝑞)2. (81) 

Therefore, for consistency’s sake 𝒲(𝑞) must belong to 𝒬𝑐𝑙, the space of functions transforming as 

quadratic differentials under 𝑣𝑐𝑙–transformations. 

Now consider (80) but with the state 𝑊0 

𝒲0(𝑞0) → 𝒲𝑣(𝑞𝑣) = (𝜕𝑞𝑣𝑞0)
2

𝒲0(𝑞0) = 0. (82) 

This shows that 𝒲0 is a fixed point in space ℋ, however in CM ℋ cannot be reduced to a point 

upon factorization by 𝑣𝑐𝑙–transformations. Thus, the EP (76) cannot be implemented in CM without 

consistency issue. 

For EP to be implemented consistently we need to modify CSHJE. Let the general equation of 𝑆0 be 

𝐹 (
𝜕𝑆0

𝜕𝑞
,
𝜕2𝑆0

𝜕𝑞2
,
𝜕3𝑆0

𝜕𝑞3
, … ) = 0, (83) 

noting that from (28) adding constants to 𝑆0 or 𝑇0 does not change the system. One key principle 

between Classical and Quantum Mechanics is the correspondence principle which states that, as the 

system approaches classical limit, results derived from quantum theory is being reduced to those of 

classical system. Consider (83) in the classical limit 

𝐹 (
𝜕𝑆0

𝜕𝑞
,
𝜕2𝑆0

𝜕𝑞2
, … ) = 0 →

1

2𝑚
(

𝜕𝑆0
𝑐𝑙

𝜕𝑞
)

2

+ 𝒲(𝑞) = 0, (84) 

equation (83) can be written in the form  

1

2𝑚
(

𝜕𝑆0(𝑞)

𝜕𝑞
)

2

+ 𝒲(𝑞) + 𝑄(𝑞) = 0 (85) 

and by comparing with (84) we notice that, as we approach classical limit 

𝑄 → 0 (86) 

which reduces the quantum equation we intend to find to CSHJE. 

What about 𝒲 and 𝑄 during transformation? Based on (85), 𝒲 + 𝑄 must be consistent upon 

transformation to maintain consistency on (85). Let us consider the transformed version of (85) 

1

2𝑚
(

𝜕𝑆0
𝑣(𝑞𝑣)

𝜕𝑞𝑣 )

2

+ 𝒲𝑣(𝑞𝑣) + 𝑄𝑣(𝑞𝑣) = 0 (87) 

Implement square of (74) onto (85) and (87) to give  

𝒲𝑣(𝑞𝑣) + 𝑄𝑣(𝑞𝑣) = (𝜕𝑞𝑣𝑞)2(𝒲(𝑞) + 𝑄(𝑞)). (88) 

This shows that 𝒲 + 𝑄 are set memberships of space 𝒬 under 𝑣-transformation i.e. (85) is 

covariant, or consistent under the 𝑣-transformation. Note that the statement (86) already indicates 

covariance at the breaking limit. 
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According to EP, all 𝒲 are connected to each other by coordinate transformation. However, (82) 

states that 𝒲0 is a fixed point in space ℋand ℋ cannot be reduced to a point. Therefore, 

𝒲 ∉ 𝒬        𝑄 ∉ 𝒬. (89) 

 This is also true for 𝑄 since 𝒲 + 𝑄 ∈ 𝒬. 

  Recall from the beginning of this section we consider transformation which reduces system with 

vanishing energy, or 𝒲 = 0. In this case equation (85) becomes (𝜕𝑞𝑆0)2 = −2𝑚𝑄. The fact that 

(𝜕𝑞𝑆0)2 ∈ 𝑄, and the relation on (89) imply that 𝑄 = 0 and therefore 𝑆0 = 𝑐𝑛𝑠𝑡. Based on general 

form of equation (74), 𝑆0 = �̃�0 = 𝑐𝑛𝑠𝑡 for any coordinates, which implies that 𝑆0 is a fixed point in 

space 𝒦. This causes consistency issue in CM. On the other hand, for the case of 𝑆0 ∝ 𝑞, one has the 

free particle with non-zero energy and has the same consistency. This shows that the problem only 

applies with free particles and has to do with defining Legendre transformation. In fact, the problem 

is related to 𝑆0 − 𝑇0 duality and it can be solved with the knowledge of self-duality as shown in 

section 6. Staring with (68) and their characteristics associated with highest symmetry 𝑞𝑣 = 𝑞𝑢, 

𝑝𝑢 = 𝑝𝑣 and 𝜕𝑣𝑇𝑜 = 𝜕𝑢𝑆0, we denote 𝒲𝑠𝑑 as distinguished self-dual state 𝒲 corresponding to 

𝑆0
𝑠𝑑(𝑞𝑠𝑑) and by deriving their reduced action, we obtain the following transformation 𝑆0 to 𝑆0

𝑠𝑑 

𝑞 → 𝑞𝑠𝑑 = 𝑣𝑠𝑑(𝑞) = 𝛾𝑠𝑑
−1𝑒

1
𝛾𝑠𝑑

𝑆0(𝑞)
. (90) 

 Note that transformations associated with EP should be locally invertible. Thus (90) can also be 

written as the transformation of 𝑆0
𝑠𝑑 to 𝑆0 inversing 𝑣𝑠𝑑(𝑞) and switching 𝑞 and 𝑞𝑠𝑑. This shows 

interesting properties that is only possible under EP. 

