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Chapter 1

Introduction

The goal of this project is to work towards building a non-supersymmetric
Pati-Salam model in the free fermionic formulation. These models will differ
from the commonly seen classification literature by replacement of the su-
persymmetry basis vector and how we will group the basis vectors relating to
the internal degrees of freedom of the orbifold. The grouping of this reduces
the total number of sectors but actually constricts our moduli space and has
some surprising consequences on the phenomenology of this group of models.
We will finally end with looking at a model which has been generated by a
computer code and analysing the model by hand whilst discussing some of
the key features the choices of GGSO phases gives us.

I will try and motivate the construction of these models starting from a recap
of the Standard Model, this will mainly be done to further my understanding
of the successes and weakness of current models and research topics rather
than to fully derive them mathematically. We will try to quickly explain
some advantages and disadvantages of physics beyond the Standard Model
as we progress towards motivating string constructions and why string the-
ory is a viable candidate of unification.

This work was carried out under the supervision of Professor Alon Faraggi
and Ben Percival. I give special thanks and consideration for the help they’ve
provided during this project.
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Chapter 2

The Standard Model and GUTs

2.1 The Standard Model of particle physics

The Standard Model (SM) of particle physics is our current best description
of three of the four known fundamental forces and the known elementary par-
ticles contained in three generations of observed matter. The SM combines
the framework of quantum mechanics and special relativity into a single rel-
ativistic quantum gauge theory.

There are three sectors of the SM, which we will cover in more detail shortly,
but an overview [25]:

1. Interactions - spin-1 gauge bosons
The interaction of the strong, weak and electromagnetic forces are gov-
erned by the gauge symmetry group:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.1)

2. Matter - spin-1
2

fermions
Our matter representations, defined by their quantum numbers under
the standard model gauge group are:

3∗
[
(3, 2)+1

6
+ (3̄, 1)−2

3
+ (3̄, 1)+1

3
+ (1, 2)−1

2
+ (1, 1)+1

]
. (2.2)

These are all in the left-handed representations and are QL, ucL, dcL,
LL and ecL respectively. Note that here the first factor of 3 comes from
there being three generations of fermions within the standard model.

3. Higgs - spin-0 Higgs boson
Finally, we have the recently discovered scalar Higgs field represented
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by:

(1, 2)+1
2
. (2.3)

The interaction sector of the SM is governed by the gauge group:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y (2.4)

Here, the subscripts C, L and Y represent the charges of colour, left-handed
weak isospin and weak hypercharge respectively. Each associated group has
it’s own symmetries and corresponding vector boson(s) which is the ’force car-
rying’ point particle of the group. The first gauge group, SU(3)C , represents
the strong nuclear force which is mediated by gluons Ga

µ with a = 1, ..., 8.
The last two are slightly different; at face value SU(2)L and U(1)Y corre-
spond to the weak isospin and hypercharge symmetries. We would expect
to have three gauge bosons for the weak isospin W i

µ with i = 1, 2, 3, and one
which would mediate hypercharge Bµ. The SU(2) symmetry forms doublets
of left-handed fermions in the fundamental representation of the group and
singlets of the right-handed fermions which do not feel the weak interaction.
Right-handed antiparticles however do interact, this chirality will be explored
further in the matter sector. Weak interactions are carried by the following
three gauge bosons which are held in the adjoint representation of SU(2)
[10]:

W+ =

(
0 1

0 0

)
, W 0 =

(
1 0

0 −1

)
and W− =

(
0 0

1 0

)
. (2.5)

Transitions where T3 = +1
2
→ T3 = −1

2
would be mediated by the W+ boson

and the reverse interaction by the W−. Weak interactions where T3 is un-
changed, for example neutrino scattering, would emit a W 0. Hypercharge is
chosen so that our electric charge Q obeys the Gell-Mann–Nishijima formula
[34][49]:

Q = T3 +
1

2
Y (2.6)

where T3 is the third component of isospin. Any particle with hypercharge
interacts by exchange of a B boson. This symmetry acts like the familiar
photon in the electromagnetism U(1)e.m but it’s strength is proportional to
hypercharge Y rather than electric charge Q.

