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Abstract

Our subject is the classi�cation of some free-fermionic models. After a brief introduction
to the string and the heterotic string, we describe the free-fermionic formalism and the
model construction. We next expose one way to obtain models with SO(10) GTU sym-
metry, or models where SO(10) is broken into SU(5)× U(1) or SU(3)× SU(2)× U(1)2

at the string level. At last, we see an algorithm and a speci�c computer program which
can analyse the entire spectrum of a large class of models in a sensible time.

Résumé

Notre sujet est la classi�cation de certains free-fermionic models (modèles de corde hétéro-
tique de type fermions libres). Après une brève introduction à la théorie des cordes et
cordes hétérotiques, nous détaillons le formalisme free-fermionic et la construction de
modèles. Nous décrivons ensuite le moyen d'obtenir des modèles ayant pour groupe de
jauge le groupe de grande uni�cation SO(10), ou bien des modèles où celui-ci est brisé
en SU(5)× U(1) ou SU(3)× SU(2)× U(1)2 à l'échelle d'énergie des cordes. En�n, nous
nous intéressons à un algorithme et un programme java particulier permettant d'analyser
le spectre d'une large classe de modèles en temps raisonnable.
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Introduction

Many popular science works take an interest in what is called the quest for a "theory of

everything". The main question is often: "is string theory the good candidate?". This

formulation is probably grandiloquent... This "quest" is more about the next step we

should take, beyond the standard model, in our uni�cation process.

The Standard Model was �nalized in its current formulation in the mid-1970s. The

discovery of the bottom quark (1977), the top quark (1995), the tau neutrino (2000), the

possible detection of the Higgs boson (2012), and its success in explaining a wide variety of

experimental results have given to the standard model the status of a theory of "almost"

everything. "Almost" because the standard model doesn't take into account the general

theory of relativity, and leave some unexplained physical phenomena, such as the universe

expansion, the dark matter or the neutrino oscillation. Moreover, it seems arbitrary, and

some possible embedding of the Standard Model gauge group SU(3) × SU(2) × U(1) in

a bigger group such as SU(5) or SO(10), reducing the number of free parameter lets

physicists think that this theory may be the tip of the iceberg of some more general

theory... This theory should deal with big energy scale, where the gravity is no more

negligible compared to other forces: this theory will have to encompass gravity.

Superstring may be this theory. It has one undisputable success: it provides the only

known consistent theory of quantum gravity. The basis of the theory is quite seducing by

it simplicity: we used to describe punctual particles by a one-dimension trajectory (most

often, with the "time"). What happens if we suppose that physical object have now a

two dimensional trajectory? We have now one space dimension objects, strings, which

have some new degrees of freedom: they can oscillate. These di�erent oscillation modes

can be interpreted as di�erent particles.

There exist �ve di�erent string theories, which have all been known since the middle

of the 1980s. Some relationships between them were found, and the M-theory, limit of

one of those �ve theories, has made it clear that we indeed have here just one theory:

these �ve string theories, plus the M-theory, are just limits of a more general theory.

We will here focus on one of the �ve di�erent theory, the E8 × E8 heterotic string.

This theory makes easier the embedding of the Standard Model gauge group in SO(10).

We will use there the free-fermionic formulation, which has been studied since the 80s.
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CONTENT

With this formulation, we can break SO(10) into the Standard Model Gauge group at

the string level, or choose to keep it intact, or even break it partially and explain the

observation of the Standard Model gauge group by an other breaking at a lower level.

In the �rst part of this report, we will introduce a quick introduction to string theory.

We will then expose the free-fermionic formalism, how we can justify it physically and

how it allows us to create models. The third part will be dedicated to a program made

to compute and test di�erent free fermionic models.
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Chapter 1

String theory: introduction to the

bosonic and fermionic string

1.1 The classical relativistic string

We will describe here a basic introduction to string theory. We will not try to justify

what we assert. We will just introduce the �rst concepts and ideas of string theory.

In quantum mechanics, we obtain the physical laws, the Hamiltonian, the following

way: We �rst study the classical laws of motion. With this, we �nd an action S and a

Lagrangian L, and conjugate variables qi, pi. We then use the correspondence principle

to de�ne some operators q̂i, p̂i.

In string theory, the way to proceed is more or less the same: the physical system

we start with is the classical string. We �rst go from the nonrelativistic string to the

relativistic one, and (often after a change of coordinates to express the theory in "light

cone coordinates", a new set of coordinates) use the correspondence principle. The theory

we obtain, the relativistic bosonic quantum string, is not enough to describe all particles:

We add to its action an other contribution, the standard Dirac action for fermions. We

obtain then what is called the Superstring.

The motion of any point particle can be described by only one time-like parameter.

In classical nonrelativistic physics, we usually use what we call the time, a parameter t

with which all physical trajectories can be parameterized. In relativistic physics, time has

lost its mysterious universal quality, but proper time can be used for almost all physical

trajectories (not for the light), and every physical trajectory of particles can always be

parameterised by only one parameter. With strings, it is now di�erent: If, in space-time,

the trajectory of a point particle is of dimension one, it is obvious that it is of dimension

two for a string. Thus, to describe a string, one need two parameters τ and σ: The

string propagates in a D-dimensional Lorentzian space-time (we will not suppose D = 4)

which sweeps out a two-dimensional surface, the world-sheet. The position of the string is

described by a mapping function Xµ(τ, σ). The world sheet is bounded in the σ direction
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CHAPTER 1. STRING THEORY: INTRODUCTION TO THE BOSONIC AND
FERMIONIC STRING

(we will take σ ∈ [0, π] for bosons and σ ∈ [−π, π] for fermions), and in�nite in the τ one

(we will take τ ∈ (−∞,+∞)).

1.1.1 The Nambu-Goto action for the relativistic string

The relativistic point particle action is S = −mc
∫
ds: the trajectory of the particle is

the one which minimizes the proper time 1
c

∫
ds: we can show that this action is Lorentz

invariant. The action of the string is obtained in the same way: the trajectory of the

string will be the one which minimizes the "proper area":

A =

∫
dτdσ

√(
∂X

∂τ
· ∂X
∂σ

)2

−
(
∂X

∂τ

)2(
∂X

∂σ

)2

. (1.1)

The action of the bosonic string is then the Nambu-Goto action:

S = −T0

c

∫
dτdσ

√(
∂X

∂τ
· ∂X
∂σ

)2

−
(
∂X

∂τ

)2(
∂X

∂σ

)2

, (1.2)

where T0 can be interpreted as a tension, the "string tension", and "·" is the Lorentz

product.

This action has to be invariant under reparameterization. This is easy to prove ([1])

with a new way to write this action: The induced (by the Lorentz space in which the string

lives) metric on the world-sheet is γαβ = ∂X
∂ξα

. ∂X
∂ξβ

, where ξ1 = τ and ξ2 = σ. Actually,

lengths in the target Minkowski space (which metric is ηµν) can be written as:

−ds2 = dXµdXµ = ηµνdX
µdXν = ηµν

∂Xµ

∂ξα
∂Xν

∂ξβ
dξαdξβ (1.3)

Then the Nambu-Goto action can be written as:

S = −T0

c

∫
dτdσ

√
−γ, γ = det(γαβ) (1.4)

Which is invariant, thanks to the change-of-variable theorem.