8. Deriving Quantum Stationary Hamilton-Jacobi Equation 

With consistency issue resolved, we can determine the explicit expression of (85) by first considering 

the Schwarzian derivative {𝑒ℎ, 𝑥} whose chain rule is  

{𝑒ℎ, 𝑥} = (
𝜕𝑒ℎ

𝜕𝑥
)

2

({𝑒ℎ, 𝑒ℎ} − {𝑥, 𝑒ℎ}) = − (
𝜕𝑒ℎ

𝜕𝑥
)

2

{𝑥, 𝑒ℎ}. (91) 

We also consider for {𝑥, 𝑒ℎ}, 

{𝑥, 𝑒ℎ} = 𝑒−2ℎ{𝑥, ℎ} − {𝑒ℎ, ℎ} = 𝑒−2ℎ{𝑥, ℎ} +
1

2
. (92) 

Combine (91) and (92) to give 

{𝑒ℎ, 𝑥} = {𝑥, ℎ} −
1

2
(

𝜕ℎ

𝜕𝑥
)

2

. (93) 

One interesting property of {ℎ, 𝑥} is that due to the equation (49) it may take real value despite ℎ 

and 𝑥 taking complex value. In other words, if ℎ and 𝑥 are either real or purely imaginary values then 

{𝑒𝑖ℎ, 𝑥} ∈ ℝ. For 𝛼 be independent of 𝑥,  

{𝑒𝑖𝛼ℎ, 𝑥} = {𝑥, ℎ} −
𝛼2

2
(

𝜕ℎ

𝜕𝑥
)

2

. (94) 

Note that for ℎ being independent of 𝛼, 

(
𝜕ℎ

𝜕𝑥
)

2

= 𝛼−1
𝜕{𝑒𝑖𝛼ℎ, 𝑥}

𝜕𝛼
. (95) 
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(94) and (95) imply the following equation with two different Schwarzian derivatives 

(
𝜕𝑆0

𝜕𝑞
)

2

=
𝛽2

2
({𝑒

2𝑖
𝛽

𝑆0
, 𝑞} − {𝑆0, 𝑞}) , (96) 

with 𝛽 as dimensional constant. 

We now introduce the cocycle condition that arises from the fact that the transformation 𝒲0 →

𝒲𝑣 must have an inhomogeneous term within. For the basic cocycle condition corresponding to EP, 

(𝑞𝑎; 𝑞𝑐) = (𝜕𝑞𝑐𝑞𝑏)
2

[(𝑞𝑎; 𝑞𝑏) − (𝑞𝑐; 𝑞𝑏)]. (97) 

We also obtain the following theorem: 

The cocycle condition (97) uniquely defines the Schwarzian derivative up to a multiplicative constant 

and a coboundary term. 

With the theorem in mind, consider the equation that satisfies (97) 

[𝑞𝑎; 𝑞𝑏] = (𝑞𝑎; 𝑞𝑏) − 𝑐1{𝑞𝑎; 𝑞𝑏}, (98) 

we can derive the following result 

(𝑞𝑎; 𝑞𝑏) = −
𝛽2

4𝑚
{𝑞𝑎; 𝑞𝑏}, (99) 

with 𝑐1 = −𝛽2/4𝑚. 

Before implementing the above equations, we need to know whether they satisfy the classical limit. 

For the case of  𝒲 → 𝒲𝑣 we have (𝑞𝑎; 𝑞𝑏) → 0 and thus 

𝛽2

4𝑚
{𝑞; 𝑞𝑣} → 0. (100) 

Since in classical limit 𝑄 → 0 and with constant 𝛽 we get 

lim
𝛽→0

𝑄 = 0, (101) 

thus, we obtain the solution related to CSHJE 

lim
𝛽→0

𝑆0 = 𝑆0
𝑐𝑙. (102) 

By substituting (96), (85) we get 

𝒲(𝑞) =
𝛽2

4𝑚
({𝑆0, 𝑞} −  {𝑒

2𝑖
𝛽

𝑆0 , 𝑞}) − 𝑄(𝑞). (103) 

Since 𝒲(𝑞) = (𝑞0; 𝑞), by (99) we got 

𝒲(𝑞) = −
𝛽2

4𝑚
{𝑞0; 𝑞}, (104) 

Before continuing, we need to determine 𝑞0. Since 𝑆0
0(𝑞0) = 𝑆0(𝑞), we obtain 𝑞0 = 𝑣0(𝑞) and by 