In reality we actually see interactions governed by the weak nuclear force
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and electromagnetism. This means our gauge group must undergo sponta-
neous symmetry breaking. This is caused by the Brout-Englert-Higgs mech-
anism[54] and causes a rotation of the B and W 0 bosons into the observed
photon γ of the electromagnetic interaction and Z0 boson which mediated
neutral currents (

γ

Z0

)
=

(
cos θW sin θW

− sin θW cos θW

)(
B

W 0

)
(2.7)

where θW is the weak mixing angle also known as the Weinberg angle. This
is explained in more detail in the Higgs sector below. Our W± are formed
through the combination of the W 1 and W 2 bosons:

W± =
1√
2

(W 1 ∓ iW 2) (2.8)

It also gives reasoning to the differing masses of the Z0 and W± bosons in
the following way:

mZ =
mW

cos θW
(2.9)

Our matter sector contains all the fermions of the standard model, which
are characterised by their half integer spin. All observed fermions (at least
currently, have spin-1

2
), are chiral and are governed by the Dirac equation

(natural units c = 1):

(iγµ∂µ −m)ψ = 0 (2.10)

where γµ are the gamma matrices given by

γ0 =

(
I2 0

0 −I2

)
, γ1 =

(
0 σ1

−σ1 0

)
, γ2 =

(
0 σ2

−σ2 0

)
, γ3 =

(
0 σ3

−σ3 0

)
(2.11)

With σ1,2,3 the usual Pauli spin matrices. Our fermion fields can be written
in a spinor representation

ψ =

(
ψL

ψR

)
(2.12)

and our left- and right-handed components can be defined using the projec-
tors acting on ψ

PR =
1 + γ5

2
and PL =

1− γ5

2
, with γ5 = iγ0γ1γ2γ3 (2.13)

6



This results in our left-handed quarks and fermions forming doublets which
can be seen more clearly by our matter representations, written showing the
particle content of each individual representation:

(3, 2)+1
6
↔ QL =

(
ur ug ub

dr dg db

)
(2.14)

(3̄, 1)−2
3
↔ ucL =

(
ucr ucg ucb

)
(2.15)

(1, 1)+1 ↔ (ecL) (2.16)

(1, 2)−1
2
↔ LL =

(
νl

l

)
(2.17)

(3̄, 1)+1
3
↔
(
dcr dcg dcb

)
(2.18)

Here, the first entry 3, 3̄ and 1 represent the fundamental triplet, conjugate
triplet and the singlet representations of the SU(3)C group. The second en-
try represents the fundamental doublet and singlet of SU(2)L for 2 and 1
respectively [38]. The subscript represents the charge under the U(1)Y group,
this is the hypercharge Y .

Finally, we have our Higgs sector, we’ve already mentioned one of the roles
of the Higgs, which is the spontaneous symmetry breaking of the SU(2)L ⊗
U(1)Y group into the U(1)e.m by the Brout-Englert-Higgs mechanism. Here
we will only add to what we have already mentioned, that is the electro-weak
symmetry breaking, but further reading on how the fermions and W± and
Z0 obtain mass can be found here [54]. The higgs φ is introduced a scalar
field in the spinor representation of SU(2)L, a doublet:

(1, 2)+1
2

= φ =

(
φ+

φ0

)
(2.19)

From this we see that the charge under the U(1)Y group is Y (φ) = +1
2
. We

need a theory which is invariant under local transformations, giving us the
covariant derivative of the form:

Dµφ =
(
∂µ + igT iW i

µ + i
1

2
giBµ

)
φ (2.20)

where the second and third terms describe the coupling to the SU(2)L and
U(1)Y groups respectively. Now our Higgs Lagrangian can be defined by

LHiggs = (Dµφ)†(Dµφ)− V (φ). (2.21)
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Renormalisability and invariance under the SU(2)L ⊗ U(1)Y group requires
a potential V (φ) to be of the form

V (φ) = −µ2φ†φ+ λ(φ†φ)2 (2.22)

with the λ term showcasing the quartic self interaction terms of the Higgs
scalar field. In order for a stable vacuum for the potential to exist, we
require λ > 0. For symmetry breaking there must exists a non-zero vacuum
expectation value (VEV) which can be achieved with choosing µ2 < 0, if we
instead chose µ2 > 0 then we would get a minimum at φ = 0 and no broken
symmetry, this is a circle of minima of radius v.