This action is associated to the following density of Lagrangian L:

L(Ẋµ, Xµ′) = −T0

c

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2, (1.5)

where he have used the notation Ẋµ ≡ ∂X
∂τ

and Xµ′ ≡ ∂X
∂σ
.
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1.1.2 The equation of motion

With the classical manipulation of variation calculus, from L we can �nd the equation of

motion:

0 =
∂Pτµ
∂τ

+
∂Pσµ
∂σ

= ∂αPαµ , (1.6)

Where

Pτµ ≡
∂L
∂Ẋµ

Pσµ ≡
∂L
∂Xµ′ . (1.7)

This can also be seen as the conservation of a current.

In the general case, the expressions of the equation of motion, in terms of X, are quite

complicate. Nevertheless, it is possible to �nd ([1]) some parameterization where this

equation becomes:

Ẍµ −Xµ′′ = 0 : (1.8)

this is just a wave equation.

There exist two types of strings:

• The closed strings, where X is periodic in σ: X(τ, σ) = X(τ, σ+π). In this case,
the string can be seen as a loop, with no end.

• The open strings. In this case, the string can have two boundary conditions:

1. The Dirichlet boundary condition: the ends of the string are �xed, the string
is attached to some structure, a D-Brane:

Xµ(σ = 0) = Xµ
0 , Xµ(σ = π) = Xµ

π . (1.9)

2. The Neumann boundary condition: the ends of the string are free:

∂Xµ

∂σ
(σ = 0) =

∂Xµ

∂σ
(σ = π) = 0. (1.10)

In the following, we will only consider closed strings. We will use the new variables:

u = τ + σ, v = τ − σ. (1.11)

The solution of the wave equation becomes:

Xµ = Xµ
L(u) +Xµ

R(v). (1.12)
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Using the mode expansion, we �nd:

Xµ
L(u) =

1

2
xµL,0 +

√
α′

2
ᾱµ0u+ i

√
α′

2

∑
n6=0

ᾱµn
n
e−inu,

Xµ
R(v) =

1

2
xµR,0 +

√
α′

2
αµ0v + i

√
α′

2

∑
n6=0

αµn
n
e−inv.

(1.13)

The periodicity condition gives: ᾱµ0 = αµ0 .

Finally, coming back to τ and σ:

Xµ(τ, σ) = xµ0 +
√

2α′αµ0τ + i

√
α′

2

∑
n6=0

e−inτ

n
(αµne

inσ + ᾱµne
−inσ). (1.14)

1.2 The quantized string

1.2.1 Quantization of the bosonic string

The method to quantize the string is similar to what is done in quantum �eld theory,

with the electromagnetic �eld for example. We de�ne the canonical commutation relation

�rst:

[XI(τ, σ), (P )τ,J(τ, σ′)] = iδ(σ − σ′)ηIJ , (1.15a)

[x−0 (τ), p+(τ)] = −i, (1.15b)

[XI(τ, σ), XJ(τ, σ′)] = [PτI(τ, σ),PτJ(τ, σ′)] = 0, (1.15c)

[x−0 (τ), XI(τ, σ)] =, [x−0 (τ),PτI(τ, σ)] = 0, (1.15d)

[p+(τ), XI(τ, σ)] =, [x+(τ),PτI(τ, σ)] = 0. (1.15e)

Here x−0 (τ) and p+(τ) are just (the operators associated to the) coordinates and mo-

mentum of the string in the light-cone coordinates: the light cone coordinates are just a

smart new way to replace the coordinates xµ and pµ for µ = 0, 1 with new ones x± and

p±.

This leads to some commutation relations for the αµn which can be interpreted as

creation and annihilation operators (up to a factor
√
n):

[āIm, ā
J†
n ] = δm,nη

IJ , [aIm, a
J†
n ] = δm,nη

IJ , (1.16a)

[xI0, p
J ] = iηIJ , (1.16b)
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with:

αIn = aIn
√
n and αI−n = aI†n

√
n, (1.17a)

ᾱIn = āIn
√
n and ᾱI−n = āI†n

√
n. (1.17b)

We can also de�ne N⊥ and N̄⊥, the number operators:

N⊥ ≡
∞∑
n=1

naI†n a
I
n, and N̄⊥ ≡

∞∑
n=1

nāI†n ā
I
n. (1.18)

1.2.2 The states space

We are now able to build the whole state space for the quantum closed string. The ground

states (with �xed energy and momentum) are |p+, ~pT 〉, they are annihilated by the left

and right moving annihilation operators. The general basis vector is any:

|λ, λ̄〉 =

[
∞∏
n=1

25∏
I=2

(aI†n )λn,I

][
∞∏
n=1

25∏
I=2

(āI†n )λ̄n,I

]
|p+, ~pT 〉, (1.19)

with the condition that this element is such that N̄⊥ = N⊥. Here the λn,I and λ̄n,I are

non-negative integers. Our space coordinates go from 2 to 25: This comes from the fact

that the coordinate I = 1 was used to create the light cones coordinates. As we can see,

we have 25 space dimensions (plus one time dimension). This comes from the requirement

that the quantum theory must be Lorentz invariant: This gives a critical dimension, which

is D = 26 ([1], [2]).

A general state is obtained by a linear combination of these elements, and an integra-

tion over all the |p+, ~pT 〉.

1.2.3 Superstring theories

Bosonic string theory can't give a realistic theory: it doesn't contain any fermionic par-

ticle. Moreover, it contains tachyons (particles that moves faster than light) which make

the theory unstable. We will describe here quickly how we go from string theory (with just

bosons) to superstring theory (with bosons and fermions). To add some fermionic �elds to

our theory, we introduce some more world-sheet �elds ψµ(τ, σ). They are anticommuting

variables:

{ψµA(τ, σ), ψνB(τ, σ′)} = πδABδ(σ − σ′)ηµν . (1.20)
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The superstring action is just the string one we de�ned in (1.2), plus the standard Dirac

action for fermions, ie:

S = −T
2

∫
dτdσ(∂αXµ∂

αXµ + ψ̄µρα∂αψ
µ), (1.21)

with ρ0 and ρ1 the Dirac matrices:

ρ0 =

(
0 −1

1 0

)
, ρ1 =

(
0 1

1 0

)
. (1.22)

For superstrings, the critical dimension is di�erent: here D = 10 ([1], [2]).

The equations of motion for fermions, which can be derived from the Dirac action,

impose some boundary conditions on the fermions. We have two possibilities for the

boundary conditions: periodic ("Ramond boundary conditions") or antiperiodic ("Neveu-

Schwartz boundary conditions"):

• ψI(τ, π) = +ψI(τ,−π): R boundary condition.

• ψI(τ, π) = −ψI(τ,−π): NS boundary condition.

Here we choose to de�ne the world-sheet for σ ∈ [−π, π].

The mode expansion gives:

• For R states:

ψI(τ, π) =
∑
n∈Z

dIre
−ir(τ−σ).

• For NS states:

ψI(τ, π) =
∑

n∈Z+ 1
2

bIre
−ir(τ−σ).

There is one ground state |NS〉 for NS states, whereas Ramond ground states |RA〉
are degenerate. Thus, the states in NS and R sectors are of the form:

• R states:
∞∏
n=1

9∏
I=2

(αI−n)λn,I
∏
m∈N

9∏
J=2

(dI−m)ρm,J |RA〉 ⊕ |p+, ~pT 〉.