Möbius symmetry we have obtain the unique solutions of 𝑞0. 
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Under Möbius symmetry {ℎ, 𝑥} equation (104) becomes 

𝒲(𝑞) = −
𝛽2

4𝑚
{𝑒

2𝑖
𝛽

𝑆0
; 𝑞} , (105) 

and (103) becomes  

𝑄(𝑞) =
𝛽2

4𝑚
{𝑆0, 𝑞}. (106) 

Finally, equation (85) with (104) becomes 

1

2𝑚
(

𝜕𝑆0(𝑞)

𝜕𝑞
)

2

+ 𝑉(𝑞) − 𝐸 +
𝛽2

4𝑚
{𝑆0, 𝑞} = 0. (107) 

Note that as 𝛽 → 0, (107) becomes CSHJE. 

Recall from section 5 the method involving Möbius transformation. Equation (104) has the following 

identities 

𝜕𝑥ℎ′1/2ℎ′1/2 = 0 = 𝜕𝑥ℎ′−1𝜕𝑥ℎ′1/2ℎ′1/2ℎ (108) 

and 

ℎ′1/2𝜕𝑥ℎ′−1𝜕𝑥ℎ′1/2 = 𝜕𝑥
2 + {ℎ, 𝑥}/2, (109) 

with ℎ = 𝑒
2𝑖

𝛽
𝑆0. This implies the following   

𝑒
2𝑖
𝛽

𝑆0
=

𝐴𝜓𝐷 + 𝐵𝜓

𝐶𝜓𝐷 + 𝐷𝜓
, (110) 

where 𝐴𝐷 − 𝐵𝐶 ≠ 0 and 𝜓𝐷 and 𝜓 are linearly independent solutions of the stationary Schrödinger 

equation (SE) 

(−
𝛽2

2𝑚

𝜕2

𝜕𝑞2
+ 𝑉(𝑞)) 𝜓 = 𝐸𝜓. (111) 

Thus, for the “covariantizing parameter” 𝛽, 𝛽 = ℏ, where ℏ = ℎ/2𝜋 is Planck’s reduced constant. 

We can now formally call equation (107) the Quantum Stationary Hamilton-Jacobi Equation (QSHJE) 

of which SE linearize.  

The solution of (111) related to (110) will be 

𝜓 =
1

√𝑆0
′

(𝐴𝑒−
𝑖
ℏ

𝑆0 + 𝐵𝑒
𝑖
ℏ

𝑆0) . (112) 

9. QSHJE and the Legendre transformation 

As shown on the ending part of section 8, we notice that not all 𝑆0 descriptions fit well in our 

formalism without consistency issue. We will now show that QSHJE can solve the issue of defining 

the Legendre transformation for any states of reduced actions 𝑆0 and 𝑇0. For the case of 𝒲0, QSHJE 

becomes 

1

2𝑚
(

𝜕𝑆0
0

𝜕𝑞0)

2

+
ℏ2

4𝑚
{𝑆0

0, 𝑞0} = 0, (113) 
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which is equivalent to the following equation 

{𝑒
2𝑖
ℏ

𝑆0
0

, 𝑞0} = 0. (114) 

One possible solution with a well-defined Legendre transformation of 𝑆0
0 is 

𝑒
2𝑖
ℏ

𝑆0
0

= 𝛾𝑞𝑞0. (115) 

Compare equation (115) with the self-dual states (68) and we realize that we can identify the 

reduced action 𝑆0
0 associated with 𝒲0 with the following distinguished self–dual state 

𝑆0(𝑞) = 𝑆0
𝑠𝑑(𝑞𝑠𝑑) = 𝛾𝑠𝑑 ln 𝛾𝑞𝑞𝑠𝑑(𝑞). (116) 

 

For the case of 𝒲0 = 𝒲𝑠𝑑, we set 

𝛾𝑠𝑑 = ±
ℏ

2𝑖
, (117) 

then substitute to (116) to get 

𝑆0
0(𝑞0) = 𝑆0

𝑠𝑑(𝑞𝑠𝑑) = ±
ℏ

2𝑖
ln 𝛾𝑞𝑞0 , 𝑞𝑠𝑑 = 𝑞0. (118) 

We can now write with (114) and (115) in mind 

𝑆0
0 =

ℏ

2𝑖
ln (

𝐴𝑞0 + 𝐵

𝐶𝑞0 + 𝐷
) . (119) 

 

We now consider cases where the Legendre transformation is not defined. For the case of 𝑆0 ∝ 𝑞  

we take 𝑆0 = 𝐴𝑞 + 𝐵 as an example. This corresponds to 𝒲 = −𝐴2/2𝑚 where for 𝑉 = 0 this 

represents a free system with energy 𝐸 = 𝐴2/2𝑚. Now consider equation (104) which produces 𝒲 

previously 

𝒲(𝑞) = −
ℏ2

4𝑚
{𝑒

2𝑖
ℏ

𝑆0; 𝑞} = −
ℏ2

4𝑚
{

𝐴𝑒
2𝑖
ℏ

𝑆0 + 𝐵𝜓

𝐶𝑒
2𝑖
ℏ

𝑆0 + 𝐷𝜓

; 𝑞} , (120) 

where 𝐴𝐷 − 𝐵𝐶 ≠ 0. 