〈φ〉 =
1√
2

(
0

v

)
, with v =

√
−µ2

λ
. (2.23)

Only a neutral scalar field can acquire a VEV, due to charge conservation
[54], so the φ0 component of 2.19 is seen as the neutral component and
electromagnetism remains unbroken:

SU(2)L ⊗ U(1)Y → U(1)e.m (2.24)

More information and detailed explanation of electroweak symmetry breaking
and the process of the W± and Z boson obtaining mass can be found in
reference [54]. More information on the Standard Model and the mathematics
behind it can be found in [14, 44, 45]
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2.2 Problems with The Standard Model

Whilst the Standard Model has been an amazingly successful theory and
has many predictions confirmed correct, the latest being the discovery of the
Higgs boson by two separate research groups ATLAS [1] and CMS [15], there
still exists a range of phenomena that the SM cannot explain meaning it
cannot be the complete theory of particle physics. The first of these can be
attributed to the new discovery of the Higgs; at high energies, the Higgs quar-
tic coupling becomes negative. This causes the vacuum expectation value of
the higgs field to be unstable and requires new physics to explain [18].

The Standard Model in it’s current framework requires a large number of
free parameters, the actual number can vary depending on whether we want
to include the newly discovered neutrino masses and oscillations [48]. There
is currently no explanation or motivation for many of these free parameters;
these are determined empirically through experimental data and have to be
inputted into models by hand. Furthering the problem caused by neutri-
nos, the SM has no real explanation for these oscillations, neutrino masses
or even the hierarchy of the neutrino masses. Our current best explana-
tions are either by extending the standard model through the introduction
of right-handed neutrinos to the model to allow for a see-saw mechanism [47]
or through the use of supersymmetry. More arbitrariness can be asked of
the model: why is the standard model and it’s interactions governed by the
SU(3)c⊗SU(2)L⊗U(1)Y gauge groups? Why do we get exactly three gener-
ations of chiral matter? Finally why exactly do we get the charge quantisa-
tions that we do? Solutions to these problems can be addressed by exploring
higher rank gauge groups and the embedding of the Standard Model into
these grand unified theories.

Another problem, and one which will be discussed a little further in the
grand unified theories section is the unification of gauge couplings. Taking
the data of gauge couplings and their running at higher energies allows us to
extrapolate these couplings. In the Standard Model when we do this we see
that these don’t meet at a single unification point. In the next section, we
will introduce grand unified theories (GUTS) and then later we will discuss
incorporating supersymmetry, which allows a solution for the unification of
gauge couplings when these two extensions of the Standard Model are com-
bined [11].
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The next set of problems are mainly asymmetry ones. Firstly, the asymmetry
between matter and anti-matter this is sometimes called baryon asymmetry.
The Standard Model offers no explanation why we see so much more mat-
ter than we do anti-matter, the Standard Model predicts we should have
had equal quantities of each in the Big Bang. Another question which the
physics of the Standard Model can’t answer is the one of dark matter and
energy. This makes up a large proportion of the observable universe and
hence is question that many have attempted to answer through physics be-
yond the Standard Model. Some solutions to the dark matter problem have
been proposed through both supersymmetry and string phenomenology. The
latter of these proposes heavy and stable dark matter candidates through a
symmetry breaking mechanism in string theory by Wilson lines and further
explanation of the mechanism is given in reference [19]. An alternate solution
proposed by strings can be that dark energy can lie in the hidden sector of
string models called thermal dark energy and our presented in paper [39].