• NS states:
∞∏
n=1

9∏
I=2

(αI−n)λn,I
∏

r∈N+ 1
2

9∏
J=2

(bI−r)
ρr,J |NS〉 ⊕ |p+, ~pT 〉.
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Here the ρ are either 0 or 1, and the b and d operators anticommute.

To obtain the full closed string theory, we have to combine a left moving sector (NS

or R) with a right moving one (NS or R). There is, as for the bosonic string, a constraint

on (N,N⊥).
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Chapter 2

Free Fermionic models

The construction of a free-fermionic model in 4D-heterotic string is a computing problem,

which can be done without any knowledge of string theory. First, we will give here the

way we can physically justify it. Then, we will describe how the algorithm works.

2.1 From the physics to the mathematical structure

2.1.1 What is a Free Fermionic model?

As we have seen, the classical solution to the string equation of motion can be expanded in

term of "left-moving" and "right-moving" modes. These two sectors are almost decoupled:

they just have to contribute equally to the mass of the string (this is equivalent to the

condition N = N⊥).

We are free to take di�erent theories for the left and the right sector. For the heterotic

string (the one we use to build Free Fermionic models), we choose the left sector to be

supersymetric and the right sector to be bosonic (non-supersymetric).

The critical dimension is 26 for the non-supersymetric string, and 10 for the supersy-

metric: as our world seems to be 4 dimensional, we have to explain how our theory can

have these extra dimensions we can't see.

In the Free Fermionic formulation, the idea is to formulate the string theory directly

in 4 dimension: the extra degrees of freedom have di�erent interpretations.

We �rst go from 26 to 10 dimensions in the right sector, by interpreting the 16 extra

dimensions as linked to the matter gauge group, and some other extra gauge group. Then,

we have 10 dimensions on the left and on the right sector. We interpret 6 of them (on

each sector) as compati�ed space-like dimensions.

In order to respect the critical dimension, and to compensate for the conformal

anomaly which appears after quantization, we must have nL = 44 right-moving fermions

φa and nL = 18 left-moving fermions χI , in addition to the four superpartners ψµ of the

12



CHAPTER 2. FREE FERMIONIC MODELS

space-time coordinates ([3]).

Those conditions are dictated by "invariance under local super-reparameterizations of

the world-sheet". This also leads to the supercharge:

TF = ψµ∂Xµ + fIJKχ
IχJχK , (2.1)

where fIJK are some normalized structure constant of a semi simple Lie group with 18

generators ([6]).

String perturbation theory is an expansion in the topology of the two-dimensional

world-sheet. Topologically distinct surfaces have a di�erent genus (the "number of hole").

String scattering amplitudes are de�ned as path integrals over the two-dimensional quan-

tum �eld theory on the world-sheet. This takes into account the in�nite number of massive

modes which could be exchanged in the scattering process.

2.1.2 The parallel transport around the world-sheet

Let us consider a genus g compact Riemann surface M which describe the contribution

to the g-loop vacuum to vacuum string amplitude. Then the fundamental group π1(M)

of the surface is generated by a canonical basis (αi, βi)i=1..g

For the torus (g=1), we are just considering the basis (a,b):

The transport of right-moving fermions φa around some loop α ∈ π1(M) is linear: there

exist some matrices R(α) such as:

φa
after transport around α−−−−−−−−−−−−−−−→ R(α)abφ

b. (2.2)

Here the free energy-momentum current φaφa should be unchanged, so, by de�nition,

R(α) is orthogonal.

The transformation of the left movers must in addition leave the supercurrent TF

invariant up to a sign. Then there exist some matrices L(α) such that:

ψI
after transport around α−−−−−−−−−−−−−−−→ ψµ,

χI
after transport around α−−−−−−−−−−−−−−−→ L(α)IJχ

J ,
(2.3)
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CHAPTER 2. FREE FERMIONIC MODELS

with L(α) an orthogonal matrix leaving ψµ∂Xµ and fIJKχ
IχJχK unchanged up to a sign.

Then we have fI′J ′K′χ
I′χJ

′
χK

′
= ±fIJKL(α)I

′
IL(α)J

′
JL(α)K

′
Kχ

IχJχK , so:

fIJKL(α)I
′

IL(α)J
′

JL(α)K
′

K = ±fI′J ′K′ . (2.4)

This sign will from now be written as δa = ±1.

We see here that L(α) and R(α) de�ne two di�erent representations of π1(M), we

will call them L and R: the L(α) acts on the vector space L generated by the (ψµ, χI)

and the R(α) acts on R generated by the (φa). Then we can extend the L(α), R(α) to

L(α)⊕R(α) acting on L⊕R: we still have orthogonal operators, which are diagonalizable
in C.
We would like them to commute with each other, in order to be able to co-diagonalize

all of them. We can't expect a priori that any L(α1) will commute with any L(α2): this

would be always true if π1(M) was commutative. Indeed, π1(M) is freely generated by

the (αi, βi)i=1..g up to the only constraint:

g∏
i=1

αiβ1α
−1
i β−1

i = 1. (2.5)

This is the presentation of the group π1(M) (this group is the "biggest" group satisfying

this constraint): we see here that π1(M) is non-abelian for g ≥ 2. Therefore, nothing

indicates that L(α1)L(α2)f = L(α2)L(α1)f in general...

But nobody has found a way to deal with the general non commutative case ([4]).

We will choose here to study a simpler case, when those matrices commute: we then

obtain commuting boundary conditions for fermions. We can co-diagonalize the L(α) and

R(α) in a same (complex) basis of L ⊕R: (f r1 , ..., f
r
k , f

c
1 , ..., f

c
l , f

c
1
∗, ..., f cl

∗), where the f ri

are real fermions and the f cj are complex. We must have k+ 2l = 66, and as L(α)⊕R(α)

is a real orthogonal matrix, it is only determined by its image on f r1 , ..., f
r
k , f

c
1 , ..., f

c
l .

On f ri , it can only be ±1 (the only eigenvalues possible for an orthogonal operator in

R). On f ci , it can be anything in U = {z ∈ C | |z| = 1}, which will give the angle of the

rotation L(α)⊕R(α) on the plane f ci , f
c
i
∗.

Thus for any α ∈ π1(M), we can resume the boundary conditions by a (k + l) vector:

α = [α(f r1 ), ..., α(f rk ), α(f c1), ..., α(f cl )]. (2.6)

Under a parallel transport around this loop, for a fermion of the basis:

f
α−→ −eiπα(f)f. (2.7)
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Thus, only α modulo 2 has a meaning, and a "complete spin-structure assignment to all

fermions in a genus-g surface" can be speci�ed by 2g vectors α1..., βg.

We have here almost all the ingredients to describe our model. Indeed, our "physical

world" can be describe by all the partition functions Zg associated to surfaces Mg of

di�erent genus g. Here, Zg is, in the case were we only have complex fermions:

Zg =

∫
Mg

[DΩ]
∑
spin

structure

C

[
α1 ... αg

β1 ... βg

]
X

[
α1(ψ) ... αg(ψ)

β1(ψ) ... βg(ψ)

]
(Ω)×

∏
f

Θ0

[
α1(f) ... αg(f)

β1(f) ... βg(f)

]
(Ω),

(2.8)

where Ω is the period matrix of the surface, and:

Θ0

[
α1 ... αg

β1 ... βg

]
(Ω) =

∑
n∈Zg

exp(iπ(n +
1

2
α)>Ω(n +

1

2
α) + 2iπ(n +

1

2
α).(

1

2
β)− 1

2
iπα.β).