 

Should 𝑆0 be the solution of QSHJE, we have the following solution 

�̃�0 =
ℏ

2𝑖
ln (

𝐴𝑒
2𝑖
ℏ

𝑆0 + 𝐵

𝐶𝑒
2𝑖
ℏ

𝑆0 + 𝐷

) . (121) 

The solution above coincides with (110). This explains the relationship between kinetic term in 

Quantum Mechanics and 𝑄(𝑞); they mix under the symmetry (120) of 𝒲. We can now solve the 

issue of defining the Legendre transformation in the case 𝒲 = 𝑐𝑛𝑠𝑡. For 𝑆0 = ±√2𝑚𝐸𝑞 we got the 

equation 
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1

2𝑚
(

𝜕𝑆0

𝜕𝑞
)

2

− 𝐸 +
ℏ2

4𝑚
{𝑆0, 𝑞} = 0, (122) 

with solution 

𝑆0 =
ℏ

2𝑖
ln (

𝐴𝑒
2𝑖
ℏ √2𝑚𝐸𝑞

+ 𝐵

𝐶𝑒
2𝑖
ℏ √2𝑚𝐸𝑞

+ 𝐷

) , (123) 

where 𝑆0 is not proportional to 𝑞. Since 𝑆0
𝑐𝑙 = ±√2𝑚𝐸𝑞 we have 

lim
ℏ→0

ln (
𝐴𝑒

2𝑖
ℏ √2𝑚𝐸𝑞

+ 𝐵

𝐶𝑒
2𝑖
ℏ √2𝑚𝐸𝑞

+ 𝐷

)

ℏ
2𝑖

= ±√2𝑚𝐸𝑞. (124) 

It is shown that for solution 𝑆0 = ±√2𝑚𝐸𝑞, 𝑆0 = 0 as 𝐸 → 0. This shows that the Schwarzian 

derivative and the Legendre transformation corresponding to 𝒲 = 𝑐𝑛𝑠𝑡  are undefined. 

10. Quantised Energy 

  One important concept of Quantum Mechanics is the discrete energy level, or quantised energy, for 

bound states. This arises from its probabilistic nature that the wave function and its derivative are 

continuous and is square integrable. We now derive the same concept from our Equivalence 

Principle approach. We start with trivializing coordinates as it plays a crucial role in canonical 

transformation and is related to self-dual states. Consider the Schwarzian equation equivalent to 

QSHJE (107) 

{𝑒
2𝑖
𝛽

𝑆0
, 𝑞} = −

4𝑚𝒲

ℏ2
. (125) 

Now given the trivializing transformation 

𝑤 = 𝑞0 =
𝜓𝐷

𝜓
, (126) 

and (125) becomes 

{𝑞0, 𝑞} = −
4𝑚

ℏ2
(𝑉(𝑞) − 𝐸). (127) 

 

Based on (126), 𝑤 ≠ 𝑐𝑛𝑠𝑡; 𝑤 ∈ 𝐶2(𝑅) and 𝜕𝑞
2𝑤 differentiable, and by considering the inverse of 

(127) we got {𝑞0, 𝑞−1} = 𝑞4{𝑞0, 𝑞}. Thus, conditions for trivializing transformation to be consistent 

must be applied beyond the real line i.e., on the real line plus the point at infinity, or 

𝑤 ≠ 𝑐𝑛𝑠𝑡; 𝑤 ∈ 𝐶2(�̂�)𝑎𝑛𝑑 𝜕𝑞
2𝑤 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙𝑒 𝑜𝑛 �̂� 𝑤ℎ𝑒𝑟𝑒 �̂� =  𝑅 ∪ {∞}.  

This implies the two solutions of Schrödinger equation and their derivatives are continuous within 

the equivalent postulate, or to be more specific, 

𝑤(−∞) = {
𝑤(+∞),   𝑓𝑜𝑟 𝑤(−∞) ≠ ±∞,

𝑤(−∞),   𝑓𝑜𝑟 𝑤(−∞) = ±∞.
(128) 
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We now state the following theorem: 

If the potential function 𝑊(𝑞) is bounding in some interval, then the ratio 𝑞0 = 𝜓𝐷/𝜓 is continuous 

on the extended real line if and only if the Schrödinger equation admits a square integrable solution. 

To test the theorem above, consider the case of a particle in a potential well 

𝑉(𝑞) = {
0,   |𝑞| ≤ 𝐿,

𝑉0,   |𝑞| > 𝐿.
(129) 

Note that 𝑉(𝑞) is an even function. 