The final and most glaring problems with the Standard Model come from
it’s incompatibility with Einstein’s General Relativity [21] and it’s inability
to incorporate gravity within it’s QFT framework. Gravity as we know it
is described by the continuous smooth curvature of space-time and whilst
a quantum theory of gravity would not necessarily be one which implies a
discreetness of spacetime, which would break the rules Lorentz invariance
however finding a quantum theory of gravity is important to answer many
questions. Firstly is the cosmological constant problem where the predicted
contributions from quantum corrections to the cosmological constant and
these are many many orders of magnitude higher than the observed value
[62]. Supersymmetry, which we will discuss later when unbroken can’t solve
this problem either, the vacuum state under supersymmetry implies a van-
ishing vacuum energy and momentum:

〈0|P µ|0〉 = 0. (2.25)

This is due to boson-fermion symmetry, with the bosonic terms cancelling the
contributions from the fermionic terms, and we will introduce this concept
at the end of this chapter. We will introduce string theory in chapter 3 and
we will see that this a possible candidate for unification of the four forces.
The theorised quanta of the gravitational force, the graviton, will be shown
to appear naturally giving a satisfying motivation to study these extended
objects further and how we can get models which reproduce features of the
Standard Model by reproducing grand unified gauge groups.
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2.3 Grand Unified Theories

In this section we are going to briefly discuss Grand Unified Theories, ab-
breviated as GUT. The aim of a GUT is to unify the three separate gauge
couplings of the Standard Model gauge groups into a singular interaction or
gauge. This was motivated by the unification of the weak and electromag-
netic interaction, at sufficiently high energy levels, into the single electroweak
interaction. GUTs take this a stage further and suggest at even higher energy
levels that there will be further unification with the strong force. We must
distinguish GUTs from Theories of Everything (TOE), the latter unifies all
four fundamental forces and hence would include a quantum description of
gravity.

GUTs is a blanket term used for both the embedding of the Standard Model
gauge groups into a single higher rank simple group such as SU(5) and
SO(10) but also for semi-simple groups such as the Pati-Salam model. These
higher rank groups must have a decomposition in which the Standard Model
gauge group is contained. In this section we will discuss all three mentioned
GUTs and briefly talk about some of the representations and breaking paths,
especially in the context of SO(10).

2.3.1 Georgi-Glashow Model

This was the first true unification, proposed by Howard Georgi and Sheldon
Glashow in 1974 in their paper titled ’Unity of of All Elementary-Particle
Forces’ [35]. They unified the three Standard Model gauge groups into a
single simple rank 4 gauge group, SU(5). We can see this is the smallest
possible embedding in a special unitary group by comparing the rank and
dimension of each gauge group [25]. The rank of the group SU(N) is the
maximum number of diagonal commuting generators, given by R = N − 1.

SU(5) : R = 4, D = 24. (2.26)

So our Standard model gauge group must be of equal rank and have a di-
mension of 24 or lower. The dimension and rank of the U(1) group are both
equal to 1:

SU(3)c ⊗ SU(2)L ⊗ U(1) : R = 4, D = 12. (2.27)

What we see here is that the rank of the matrices match but we have an
extra 12 dimensions in the SU(5) group compared to our Standard Model.
We will see that these correspond to an additional 12 gauge bosons known as
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X/Y bosons [58]. The SU(3)c and SU(2)L are embedded into the upper-left
and lower-right blocks of the traceless 5×5 matrix. Our left-handed fermions
in our Standard Model are embedded in the two representations of 10⊕ 5̄:

5̄↔


dcr

dcg

dcb

e

−νe


L

10↔


0 ucb −ucg ur dr

−ucb 0 ucr ug dg

ucg −ucr 0 ub db

−ur −ug −ub 0 ec

−dr −dg −db −ec 0


L

(2.28)

Here, the superscript of c, i.e. ucb, represents the charge conjugate of that
particular particle in the same chirality [38]. In terms of the Standard Model
gauge group, SU(3)c ⊗ SU(2)L ⊗ U(1)Y , this can be represented as 5̄⊕ 10:

5̄ = (3̄, 1)+1
3
⊕ (1, 2)−1

2
(2.29)

10 = (3̄, 1)−2
3
⊕ (3, 2)+1

6
⊕ (1, 1)+1 (2.30)

If we wanted the right-handed fermion generations we would take the conju-
gate representation, 5⊕ 10, this can also display in terms of the Standard
Model gauge group:

5 = (3, 1)−1
3
⊕ (1, 2)+1

2
(2.31)

1̄0 = (3, 1)+2
3
⊕ (3̄, 2)−1

6
⊕ (1, 1)−1 (2.32)

The interactions, i.e. the gauge bosons, come from the unbroken subgroup
which is the 24 adjoint representation, with its decomposition