(2.9)

The C

[
α1 ... αg

β1 ... βg

]
are the coe�cients of spin structure, they have to factorize in a

product of one-loop coe�cients C

[
α1

β1

]
× ... × C

[
αg

βg

]
. Other coe�cients appear in Zg,

but we will not talk about them here.

In string theory, we have some symmetries of the physical world: the "modular trans-

formations". For one torus (g = 1), those transformations are Ω → Ω + 1 (for a torus

of length 1 along one of the axes), which leave the torus invariant, and Ω → − 1
Ω
, which

swaps the two coordinates and reorients the torus. In general, for any g-genus surface

Mg, thanks to factorisation, we just have to impose invariance under some non-trivial

transformation of the double torus, such as Ω → Ω −

(
0 1

1 0

)
. Those symmetries are

symmetries of our description of the world, and to each set of partition functions Zg is

associated one possible world: then the partition functions must be invariant under the

modular transformations.

The three modular conditions give three conditions on the spin-structure coe�cients:

15
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C

[
α

β

]
= eiπ(α.α+1.1)/4C

[
α

β − α + 1

]
, (2.10a)

C

[
α1

β1

]
= eiπ(α.β)/2C

[
β

−α

]
, (2.10b)

C

[
α

β

]
C

[
α′

β′

]
= δαδα′e

−iπ(α.α′)/2C

[
α

β + α′

]
C

[
α′

β′ + α

]
. (2.10c)

(2.10d)

Here the scalar product between vectors is de�ned as (if some fermions are not com-

plex):

α.β =
1

2

∑
real

transv left

α(f)β(f)+
∑

complex
transv left

α(f)β(f)−1

2

∑
real

transv right

α(f)β(f)−
∑

complex
transv right

α(f)β(f).

(2.11)

(The fermions ψ are the only not-transverse fermions.)

2.1.3 The underlying group structure

The equation (2.10) hide an interesting mathematical structure: an abelian group. In

fact, (2.10b) and (2.10c) give that:

C

[
α

β

]
C

[
α

γ

]
= δαδγC

[
α

β + γ

]
C

[
γ

0

]
. (2.12)

Then, with �rst β = γ = 0, we see that either C

[
α

0

]
= 0 or C

[
α

0

]
= δαC

[
0

0

]
. Here we

can normalize C

[
0

0

]
to 1. Then:

Ξ = {α|C

[
α

0

]
= δα} (2.13)

is an abelian group: 2.12 with α = 0 says that it is stable by +. And with (2.10a), 1 ∈ Ξ.

Moreover, for all nonzero C

[
α

β

]
, we have α, β ∈ Ξ.

Ξ could be in�nite. For simplicity, we will just focus on the case where Ξ is �nite. In

16
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this case, with in particular the fundamental theorem of �nitely generated abelian groups,

two theorems have been shown ([4]), which give a way to build free fermionic models. The

�rst one is about the group Ξ. Given a group Ξ, the second is about the models we can

build. I recall here the main result, which will be useful in our future model building:

Theorem 1. To any consistent fermionic string theory there correspond a �nite additive

group of vectors of boundary conditions:

Ξ ' ZN1 ⊕ ...⊕ ZNk ,

generated by a canonical basis b1, ..., bk such as:

1. ∀i,
∑
mibi = 0 ⇐⇒ mi ≡ 0[Ni],

2. 1
2
N1b1 = 1,

3. With Nij = Ni ∨Nj, Nijbi.bj ≡ 0[4],

4. Nib
2
i ≡ 0[8] if N even.

5. some other conditions...

(here ∨: least common multiple and ∧: greater common divisor).

Theorem 2. For any such group Ξ, there exist 2
∏

i>j Ni ∧Nj consistent string theories.

These correspond to the di�erent choices for every one-loop coe�cients C

[
bi

bj

]
, i > j,

such that:

1. C

[
bi

bj

]
= δbie

2πini/Nj = δbje
iπbi.bj/2e2πimj/Ni, mj and ni integers,

2. C

[
b1

b1

]
= ±eiπb21/4: two choices for this c.

To �nd the coe�cients on all pairs of element of Ξ, we have the following rules:

1. C

[
α

α

]
= eiπ(α.α+1.1)/4C

[
α

β1

]N1/2

,

2. C

[
α

β

]
= eiπ(α.β)/2C

[
β

α

]∗
,

3. C

[
α

β + γ

]
= δαC

[
α

β

]
C

[
α

γ

]
.

17



CHAPTER 2. FREE FERMIONIC MODELS

2.1.4 The Hilbert space

To each sector α in Ξ will correspond an Hilbert space Hα. The states in this space have

to satisfy the Virasoro conditions, ie must have the same mass in the left and right sectors:

M2
L = −1

2
+
αL.αL

8
+NL = −1 +

αR.αR
8

+NR = M2
R, (2.14)

where αL and αR correspond to the left and right part of alpha and NL and NR are the

total left and right oscillator number acting on the vacuum |0〉α. They are determined by

the frequencies of the oscillators, which are given respectively by:

ν(f) =
1 + α(f)

2
and ν(f ∗) =

1− α(f)

2
, (2.15)

for a fermion f and its conjugate f ∗. Then the expression of NL and NR are:

NL =
∑
f

L−osc

νf +
∑
f∗

L−osc

νf , NR =
∑
f

R−osc

νf +
∑
f∗

R−osc

νf . (2.16)

In our model construction, we are interested in model with no negative-mass states,

and in the massless states: Since the states with a mass would have a mass of the order

of the Plank mass (which is enormous, unattainable), they have no phenomenological

meaning. Each complex fermion generates a U(1) current, with a charge with respect to

the gauge group of the model given by:

Qν(f) =
α(f)

2
+ F. (2.17)

Here Fα(f) is +1 on an f oscillator and −1 on a conjugate oscillator f ∗. On a degenerated

vacuum with Ramond states, it is 0 on |+〉 and −1 on |−〉.

Not all the states we can build in the sector alpha are in Hα: some are projected out

by the GSO projection.

If we come back to the partition function, which can be written as:

Z =

∫
dτdτ̄

Im(τ)2

∑
α,β∈Ξ

C

[
α

β

]
TrHα(eiπβ.Fαeiπτ.Hα) (2.18)

Where Hα is the halmitonian in Hα, and

β.Fα ≡ {
∑
left

−
∑
right

}β(f)Fα(f). (2.19)
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If we decompose all β in the basis: β =
∑

n1,...,nk

n1b1 + ...+ nkbk with 0 ≤ ni < Ni, and use

the formula C

[
α

β

]
= eiπ(α.β)/2C

[
β

α

]∗
, we obtain:

Z =

∫
dτdτ̄

Im(τ)2

∑
α∈Ξ

δαTrHα

{∏
bi

(1 + δαC

[
α

bi

]
eiπbi.Fα +

[
δαC

[
α

bi

]
eiπbi.Fα

]2

+

...+
[
δαC

[
α

bi

]
eiπbi.Fα

]Ni−1

) eiπτ.Hα
}
. (2.20)

The operator (1 + δαC

[
α

bi

]
eiπbi.Fα +

[
δαC

[
α

bi

]
eiπbi.Fα

]2

+... +
[
δαC

[
α

bi

]
eiπbi.Fα

]Ni−1

) is

(proportional to) a projector, because it's square is (proportional to) himself. Then the

trace is obtained on the image of this operator (subspace of Hα), ie the states |s〉 such as

δαC

[
α

bi

]∗
|s〉 = eiπbi.Fα|s〉 : (2.21)

We have here the GSO projection. All states |s〉 which do not satisfy (2.21) are "projected
out", because they don't participate to the trace in the partition function.