Let us set two linearly independent solutions of SE  

𝑘 =
√2𝑚𝐸

ℏ
,     𝐾 =

√2𝑚(𝑉0 − 𝐸)

ℏ
. (130) 

 

This allows us the find the expression of conjugate momentum as needed in QM. For the solutions 

inside the potential well |𝑞| ≤ 𝐿, choose either 𝜓1
1 = cos (𝑘𝑞) or 𝜓2

1 = sin (𝑘𝑞). Outside the 

potential well 𝑞 > 𝐿, choose either 𝜓1
2 = 𝑒−𝐾𝑞 or 𝜓2

2 = 𝑒𝐾𝑞. Parity fixes the solutions for 𝑞 ≤ −𝐿 

and for 𝑞 > 𝐿 we can choose the solution to be linear combination of 𝜓1
2 and 𝜓2

2. At 𝑞 = 𝐿 

continuity across the boundary implies that 𝜓𝑖
1(𝐿) = 𝜓𝑗

2(𝐿) and 𝜕𝑞𝜓𝑖
1(𝐿) = 𝜕𝑞𝜓𝑖

2(𝐿). Let us denote 

such solutions as (𝑖, 𝑗) and consider the case (𝑖, 𝑗) = (1,1). Here we have 

𝜓 = {

cos(𝑘𝐿) exp [𝐾(𝑞 + 𝐿)],             𝑞 < −𝐿,

cos(𝑘𝑞),                                         |𝑞| ≤ 𝐿,

cos (𝑘𝐿)exp [−𝐾(𝑞 − 𝐿)],           𝑞 < 𝐿,

(131) 

with the quantisation condition 

𝑘 tan(𝑘𝐿) = 𝐾. (132) 

A linearly independent solution is given by 

𝜓𝐷 = [2𝑘 sin (𝑘𝐿)]−1 ∙ {

cos(2𝑘𝐿) exp [𝐾(𝑞 + 𝐿)] − exp [−𝐾(𝑞 + 𝐿)],             𝑞 < −𝐿,

2sin (𝑘𝐿) sin(𝑘𝑞),                                                               |𝑞| ≤ 𝐿,

exp [𝐾(𝑞 − 𝐿)] − cos(2𝑘𝐿)exp [−𝐾(𝑞 − 𝐿)] ,               𝑞 < 𝐿.

(133) 

Now consider the trivializing map 𝑞0. The solution associated with (1,1) is 

𝜓𝐷

𝜓
= [𝑘 sin (2𝑘𝐿)]−1 ∙ {

cos(2𝑘𝐿) − exp [−2𝐾(𝑞 + 𝐿)],               𝑞 < −𝐿,

sin (2𝑘𝐿)tan (𝑘𝑞),                                        |𝑞| ≤ 𝐿,

exp [2𝐾(𝑞 − 𝐿)] − cos (2𝑘𝐿),                     𝑞 < 𝐿.

(134) 

 

At the limit of (131), 

lim
𝑞→±∞

𝜓𝐷

𝜓
= ±∞ . (135) 

Hence, we have shown that for the case (1,1) the trivializing map is continuous on �̂� which is 

needed for consistency of equivalence postulate and solutions imposed by (130) become physical 

energy levels. 
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Now consider the case for (1,2). Repeat the same process as done for (1,1) case. 

𝜓 = {

cos(𝑘𝐿) exp [−𝐾(𝑞 + 𝐿)],             𝑞 < −𝐿,

cos(𝑘𝑞),                                             |𝑞| ≤ 𝐿,

cos (𝑘𝐿)exp [𝐾(𝑞 − 𝐿)],                 𝑞 < 𝐿,

(136) 

with the quantisation condition 

𝑘 tan(𝑘𝐿) = −𝐾. (137) 

The solution will be 

𝜓𝐷 = [2𝑘 sin (𝑘𝐿)]−1 ∙ {

cos(2𝑘𝐿) exp [−𝐾(𝑞 + 𝐿)] − exp [𝐾(𝑞 + 𝐿)],             𝑞 < −𝐿,

2sin (𝑘𝐿) sin(𝑘𝑞),                                                               |𝑞| ≤ 𝐿,

exp [−𝐾(𝑞 − 𝐿)] − cos(2𝑘𝐿) exp[𝐾(𝑞 − 𝐿)] ,               𝑞 < 𝐿,

(138) 

and the trivializing transformation 𝑞0 will be 

𝜓𝐷

𝜓
= [𝑘 sin (2𝑘𝐿)]−1 ∙ {

cos(2𝑘𝐿) − exp [2𝐾(𝑞 + 𝐿)],                    𝑞 < −𝐿,

sin (2𝑘𝐿)tan (𝑘𝑞),                                        |𝑞| ≤ 𝐿,

exp [−2𝐾(𝑞 − 𝐿)] − cos (2𝑘𝐿),                     𝑞 < 𝐿.