24 = (8, 1)0 ⊕ (1, 3)0 ⊕ (1, 1)0 + (3, 2)−5
6
⊕ (3̄, 2)5

6
(2.33)

Here, we can see the gauge bosons of each of the Standard Model gauge
groups, in order SU(3), SU(2), U(1) and then the final two terms are the
new X/Y gauge bosons we briefly mentioned before. In order to break the
SU(5) group, we require a scalar field within the adjoint Higgs sector with
VEV in the direction of the hypercharge generator diag(2, 2, 2,−3,−3) and
another to cause the electroweak symmetry breaking [38] [57].

However, there are a range of problems with the SU(5) theory which rules
it out for a potential candidate for grand unification. Firstly, the addition
exotic bosons (which we have called the X/Y bosons) facilitate lepto-quark
interactions. These would facilitate rapid proton decay, with the largest
branching ratio being

p→ e+ + π0 (2.34)
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predicting lifetimes shorter than the lower bound recently set at the Super-
Kamiokande experiment [51]. With the recent discovery of neutrino oscilla-
tions which implies neutrinos has a non-zero mass, a right-handed neutrino
would need to be added to the representation by the introduction of an extra
singlet meaning a larger representation is required. A candidate for this is
SO(10). Further reading on SU(5) can be found in references [35], [57], [10],
[56], [38] and [16].

2.3.2 Pati-Salam Model

The Pati-Salam model [53], published in 1973 by Jogesh Pati and Abdus
Salam, was the first step towards unification [25]. Whilst not technically
a unified group (as it is a combination of three simple groups), we will see
that the left- and right-handed quarks and leptons are combined into a single
representation. The model has the combined gauge group:

SU(4)C ⊗ SU(2)L ⊗ SU(2)R. (2.35)

To quickly check this is a viable candidate to embed the Standard Model, we
must check the rank and dimension of the group. The rank and dimension
of the Pati-Salam model must be equal or greater than that of the Standard
Model gauge group to ensure it’s particle content can be fitted. Using that
the rank of a SU(N) is the number of maximally commuting generators,
given by N − 1 and the dimension is N2 − 1 Our Standard Model has rank
and dimension:

SU(3)c ⊗ SU(2)L ⊗ U(1) : R = 4, D = 12 (2.36)

and our Pati-Salam model has:

SU(4)C ⊗ SU(2)L ⊗ SU(2)R : R = 5, D = 14. (2.37)

So we see that the Pati-Salam could be a potential candidate. The ’unifi-
cation’ of this model can be seen by looking at the fermion representations.
Our entire generation of left-handed quark and lepton doublets are given in
a single representation[38]:

(4, 2, 1)↔

(
urL ugL ubL νL

drL dgL dbL eL

)
(2.38)

The right-handed fermions can be expressed in the same way

(4̄, 1, 2)↔

(
urR ugR ubR νR

drR dgR dbR eR

)
(2.39)
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Here, we can see the extension of the colour charge gauge group SU(3)c to
now include leptons as if they were an additional colour in the larger group
of SU(4)c. Since SU(4) and SU(2) ⊗ SU(2) are homomorphic to SO(6)
and SO(4) respectively, a fermion generation can be unified into a spinorial
representation SO(10), shown in [56].

16 = (4, 2, 1)⊕ (4, 1̄, 2) (2.40)

The Higgs sector is dependent on breaking path of the gauge group [38].
There are lots of breaking paths and patterns of the Pati-Salam model, one
simple way path is:

SU(4)c→ SU(3)c ⊗ U(1)B−L (2.41)

which would give us the overall gauge group

SU(3)c ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)B−L. (2.42)

Then breaking to the observed Standard Model gauge group:

SU(3)c ⊗ SU(2)L ⊗ U(1)Y . (2.43)

We will be specifically interested in the breaking of a SO(10) group into the
Pati-Salam group when we are analysing our model. In the next section we
will be quickly explaining the SO(10) group and the possible embedding of
other gauge groups in SO(10), specifically in the spinorial representation.
More detailed analysis and further reading on the Pati-Salam model can be
found at [53], [38], [10], [16] and [56].