2.2 A more particular case: toward the classi�cation of

heterotic string models

2.2.1 A special set of real and complex fermions

In the following, we will consider a �xed set of real and complex fermions. On the left

sector, all fermions (ψi, χi, yi, ωi) will be real. On the right the �rst 12 internal fermions

(ȳi, ω̄i) will be real and the remaining 16 (ψ̄i, η̄i, φ̄i) complex.

This choice is not made randomly. As we have seen, the number of complex and real

fermions correspond to the diagonalisation of some orthogonal real operators L(α)⊕R(α).

Such an operator is not always diagonalizable in R, but is always diagonalizable in C. In
R, it can be reduced into:

• a diagonal matrix of +1 or −1 on some space F ,

• a quasi-diagonal matrix with 2 by 2 diagonal factors of rotation on di�erent planes

Pi on F⊥ =
⊥
⊕Pi.

When we diagonlize in C we just diagonalize each 2 by 2 rotation matrix. Thus, from two
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real fermions f1, f2 corresponding to the same eigenvalue ±1, we can make two complex

ones: we just have to interpret the action of this operator on f1, f2 as a rotation of angle

0 or π. But from two complex fermions we can't always create two real ones. The most

general case would be to consider that all fermions are complex. Nevertheless, our case

of 10 dimensions on the left sector and 26 on the right leads to a special structure.

We �rst want to go from 26 to 10 dimensions on the right sector: here 16 dimensions

will be considered as internal, and corresponds to the complex fermions (ψ̄i, η̄i, φ̄i). We

don't suppose anything about the restriction of L(α)⊕R(α) on this internal vector space.

Then, we have two sectors of dimension 10: we have to compactify 6 dimensions on each

sectors: this corresponds to the fermions yi, ωi and ȳi, ω̄i. On this vector space, we make

a big assumption on L(α)⊕ R(α): it must be diagonalizable in R. We impose this to be

able to take pairs of fermions with the same transformation property around the loops

and to interpret those pairs as bosons: these six dimensions are interpreted as compati�ed

space dimensions. The χi are the superpartner of the corresponding bosons.

On the right sector, we don't use the same notation for all the fermions. First, we want

to be able to interpret some of these fermions as the gauge group of matter. We know that

the standard model gauge group SU(3)×SU(2)×U(1) can easily be embedded in SO(10):

this correspond to ψ1...5. For the heterotic string in 10 dimensions, only two gauge group

are allowed: E8×E8 and SO(32). Here we want to �nd an E8×E8 theory. One of the E8

will be broken into the matter gauge group and something else (this correspond to ψ1...5

and η1...3), and the remaining E8 correspond to φ1...8.

With this set of fermions, we will consider some vectors of Ξ, S, e1, ..., e6, b1, b2, z1, z2, α1, α2.

Here are the coordinates (the empty boxes contain a 0):

• On the left sector:

• On the right sector:
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2.2.2 A �rst example

We will describe here one example of free fermionic model to see how the construction

works.

We will �rst consider the simplest basis: B = {1}. Then the additive group Ξ is given

by Ξ = {1, 0}. We will also call the 0 sector the Neveu-Schwartz sector (NS).

We are interested in the negative mass states, and the massless states: phenomeno-

logically, we want no negative mass states, and we want all the particles of the standard

model in the massless states.

For any state in the sector 1:

M2
L = −1

2
+

10

8
+

∑
left movers

ν. (2.22)

M2
L is always > 0: this sector contains no massless state.

For the NS (ie 0) sector we have:

M2
L = −1

2
+

0

8
+

∑
left movers

ν, (2.23)

M2
R = −1 +

0

8
+

∑
right movers

ν. (2.24)

The frequencies of the oscillators here are always νf,f∗ = 1
2
.

We must also satisfy the Viasoro condition: ML = MR. Thus we have a tachyonic

state (of mass M2 = −1
2
) with only one right-moving fermionic oscillator. We also get a

massless state by acting with one left-moving fermionic oscillator and two right-moving

oscillators, or one right-moving bosonic oscillator.

The tachyonic states are φ̄a1/2|0〉0.
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The massless states are:

• ψµ1/2∂X̄ν
1 |0〉0: the graviton, the dilaton and the antisymmetric tensor.

• ψµ1/2φ̄a1/2φ̄b1/2|0〉0: the gauge bosons of SO(44) (here, on the right, all fermions φ̄a1/2

are real).

• {χi1/2, yi1/2, ωi1/2}X̄
µ
1 |0〉0: the gauge bosons of SU(2)6.

• {χi1/2, yi1/2, ωi1/2}φ̄a1/2φ̄b1/2|0〉0: scalars in adjoint of SU(2)6 × SO(44).

Here {χi1/2, yi1/2, ωi1/2} means that we take one of the χi1/2, y
i
1/2 or ωi1/2, and the 1/2

indicates "half oscillator".

Now we have to do the GSO projections on each state, to see if they are in or not. On

the �rst massless state, for example, we have:

eiπ1.Fαψµ1/2∂X̄
ν
1 |0〉0 = −ψµ1/2∂X̄

ν
1 |0〉0 (2.25)

As C
(

0
1

)
= δ1 = −1, with the rule 3 of the second theorem, we have:

δ0C

(
0

1

)∗
ψµ1/2∂X̄

ν
1 |0〉0 = −ψµ1/2∂X̄

ν
1 |0〉0 : (2.26)

this state survives the GSO projection. Indeed, all the other states of this model survive

the GSO projection, even the tachyons.

We are now interested in the models associated to a special gauge group, for example

the standard model gauge group SU(3)×SU(2)×U(1). We will here use a speci�c basis

of vectors made to obtain this gauge group (up to a U(1) factor), and try to classify all

the di�erent models we can �nd depending on the one-loop coe�cients C
(
α
β

)
. First, we

will brie�y explain the choice of the basis vectors. There are di�erent way to choose basis

vectors to obtain some speci�c gauge group, see [5].

2.2.3 A general basis for SO(10) gauge group models

We will �rst use this speci�c basis:

• On the left sector:
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• On the right sector:

i with this basis, the vectors 1, S generate a model with SUSY N = 4, with SO(44)

gauge symmetry.

ii when we add the e1, ..., e6, we allow all possible symmetric shifts of the six internal

coordinates (yi, ωi): we break SO(44), but keep N = 4 SUSY. The coordinates (yi, ωi)

correspond to the six compatify dimension: we just impose there that the 6 compati�ed

dimensions are equivalent.

iii b1 and b2 allow us to have an SO(10) gauge symmetry, and break N = 4 to N = 1

supersymmetry.

iv φ1, ..., φ8, which are not a�ected by the action of the previous vectors, are part of

the hidden sector (the hidden sector are the complex fermions which doesn't form

the matter gauge group, ηi and φi). z1 and z2 breaks the corresponding group from

SO(16) to SO(8)× SO(8).