(139) 

whose asymptotic behaviour is 

lim
𝑞→±∞

𝜓𝐷

𝜓
= ∓𝑘−1 cot (2𝑘𝐿) . (140) 

Recall (128) that at points at infinity, 𝑤(−∞) = 𝑤(+∞), and from (138) it is only possible if 

𝑘−1 cot(2𝑘𝐿) = 0. However, it is incompatible with the quantisation condition (135) and therefore 

𝑤(−∞) ≠ 𝑤(+∞). We have now shown that, for case of (1,2), energy eigenvalues associated with 

solutions of case of (1,2) are inconsistent against the equivalence postulate and therefore does not 

make solutions of (135) physical.  

  We can now conclude that the same physical eigenstates that are selected in conventional 

Quantum Mechanics by the probability interpretation of the wave function, are selected in the 

equivalence postulate approach by mathematical consistency. Essentially, we have shown that our 

formulation above remains consistent with the Möbius symmetry which is the foundation of 

Quantum Mechanics and much of our report. We further note that the requirement for the 

trivialising transformation to be continuous on the extended real line creates another requirement 

that the real line is compact. Therefore, energy quantisation and square integrability arises from the 

consistency of the equivalence postulate and the compactness of space, which is mandated by the 

Möbius symmetry underlying QM. This however implies that parameterisation of particle 

propagation is deterministic, which goes against the probabilistic nature of QM. This raises questions 

whether such parameterisation is consistent with quantum Hamilton-Jacobi formalism and the 

Möbius symmetry that underlies it.  

  As shown on page 94 of [1] and section 6 of [3] by Alon E. Faraggi and Marco Matone, there are two 

approaches to define time parameterisation related to our problem. The first is the Bohmian 

mechanics where time parameterisation is defined with 𝑝 = 𝜕𝑞𝑆𝑁𝑆 = 𝑚�̇� where conjugate 

momentum 𝑝 is related to mechanical momentum 𝑚�̇� and solutions of QHJE 𝑆𝑁𝑆. The second is the 

Floyd’s definition of time parameterisation by using Jacobi’s theorem,𝑡 = 𝜕𝐸𝑆0 where 𝑆0 is the 

solution of the QSHJE. Whilst it is shown that both approaches work in Classical Mechanics, they fail 

to meet any conditions needed to answer our questions. With Bohmian mechanics, its definition of 
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time did not coincide with Floyd’s definition of time and is incompatible with the Möbius symmetry 

and compactness of space. And while definition of time 𝑡 = 𝜕𝐸𝑆0 does provide time 

parameterisation by inverting 𝑡(𝑞) → 𝑞(𝑡), energy levels corresponding to our solutions are always 

quantised when considering space compactness. This shows that differentiation with respect to 𝐸 is 

undefined and time parameterisation corresponding to Jacobi’s theorem is incompatible with our 

formalism related to QSHJE.  

 

11. Geometrical Quantum Hamilton-Jacobi Theory 

  To solve the issue of time parameterisation presented in the previous section, we need to derive 

quantum Hamilton-Jacobi theory with geometrical formulation. The idea is that such formulation 

reproduces energy quantisation as a result without using any probabilistic interpretation of the wave 

function, which creates consistency issue regarding parameterisation. Another idea of Geometrical 

Quantum Hamilton-Jacobi (GQHJ) theory is that if space is compact, then there is no notion of 

particle trajectory, which again eliminates compatibility issue with QHJ formalism. This allows us to 

reproduce results of QM without the axiomatic interpretation of the wave function as probability 

amplitude. We begin with deriving the Wheeler–DeWitt (WDW) equation, a quantum gravity 

equation with no time variable. Then we derive the Hamilton-Jacobi equation based on WDW 

equation. 

   We start with the Arnowitt, Deser and Misner (ADM) formulation, a Hamiltonian formulation with 

space-time being foliated into a family of closed space-like hypersurfaces ∑𝑡 with respect to time 𝑡 

and coordinates 𝑥 on each slice. Now take dynamic variables of the formulation as the metric tensor 

of three-dimensional spatial slices 𝑔𝑖𝑗  and modify some metric to give the Einstein-Hilbert 

Lagrangian density 

ℒ =
1

2𝜅2
𝑁√�̅�( 𝑅 

3 − 2𝛬 + 𝐾𝑗𝑘𝐾𝑗𝑘 − 𝐾2), (141) 

where 𝑅 
3  is the intrinsic spatial scalar curvature, 𝛬 the cosmological constant, and 𝐾 the trace of the 

extrinsic curvature. Note that 𝐾 is 

𝐾𝑗𝑘 =
1

𝑁
(

1

2
𝑔𝑗𝑘,0 − 𝐷𝑗𝑁𝑘) , (142) 

where 𝐷𝑗 represent the j component of the covariant derivative.  