2.3.3 SO(10)

In 1975, Harald Frizsch and Peter Minkowski realised that the Pati-Salam
group SU(4)xSU(2)xSU(2) is isomorphic to SO(6)xSO(4) with the latter nat-
urally embedded in SO(10) [38]. The benefit of the SO(10) group is that both
SU(5) and the Pati-Salam models can be embedded into it. As we will see,
this will be the a key feature in our models and how the SO(10) group is bro-
ken by specific breaking vectors will be discussed in detail in later sections.
As an orthogonal group, it cannot form the complex representations needed
for the necessary particles of the Standard Model. A solution to this is to use
the spinorial representation and details of the embedding of SU(N) groups
into SO(2N) can be found here [57]. The 16 representation of the SO(10)
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group holds an entire generation of fermions in a spinorial representation
[22]:

16↔

(
ucr ucg ucb νce ur ug ub νe

dcr dcg dcb e+ dr dg db e−

)
L

(2.44)

Both our SU(5) and Pati-salam models can be embedded in the larger SO(10)
16 representation, our Pati-Salam model can be embedded directly:

16→ (4, 2, 1)⊕ (4̄, 1, 2) (2.45)

The SU(5) model can’t be embedded into the 16 representation directly but
we can embed SU(5)⊗ U(1):

16→ 10⊕ 5̄⊕ 1 (2.46)

An extra unitary group is needed to ensure the rank is matched and this
fixes the problem of needing to add an additional singlet (the right handed
neutrino) for small neutrino masses. The SO(10) gauge bosons are contained
in the adjoint 45 representation, this contains all the Standard Model gauge
bosons but also an additional 33 [38]. The 45 representation decomposi-
tion gives the usual octet of gluons, the electroweak triplet and hypercharge
singlet:

45→ (8, 1, 0)⊕ (1, 3, 0)⊕ (1, 1, 0) + 33 extra (2.47)

These additional 33 gauge bosons would carry both the colour and the weak
charge, allowing for transitions between quarks and leptons [38]. Current
research is ongoing to provide experimental bounds on the existence of lep-
toquarks and further reading can be found in section 115 of the particle data
review in reference [58]. What we will be specifically interested in later when
we come to our model is the breaking of the SO(10) group to the Pati-Salam
group. There is a number of breaking paths for this route to the standard
model so we won’t list them here, but further reading on the SO(10) group
and breaking paths can be found in references [33], [52], [38], [57] [16].
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2.4 Supersymmetry

This is going to be an ultra brief introduction of supersymmetry (SUSY).
This section is mainly included so when we introduce the superstring that
supersymmetry is not an entirely foreign concept. A SUSY transformation is
a transformation between a fermion and a boson, and vice versa. Each boson
and fermion in the theory has a superpartner which differs by half integer
spin. Our superpartners are represented with a tilde above their usual sym-
bol. For example, the superpartner of the electron neutrino νe is the electron
sneutrino ν̃e. A table of particles and their corresponding superpartners is
included below.