This basis is the most general one with symmetric shift of the fermions (yi, ωi), N = 1

and SO(10) gauge symmetry.
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After GSO projection, the massless states of the all models with this basis (but di�erent

one-loop coe�cients) forms a vector space on which SO(10)× U(1)3 × SO(8)2 acts.

Here we can see SO(10) as the gauge group of matter, because this group can be

broken into SU(3)× SU(2)× U(1). The U(1)3 × SO(8)2 is then the gauge group for the

states in the hidden sector: the "hidden matter".

2.2.4 From SO(10) to SU(3)× SU(2)× U(1)2

We now want to break SO(10) into SU(3)×SU(2)×U(1)2, using some new basis vectors.

Here the breaking will be done at the string level. The two new vectors we add to our

basis are:

Now 1 = S + e1 + ...+ e6 + 2α2 + z2 : we must take o� one vector from our basis, we

choose 1.

This is not the only model we can study. We could also keep the basis (1, S, e1, ..., e6, b1, b2, z1, z2)

corresponding to a matter group SO(10). Then the observation of the Standard Model

gauge group would be explained by an other group breaking, not at the string level (at

a lower energy). Or take the basis (S, e1, ..., e6, b1, b2, z1, z2, α2), which correspond to the

�ipped SU(5)×U(1) group: this group would be then broken into SU(3)×SU(2)×U(1)

at a lower energy level than the Planck energy.

For all these bases, we can use Theorem 2 and try to classify the di�erent models we

can obtain with the di�erents one-loop coe�cients C
(
bi
bj

)
. One interesting question is: do

we obtain 3 full generations of particles? With the basis (1, S, e1, ..., e6, b1, b2, z1, z2), we

know from Theorem 2 that we have a priori 267 di�erent consistent string theories. If we

impose the supersymmetry, the 11 coe�cients C
(
S
b

)
(for b 6= S basis vector) are �xed. We

still have 256 ≈ 7.1016 di�erent theories to study: this is to much, even for a computer.

It is worse with the two other bases. All we can expect to do is to examine a sample of

these di�erent theories. The main objective of my internship was to create a computer

program to do this. I tried to do it quite generally: it works for those three examples of

bases, and many others. It could be generalized to any model described by theorems 1

and 2 without any conceptual issue.
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The program

We will describe here a program made to compute and test di�erent free fermionic models.

Firstly, we will outline the whole functioning of the algorithm: this is not so important for

a user who just wants to use the program. Next, we will see a "user guide" where we will

just give the way to adapt it to a particular model: this should be the most useful for users.

This program is sometimes not well coded. This is due to the fact that I coded this

program during a (short) three months internship, and I �rst wanted it to be just a way

to help me in the tedious calculations I had to do. I also didn't know java very well and

maybe didn't have good enough computer skills.

3.1 How does it work? The basic concept

As we have seen in the presentation of the algorithm, in the last chapter, a free fermionic

model is given by:

• A basis B = (βi) of Ξ.

• The matrix C of the one-loop phases on the basis vectors, (C
(
βi
βj

)
)i,j.

Now, we will �x a special basis, made to give a speci�c gauge group. We want to take

many di�erent matrices (C
(
βi
βj

)
)i,j and analyse the spectrum we obtain: after the GSO

projections, which states remain? Do we still have states in di�erent sectors we are

interested in (for physical reason)? Sometimes, we also want to know what these states

are. For example, do we have states corresponding to the 3 generations of particles in the

Standard Model?

The �rst objective of the project was to work mainly on the 13-vector basis: B =

(S, e1, ..., e6, b1, b2, z1, z2, α1α2). Thus, according to Theorem 2, this gives 2 × 13×12
2

= 79

degrees of freedom. 12 of them are �xed in order to give a model consistent with N = 1
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SUSY. Each degree of freedom takes values ±1: this gives 267 ≈ 1020 di�erent possibilities

for C. This is many, even for a computer... All we can manage is to analyse a sample of

them.

Roughly speaking, our program will be a loop. At the beginning, we take a random

matrix, do some GSO projections on the sectors we are interested in, and analyse what

we obtain. The GSO projections must be done in a fast way, to be able to look over a

big sample. The main idea of the algorithm, to accelerate the computation of the GSOs,

is to do some preparatory work before the loop. It is based on the "GSO trees".

3.1.1 The GSO trees

The "GSO tree" of K ∈ Ξ is the object which, depending on the coe�cients C
(
K
β

)
(for

β ∈ B), describes if some states are still in this sector after the GSO projections (in the

case of my program, I use δKC
(
K
β

)∗
).

Here is an example of a GSO tree, with a basis B = (β1, β2, β3):

The ± or± i on the branch of the tree represent the value of δKC
(
K
β

)∗
. If the tree has

no branch for some vector
(
δKC

(
K
β1

)∗
, δKC

(
K
β2

)∗
, δKC

(
K
β3

)∗)
, then a matrix C which give

this vector is associated to a physical model when no states are in this sector.

This vector
(
δKC

(
K
β1

)∗
, δKC

(
K
β2

)∗
, δKC

(
K
β3

)∗)
can easily be computed from C, the de-

composition of K in B and the rule C
(
α

β+γ

)
= δαC

(
α
β

)
C
(
α
γ

)
.

In this example, we see that if the δKC
(
K
β

)∗
are all +, we have no states in, and if

they are all −, we have some states in. For most of the sectors K, we are just interested

in the question "is there something in?" (if yes, we just discard the matrix and take an

other one). For some of them, what is "in" is interesting: in this case, the tree have at

their end the description of the states which are in.

The GSO trees can be computed independently of the coe�cents of the matrix C,
because they take into account all the di�erent possibilities for these coe�cients. They can

be computed outside of the loop. Inside the loop, we just have to compute the δKC
(
K
β

)∗
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from C, thanks to the rule on the one-loop phases C
(
α1

α2

)
, and look to the corresponding

tree to see if the coe�cients
(
δKC

(
K
β1

)∗
, δKC

(
K
β2

)∗
, δKC

(
K
β3

)∗)
give some states or not.

3.1.2 Implementation of the trees

In the Java program, the trees are implemented in some classes. The program doesn't

use the diamond operator (it should, it would be simpler!): It use many classes of

tree (Tree1Vectorial, Tree2Vectorial, TreeSimple, TreeSpinorial, TreeVS_1osc,

TreeVS_2osc), when it should use just one. All those classes have the same structure: a

tree has 4 sons "Son1, Son_1, Soni, Son_i". The di�erence is in the data at the end of

the tree:

• TreeSimple has no data.

• Tree1Vectorial has a list of integers, standing for the vectorial part of the state
(if just one vectorial oscillator).

• Tree2Vectorial has a list of pair of integers, standing for the vectorial part of the
state (if two vectorial oscillators).

• TreeSpinorial has a list of vectors of integers ±1, standing for the spinorial part
of the state.

• TreeVS_1osc has a list of pair (integer, vector), standing for the whole state (if just
one vectorial oscillator).

• TreeVS_2osc has a list of triplet (integer, integer, vector), standing for the whole
state (if two vectorial oscillator).