Let 𝜋0 and 𝜋𝑘 be the conjugate momenta of 𝑁 and 𝑁𝑘  respectively. Since ℒ is independent of both 

𝜕𝑥0
𝑁𝑘 and 𝜕𝑥0

𝑁, we obtain the following primary constraints 𝜋0 ≈ 0 and 𝜋𝑘 ≈ 0. By considering the 

time conservation in the primary constrains, we got secondary constrains in the form of super 

momentum, 

ℋ𝑘 = −2𝐷𝑗𝜋𝑘
𝑗

≈ 0, (143) 

and super-Hamiltonian, 

ℋ = 2𝜅2𝐺𝑖𝑗𝑘𝑙𝜋𝑖𝑗𝜋𝑘𝑙 −
1

2𝜅2 √�̅�( 𝑅 
3 − 2𝛬) ≈ 0, (144) 
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where 𝜋𝑗𝑘 is the conjugate momentum of 𝑔𝑗𝑘 

𝜋𝑗𝑘 = −
1

2𝜅2 √�̅�( 𝐾𝑗𝑘 − 𝑔𝑗𝑘𝐾), (145) 

and the DeWitt supermetric 

𝐺𝑖𝑗𝑘𝑙 =
1

2√�̅�
(𝑔𝑖𝑘𝑔𝑗𝑙 + 𝑔𝑖𝑙𝑔𝑗𝑘 + 𝑔𝑖𝑗𝑔𝑘𝑙). (146) 

With Legendre transformation we obtain the Hamiltonian 

𝐻 = ∫ 𝑑3x (𝑁ℋ + 𝑁𝑘ℋ𝑘). (147) 

 Notice that 𝑁 and 𝑁𝑘 are the Lagrange multipliers of ℋ and ℋ𝑘 respectively. Let Ψ be the wave 

function of the Schrödinger equation. Set momenta as 

�̂�0 = −𝑖ℏ
𝛿

𝛿𝑁
,       �̂�𝑘 = −𝑖ℏ

𝛿

𝛿𝑁𝑘
, (148) 

so that, 

−𝑖ℏ
𝛿Ψ

𝛿𝑁
= 0,      − 𝑖ℏ

𝛿Ψ

𝛿𝑁𝑘
= 0 (149) 

showing that Ψ only depends on 𝑔𝑗𝑘. 

The conjugate of the field 𝜙 corresponds to −𝑖ℏ𝑆𝜙, thus within the configuration space of 𝜙 we 

have [𝛿(3)] = 𝐿−3. From (145) we also have [𝜋𝑖𝑗] = 𝑀𝑇−2, which is different from [−𝑖ℏ𝛿𝑔𝑗𝑘
] =

𝑀𝐿−1𝑇−1, the dimension of the canonical choice of �̂�𝑗𝑘. Based on the information above, we have 

�̂�𝑗𝑘 = −𝑖ℏ𝑐
𝛿

𝛿𝑔𝑗𝑘
, (150) 

with the normalization of classical variant being fixed 

𝜋𝑗𝑘 = 𝑐
𝛿𝑆

𝛿𝑔𝑗𝑘
, (151) 

where 𝑆 in this case is the functional analogue of Hamilton’s characteristic function. From (150), we 

obtain the constraint of super-momentum 

ℋ̂𝑘Ψ = 2iℏ𝑐𝑔𝑗𝑘𝐷𝑙

𝛿Ψ

𝛿𝑔𝑙𝑗
. (152) 

For the secondary constraint in the form ℋ̂Ψ = 0, we obtain the WDW equation 

ℏ𝑐 [−2ℓ𝑃
2𝐺𝑖𝑗𝑘𝑙

𝛿2

𝛿𝑔𝑖𝑗𝛿𝑔𝑘𝑙
−

1

2ℓ𝑃
2 √�̅�( 𝑅 

3 − 2𝛬)] Ψ[𝑔𝑖𝑗] = 0, (153) 

where ℓ𝑃 = √8𝜋ℏ𝐺/𝑐3 = 𝜅√ℏ𝑐 is the rationalized Planck length. With the secondary constraint we 

can write �̂�Ψ = 0 so that 𝜕𝑡Ψ = 0, which shows the origin of the time problem. 
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Consider the key identity 

1

𝐴𝑒𝛽𝑆

𝛿2(𝐴𝑒𝛽𝑆)

𝛿𝑔𝑖𝑗𝛿𝑔𝑘𝑙
= 𝛽2

𝛿𝑆

𝛿𝑔𝑖𝑗

𝛿𝑆

𝛿𝑔𝑘𝑙
+

1

𝐴

𝛿2𝐴

𝛿𝑔𝑖𝑗𝛿𝑔𝑘𝑙
+ +

𝛽

2𝐴2
[

𝛿

𝛿𝑔𝑖𝑗
(𝐴2

𝛿𝑆

𝛿𝑔𝑘𝑙
) +

𝛿

𝛿𝑔𝑘𝑙
(𝐴2

𝛿𝑆

𝛿𝑔𝑖𝑗
)] , (154) 

with constant 𝛽 ∈ ℂ. Set 𝛽 = 𝑖/ℏ and 

Ψ = A𝑒
𝑖
ℏ

𝑆
, (155) 

where 𝐴, 𝑆 ∈ ℝ. Note that if (155) is a solution, then by the nature of WDW operator A𝑒−
𝑖

ℏ
𝑆 is also a 

solution. 