Particles and Corresponding Superpartners

Standard Model Particle Corresponding Superpartner

Name Symbol Spin Name Symbol Spin

Quarks d, u, s, c, b, t 1
2

Squarks d̃, ũ, s̃, c̃, b̃, t̃ 0

Leptons e, µ, τ 1
2

Sleptons ẽ, µ̃, τ̃ 0

Neutrinos νe, νµ, ντ
1
2

Sneutrinos ν̃e, ν̃µ, ν̃τ 0

Photon γ 1 Photino γ̃ 1
2

Gluon g 1 Gluino g̃ 1
2

W, Z boson W±, Z 1 Wino & Zino W̃±, Z̃ 1
2

Higgs H 0 Higgsino H̃ 1
2

We are specifically interested in SUSY GUTs and some of the problems of the
standard model which they solve. Supersymmetry could provide the basis for
unification of the gauge couplings by contribution from the SUSY partners
to the couping above the SUSY mass scale [17]. When supersymmetry is
incorporated minimally into the Standard Model, it is often called the Mini-
mally Symmetric Standard Model (MSSM). We can find a unification point
of the couplings something which is not possible in the current framework
of the Standard Model [17] [20]. In SUSY SU(5) and higher gauge groups
containing SU(5) we can solve this for reasonable values of the MSUSY . This
is due to the squarks and sleptons being contained in complete SU(5) mul-
tiplets and hence not contributing to the running of the coupling constants.
These superpartners, specifically the gauginos, higgsino and extra Higgs are
cause the improvement over the SM [59].
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Another problem of the Standard Model is the reliance of the Higgs fields
having a vacuum expectation value of 246 GeV. This VEV is highly unstable
when we do quantum loop corrections using a QFT framework and there is
a quadratic divergence due to the Higgs self interaction and top quark in-
teraction terms at the high-energy cutoff [59]. This has the consequence of
implying the SM can only be an effective field theory when the cutoff is near
1 TeV [59]. At energies near this scale the SM requires additional physics to
be able to stabilise the Higgs VEV, SUSY is a possible candidate for this [59].
SUSYs solution occurs due to the introduction of superpartners, specifically
new scalar bosons which allow cancellation of the quadratic divergences [59].

A glaring problem of the non-SUSY SU(5) theory was the prediction of rapid
proton decay. There have been various methods of solving this using SUSY
and further reading on proton decay and review of methods of supressing the
decay rate can be found here [50].

Another ’solution’ supersymmetry may provide is a possible candidate for
dark matter through neutralinos [17], but this currently is all spectulatory
and is just included to give an idea of current research and potential theories.

Currently, no SUSY particles have been observed in the LHC or elsewhere.
The window for finding these superpartners is growing ever smaller with more
and more experimental data and it’s looking increasingly unlikely that that
supersymmetry is the answer to our questions. This is the motivation of
this project and the specific class of models we will be discussing in the free
fermionic formulation. The aim of this project moving forward will be to
question whether it’s possible to construct realistic non-SUSY models and to
explore some of the features and constraints of such models.

We will see later that we will actually need to construct models using world-
sheet supersymmetry but will not include spacetime supersymmetry or su-
perpartners. It is possible to have a differing number of supersymmetry
transformations, e.g. N = 2 or N = 4, which are called extended supersym-
metries, but we will only be using models which exhibit N = 1 supersymme-
try as this is the only way to construct realistic models. Models with N ≥ 2
are unrealistic. We can see this by looking how the multiplets transform.
Theories with extended supersymmetry we actually get states with helicity
−1

2
transforming equivalently (this is a real representation) as states with

helicity 1
2

[63]. We actually need our fermions to transform under a complex
representation and hence we will use constructions with N = 1.
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Chapter 3

A brief recap of string theory

In the last chapter, we have seen that there have been many attempts to
extend the Standard Model through grand unified theories. Many of these
attempts have some promising characteristics, but there is a glaring emission
with all of them. This emission is the lack of a unified theory which contains
gravity within a quantum framework. General Relativity (GR) is infamously
incompatible with our accepted quantum field theories (QFT). It is generally
accepted to that these two separate branches of physics that have separate
purposes; GR to deal with physics on the (cosmological) macro scale and
QFT to deal with it on the microscale. Both theories have withstood exten-
sive testing, with both being proved further by the discovery of gravitational
waves at LIGO [3] and the elusive Higgs boson at the LHC [2] respectively.
String theory attempts to rectify this problem. As we will see gravity is
manifest within the spectrum with the theorised graviton, the quanta of the
gravitational field appearing naturally.

In this chapter, we will derive and discuss three separate types of string
theory. We will start with the most basic which is the bosonic string. This
will begin with adapting the familiar relativistic particle action to a classical
relativistic string. We will do this first in the Nambu-Goto action but will
quickly discover that this representation is difficult to quantise. Upon mov-
ing to the Polyakov action, we are given a clear path to progress further to
the superstring which allows fermions in the spectrum. We will finally briefly
touch on the construction of the heterotic string and the free fermionic for-
mulation, which is the main goal of this project.
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3.1 The bosonic string

Starting with the action of a relativistic point particle, the particle will trace
out a world-line as it propagates through D-dimensional Minkowski space-
time. The action for a relativistic point particle is proportional to the world-
line length, using c = 1, is:

S = m

∫
dτ

√
−gµν

dXµ

dτ

dXν

dτ
. (3.1)