Thus, the last picture of tree represented a TreeSimple. A TreeVS_2osc could be

represented as:

Here, (20, 21|[0, 1, 1, 0]) represent the state φ1φ2|+,−,−,+〉 and (−17| − 17|[1, 0, 1, 0])

the state η∗1η
∗
2|+,−,−,+〉: The oscillators are encoded by an integer: ȳ1 is 0, ω̄1 is 1,
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..., ψ̄1 is 12, ..., φ̄8 is 27. (We are not interested in the left sector). A minus sign in

front of it indicates the conjugate oscillator. The spinorials are encoded by a vector: 0

is + and 1 is -. The coordinate here is not indicated, but it is always in the same order:

ψ12, χ12, χ34, χ56, yȳ1, ωω̄1, ..., yȳ6, ωω̄6, ψ̄1, ...ψ̄5, η̄1, ..., η̄3, φ̄1, ..., φ̄8.

3.1.3 Construction of the trees

The GSO tree of a sector K ∈ Ξ is always computed in the same order. The GSO on the

basis vectors which have nonzero coe�cients on the coordinates of K equal to 1 are done

at the end: those vectors have an action on the spinorial part of states (We will now call

it "the vacuum"). The remaining ones have no e�ect on the vacuum, the GSO is done on

them �rst: we take the "nonvaccum basis vectors �rst".

It is easier to understand the way it works with an example: if we have those basis

vectors (I have reduced the number of coordinates, and we only consider the right sector

for simpli�cation), S, e1, e2, e3, b, z, α:

If we consider the sector K = e2 + b:

The "vacuum coordinates" are ȳ2, ω̄2, ψ̄1, ψ̄2, ψ̄3, η̄1. So the GSO tree will be built in

this order: S, e1, e3, z, b, e2, α.

The construction of a GSO tree is done in three steps:

1. The tree of vectorial: here we suppose that our state has no spinorials. It can be
one or two vectorial, half or quarter oscillators (the case two half oscillators is not
taken into account by the program: this case is not present with the sector that we
are interested in).

2. The tree of spinorial: here we suppose that our states have no vectorials.

3. The whole tree of GSO: from those two trees.
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This method is based on the fact that we can decompose the GSO formula (on a state

S, in sector K, with the basis vector β):

δKC

(
K

β

)∗
= eiπβ.FS = eiπβ.F

vac
S × eiπβ.FnvacS , (3.1)

where F vac
S is the vacuum part of FS, and F

nvac
S is the nonvacuum part of it.

For example, with K = e2 + b, β = α and the state η̄2φ̄
∗
1|−,−,+,−,−,−〉, we have

β.F vac
S = 0×−1 + 0×−1 +

1

2
× 0 +

1

2
×−1 +

1

2
×−1 +

1

2
×−1,

β.F nvac
S = −(

1

2
× 1 +

1

2
×−1).

The �rst tree, TreeVectorial, is computed from the array of coordinates of the basis

vectors, and the coordinates of K. The program takes each possible oscillator (if one

oscillator) or pair of oscillators (if two oscillators) and constructs the tree of GSO projec-

tions of those oscillators. It is not di�cult to do this: from the last array, we see straight

away that the oscillator ψ̄ is +1 on S, e1, e2, e3, b, is -1 on z and is −i on α. The (partial,
because here the vacuum is not taken into account) GSOs are of course done in the order

"non-vacuum basis vector �rst".

The second tree, TreeSpinorial, is done in the same way: The computer generates

all the possible spinorials |±,±,±,±,±,±〉, encoded by vectors of 0 (for +) or 1 (for -),

and adds them one by one to a TreeSpinorial. The depth of this tree is the number of

"vacuum basis vector" (for our example K, it is 3).

The last step is just the "multiplication of the trees": we �rst reproduce TreeVectorial

for the basis vectors which are "non vacuum". When comes one "vacuum basis vector"

β, we take all the possible combinations of pairs of branches corresponding to β (one in

each tree), multiply the numbers corresponding to these two branch (±1 or ±i) and add

a new branch, labelled by this number, in the new tree.

For example:
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Here TreeSpinorial has just a depth of 1, and TreeVectorial a depth of 2.

3.1.4 The use of the trees

GSO trees are the basic component of the program. They are quite general and their

use can be adapted, depending on what we want to do. In our case, the goal is to

determine quickly if, with a given matrix C, some sectors have states in or not. Here,

we are interested in the sectors leading to enhancement states, exotics states, generations

and light Higgs. We will call them "enhancement sectors", "exotic sectors", "generation

sectors" and "Higgs sectors".

The "enhancement sectors" are the vectors of Ξ with a mass ML = −1
2
and a mass

MR ≤ 0. The remaining sectors are de�ned when we have special vectors in our basis

B (or, at least, in our group Ξ): we must have S, e1, e2, e3, e4, e5, e6, b1, b2, b3, X, we recall

their coordinates here:

• On the left sector:
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• On the right sector:

With the vectors B1
pqrs = S+b1+pe3+qe4+re5+se6, B

2
pqrs = S+b2+pe1+qe2+re5+se6

and B3
pqrs = S + b3 + pe1 + qe2 + re3 + se4, where p, q, r, s ∈ {0, 1}:

• The "exotics sectors" are all the elements of Ξ of the form: Bi
pqrs + K, where

K ∈ Ξ/{0} has nonzero coordinates only in the right sector:

• The "generation sectors" are all the elements of Ξ of the form: Bi
pqrs.

• The "Higgs sectors" are all the elements of Ξ of the form: Bi
pqrs +X.

We are looking for a model such has we have no state in the enhancement and exotic

sectors. We also want the generation and Higgs sectors to satisfy some conditions.

We will now describe how the program uses the trees, with a quick description of the

main part of the program. In Java, its name is _Main_Random_Matrix.

The computer �rst generates all the GSO trees for the states that we are interested

in, and stores them. Then, it launches a loop over the matrices that we want to test. In

this loop:

1. The computer generates a random matrix C.
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2. For each "enhancement vectors"K, it computes the vector of coe�cients
(
δKC

(
K
β

)∗)
β∈B

on all β ∈ B from C, with the rules of theorem 2. It compares it to the corresponding
tree. If this vector is in the tree, we have an enhancement state: C is not good and
we begin a new loop, with a new matrix. If not, we go to the next enhancement
state.

3. The computer does the same task on "exotic sectors"

4. For each "generation sector"K, the computer computes the same vector of
(
δKC

(
K
β

)∗)
β∈B

.

If this vector is in the corresponding vacuum tree, the states which are "in" are
stored. At the end of this stage, the computer looks over the "generation states"
in. If they do not satisfy some conditions (such as: those states correspond to 3
generations), we begin a new loop

5. The computer does the same task on "Higgs sectors".

3.2 A "user guide"

We will now describe a more exhaustive description of the main part of the program,

_Main_Random_Matrix. The aim of this section is to go into the details of the way the

program can be adapted to di�erent bases. This section will follow the order of the code.

The code also contains many indications in commentary, useful for the user.

3.2.1 The basic changes

The program is designed to alow the user to turn o� some stages of the checking.

This is done with the booleans TestEnhancement, TestExotics, TestGenerations and

TestHiggs. If one of them is "true", the following test will be done. If NbGenerationsFixed

is "true", the program will look for a �xed number of generations NbGenerations. NbLoop

and Random_Generator act on the loop, ie the number of matrices that the program tests,

and the random matrix that it tests. These are the only parameters that the users have

to change when they wants to study a �xed model.