Substitute in (155) to WDW equation (153) to give the WDW Hamilton-Jacobi equation 

ℏ𝑐 [−2ℓ𝑃
2𝐺𝑖𝑗𝑘𝑙

𝛿2

𝛿𝑔𝑖𝑗𝛿𝑔𝑘𝑙
−

1

2ℓ𝑃
2 √�̅�( 𝑅 

3 − 2𝛬)] A𝑒
𝑖
ℏ

𝑆
= 0, (156) 

where its quantum deformation is 

2(𝑐𝜅)2𝐺𝑖𝑗𝑘𝑙

𝛿𝑆

𝛿𝑔𝑖𝑗

𝛿𝑆

𝛿𝑔𝑘𝑙
−

1

2𝜅2 √�̅�( 𝑅 
3 − 2𝛬) − 2(𝑐𝜅ℏ)2

1

𝐴
𝐺𝑖𝑗𝑘𝑙

𝛿2𝐴

𝛿𝑔𝑖𝑗𝛿𝑔𝑘𝑙
= 0, (157) 

along with the continuity equation 

𝐺𝑖𝑗𝑘𝑙

𝛿

𝛿𝑔𝑖𝑗
(𝐴2

𝛿𝑆

𝛿𝑔𝑘𝑙
) = 0. (158) 

Finally, the last term in (157) is called the quantum potential 

𝑄 = −2(𝑐𝜅ℏ)2
1

𝐴
𝐺𝑖𝑗𝑘𝑙

𝛿2𝐴

𝛿𝑔𝑖𝑗𝛿𝑔𝑘𝑙
. (159) 

Note that (157) reduces to (144) as it approaches classical limit.  

From section 3 of [4] it has been shown that GQHJ formulation has basic Möbius symmetry 

associated with the Schwarzian equation unlike the Bohmian formulation. GQHJ formulation also 

avoided the issue related to compact space by stating that there is no notion of particle trajectory 

within the space. Finally, no interpretation of the wave function is needed as energy is quantised 

with GQHJ formulation.  

 

12. Conclusion 

  From the start we focus on developing Equivalence Postulate in Quantum Mechanics with one-

dimensional and time-independent case only. We start with Hamilton-Jacobi equation, a formulation 

of Classical Mechanics that allows us to solve the entire system of equations of motion by reducing 

the dynamical problem to a single partial differential equation. The issue of duality in Classical 

Mechanics is solved when we base the formulation with the involute nature of Legendre 

transformation which allows us the obtain the 𝑝 − 𝑞 and 𝑆0 − 𝑇0 dualities. With the duality we can 

generate the canonical potential in the form of Schwarzian derivative by considering Möbius 

symmetry. Like the case of reduced action 𝑆0 the canonical potential is invariant under 𝐺𝐿(2, ℂ) 

Möbius transformation and thus the Schwarzian derivative remains unchanged. 
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  We then apply the Hamilton-Jacobi equation with the Equivalence Postulate we have formualted 

but this creates inconsistency in Classical Mechanics regarding 𝒲 = 0 state, so we need to modify 

the Hamilton-Jacobi Equation. Such modification is achieved by applying the self-dual states 

corresponding to 𝒲 states, adding inhomogeneous term into 𝒲 and by defining the Schwarzian 

derivative with the basic cocycle condition. As a result, we obtain the Quantum Stationary Hamilton-

Jacobi Equation 

1

2𝑚
(

𝜕𝑆0(𝑞)

𝜕𝑞
)

2

+ 𝑉(𝑞) − 𝐸 +
𝛽2

4𝑚
{𝑆0, 𝑞} = 0. (160) 

  As the quantum Hamilton-Jacobi formalism is being tested for the quantisation of energy, 

parameterisation of particle propagation is found to be deterministic, which goes against the nature 

of Quantum Mechanics. We consider two approaches to time parameterisation, Bohmian mechanics 

and Floyd’s definition of time parameterisation, but neither can fully satisfy the consistency 

condition of both Möbius symmetry and space compactness.  

  We resolve the inconsistency issue by taking the geometrical approach to quantum Hamilton-Jacobi 

theory. We start with the quantum gravity equation known as Wheeler–DeWitt (WDW) equation 

and derive WDW Hamilton-Jacobi Equation. In WDW HJ equation, no probabilistic interpretation of 

the wave function is needed and there is no particle trajectory in compact space. WDW equation 

being time-independent also avoids issue relating to time parameterisation. In the quantum 

deformation of WDW HJ equation there exist a term (159) known as the quantum potential. From 

section 4 of [4] it is shown to be never trivial, so that it plays the role of intrinsic energy. Such 

property selects the quantum potential corresponding to WDW equation as the candidate of dark 

energy which will have further implication in relating General Relativity and Quantum Mechanics. 

Researching the quantum potential may give us a starting point on understanding the nature and 

relationship of General Relativity and Quantum Mechanics.  
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