3.2.2 To change the model: before the loop

To change the model, the user must change more parameters, as indicated in the pro-

gram as commentary: All the description of the basis and the decomposition of the

enhancement, exotics sectors. Be careful: before the commentary /*Don't touch the

following*/, every constant may have to be changed.
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Depending on the basis, some other parts of the program will have to be changed.

Before the loop, the program �rst computes Decompo_Sect_Exot, Decompo_Sect_Gene

and Decompo_Sect_Higgs: these are arrays giving the decompositions of all Exotic, Gen-

eration and Higgs sectors in B. For example, Decompo_Sect_Gene is an array of 48 lines,

and each line gives the decomposition of all the 48 elements Bi
pqrs, ∀p, q, r, s ∈ {0, 1}, i ∈

{0, 1, 2}. Depending on B, those elements have a di�erent decomposition: if b3 /∈ B for

instance, one has to use the decomposition of b3 in B to create the lines of the array.

From these arrays are created Sect_Enhancement, Sect_Exot_L, Sect_Exot_R, Sect_Gene_L,

Sect_Gene_R, Sect_Higgs_L and Sect_Higgs_R, the coordinates of the corresponding

sectors: this should never be changed.

Gram_RegularBase and Gram_BaseWith_1_Without_z2_ are the matrices of (βi.βj)i,j

for di�erent bases. The �rst is the one on the basis with 1 as a �rst vector, and no z2. The

second is the one on the regular basis, B. This will be important when C is computed,

and may have to be changed: I will talk about it later, when we will describe how C is

generated.

MatScalProdBasSect_Enhanc is the matrix of (K.β) for K an enhancement sector

and β ∈ B. MatScalProdBasSect_Enhanc_Transform is a small transformation of it:

this will be useful for the computation of the δKC
(
K
β

)∗
. The same matrices are computed

for exotic, generation and Higgs sectors: this should never be changed.

Under our gauge group, the 16 and 1̄6 representation of SO(10) decompose in some

sum of irreducibles. The vectors sixteen and sixteenbar are vectors that will give the

number of each irreducible representation we obtain with the states of the generation

sectors. Thus, their size may have to be changed: for example, it is 3 (from 0 to 2) if the

gauge group is the Pati-Salam gauge group (16 = 1 + 5̄ + 10).

Higgs_Psi and Higgs_Psistar will be use to check that we have the light higgs.

ArrayT_Enhanc, ArrayT_Exot, ArrayT_Gene, ArrayT_Higgs contains the GSO trees of

each sectors.

3.2.3 To change the model: inside the loop

The �rst part of the loop generates the random matrix. It was not easy to write some-

thing general: what is done is not so general, and could be quicker. A good solution is

perhaps to write a method which generates a random matrix C from the random num-

bers rand.nextInt(2). This matrix must be called Matrix_4C, and have coe�cients

equals to 0 (for 1), 2 (for i), 4 (for −1) or 6 (for −i): this could gain 5% in the

speed of the program.

What is done here is: a matrix K4 is created, which is the matrix C in an other ba-
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sis: one which contains 1 as a �rst vector, and doesn't contain z2. From this matrix,

Matrix_4C is computed: this is the real matrix C, corresponding to the basis B. If in the

new model, we still have 1 = S + e1 + ...+ e6 + z2 + 2α2 then nothing has to be changed.

If the expression of 1 is di�erent, but always has z2 in it, then the line corresponding to

the coe�cients of Matrix_4C implying z2 has to be changed. If not, then the user has to

choose a vector which in the decomposition of 1 (for example: let us say it is e6). The same

lines have to be changed. Every time z2 appears, it has to be changed in, for example, e6.

And Gram_BaseWith_1_Without_z2_ has to be changed to correspond to the new modi-

�ed basis, with 1, and not (in this case) e6: this must be done in the �le "ScalProd", for

the function public static int[][] MatScalProdMain_BaseWith_1_Without_z2_(),

where all z2 have to be change into, in the example, e6 (It is easier than it looks here.

And the solution of writing a method which generates a random matrix C from the ran-

dom numbers rand.nextInt(2) can be use instead of what I'm trying to explain here).

The second part of the loop does the GSOs:

1. On the enhancement sectors: for eachK ∈ Sect_Enhancement, the vector
(
δKC

(
K
β

)∗)
β∈B

is computed, then compared to the corresponding tree. If this vector is in the tree,

the loop is stopped and a new matrix is generated. If not, we go to the next en-

hancement state.

2. On the exotic sectors: the program does the same work. To gain time, between

K and K ′ which di�er only by an ei, the vector
(
δKC

(
K
β

)∗)
β∈B

is not erased but

just modi�ed. Here is an example: the �rst vector of exotics is K = B1
0000 + α

and the second one K ′ = B1
0001 + α = K + e6. Then δK′C

(
K′

β

)∗
= δKC

(
K+e6
β

)∗
=

δKδβC
(
β
e6

)
C
(
K
β

)∗
: the program uses this to compute the vectors

(
δKC

(
K
β

)∗)
β∈B

quicker.

3. On the generation sector: the states in are, sectors after sectors, stored in ListSpinIn_Gene.

When all the sectors have been done, the computer takes all the states one by one,

and computes each time to which irreducible factor of 16 or 1̄6 they correspond.

Here the user has to change the way sixteen and sixteenbar are modi�ed. After

this, sixteen and sixteenbar contain the number of states in each irreducible fac-

tor of 16 or 1̄6, ie the number of each irreducible factor times its dimension: each

component of sixteen and sixteenbar must be divided by the dimension of the

vector space that it represents.

4. On the Higgs sector: as for generation sectors, states (just the spinorial part of

it) are stored in ListOscIn_Higgs. Afterwards, Higgs_Psi and Higgs_Psistar

34



CHAPTER 3. THE PROGRAM

compute the number of time an oscillator contributing to light Higgs appears: this

depends on the model and may be changed. Again, Higgs_Psi and Higgs_Psistar

must be divided by the right number.

At last, if the matrix C (Matrix_4C in the program) meets the conditions on the

enhancement, exotic, generation and Higgs sectors, then a copy of it is stored in the list

ListMatrix_4CIn. This list is printed on the screen after the loop.
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Conclusion

After a quick introduction to the basis of string theory, we have seen how it was possible to

introduce a formalism to study the heterotic string. Thanks to two simplifying hypothesis

(the operators of the action of π1(M) on fermions commutes, and Ξ is �nite), we found a

way to create many di�erent models, with di�erent gauge group and matter content.

This method to create models, and analyse them, can be done by hand for the simplest

cases but needs too much calculation as soon as the models are more complex. We then

need the power of the computer. A �rst way to use it is to �rst derive by hand some

algebraic expressions to then compute easily the gauge group and the matter content of a

speci�c family of models (associated to one set of basis vectors). We have seen here that

it was indeed possible to have this task made by the computer, thanks to the stockpiling

in the memory of the computer of the GSO trees, while keeping a satisfying speed of the

program. This has the advantage to study more easily di�erent set of basis vectors.

Nevertheless, a computer will never be able to answer everything... Our program is

designed for a speci�c use, but many questions remains. Why, with some set of basis

vectors, we always �nd an even number of generations? It seems that some GSOs on

some of the enhancement sectors never give enhancement: Why?

Those two observations are true on a big number of models: there may exist a math-

ematical demonstration of it, and also, maybe, a physical interpretation...
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