This idea can be extended from the 0-dimensional particle to a new 1-
dimensional object that we call a string, which has a length but no width.
Starting in a D-dimensional Minkowski space-time M , defined by space-time
coordinates Xµ, µ = 0, 1, ..., D − 1 and the metric gµν . The propagation of
this string traces out a curved surface called the world-sheet Σ, this is a two
dimensional analogue of the world-line for a relativistic particle. The world-
sheet is parametrised by the tangent vectors σα = (τ, σ) where we consider
τ to be a time-like coordinate and σ to be our space-like coordinate. Strings
can be either open or closed, and are usually defined by the boundary con-
ditions (BC) at each end. For open strings, these boundary conditions are
either Neumann (N), where the string endpoints are free to move or Dirichlet
(D) which attach the endpoints to a fixed dynamical object called a brane.
Without going into further detail, the brane has to be dynamical to allow
momentum to be transferred to and from and to allow the conservation of
momentum. The Neumann boundary conditions are given by:

∂Xµ

∂σ
(σ = 0, π) = 0 (3.2)

and the Dirichlet:

Xµ(σ = 0, π) = constant. (3.3)

We will only be considering closed strings, so we will need σ to be periodic:
σ ∈ [0, 2π). Defining a map from our worldsheet to the position in space-
time, represented by the set of scalar fields Xµ(τ, σ). As stated, the space-like
worldsheet coordinates for a closed string are periodic, hence we obtain the
boundary conditions for a closed string

Xµ(τ, σ) = Xµ(τ, σ + 2π). (3.4)

For the relativistic point particle, our action was proportional to the proper
length of the worldline; for the relativistic string, this is similar in that it is
proportional to the proper area of the worldsheet

dA = dτdσ
√
−γ. (3.5)
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The quantity under the square root is the determinant of the worldsheet
metric. We will be using this notation where the dropped indices represent
the determinant:

γ = det(γαβ) (3.6)

The metric on the worldsheet γαβ is induced by the Minkowski metric ηµν :

γαβ = ηµν
∂Xµ

∂σα
∂Xν

∂σβ
(3.7)

A full and easy to follow derivation of the string action can be found in
Zweibach [65]. The string is defined by the Nambu-Goto action:

SNG = −T
∫

Σ

d2σ
√
−γ (3.8)

Here, T is called the string tension, or the mass per unit length. the action
is sometimes defined in terms of the Regge slope α′ using the relation [60]:

T =
1

2πα′
. (3.9)

The square root in 3.8 causes difficulty when quantizing the action. We can
replace the Nambu-Goto action with the Polyakov action. This is done by
replacing the area functional with a corresponding energy functional [65]:

SP = −T
2

∫
Σ

d2σ
√
−hhαβγαβ. (3.10)

This is accomplished by introducing an auxiliary field hαβ(τ, σ), which is in-
trinsic on the worldsheet unlike the induced metric γαβ introduced in 3.7.

We can now discuss the symmetries of the Polyakov action:

1. Poincaré symmetry
This is a global spacetime Xµ symmetry. The action is invariant under
Poincaré transformations [60]:

Xµ(τ, σ)→ Λµ
νX

ν(τ, σ) + aµ (3.11)

This symmetry encompasses both Lorentz transformations and trans-
lations.
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2. Reparametrisation invariance (diffeomorphism)
This is local to the worldsheet. It allows flexibility in choosing how we
define our worldsheet coordinates:

σ → σ̃(σ) (3.12)

τ → τ̃(τ). (3.13)

The fields Xµ(τ, σ) transform as scalars, whilst the metric hαβ trans-
forms as a two-dimensional metric [22]:

Xµ(σ)→ X̃µ(σ̃) = Xµ(σ) (3.14)

hαβ(σ)→ h̃αβ(σ̃) =
∂σγ

∂σ̃α
∂σδ

∂σ̃β
hγδ(σ) (3.15)

3. Weyl Rescaling
This is an additional invariance compared to the Nambu-goto action
3.8. This is a local change of scale but also preserves the angles between
all lines. The transformation is of form [60]

hαβ → e2Λ(σ)hαβ(σ). (3.16)

This symmetry is a local change of scale, but preserves the angles be-
tween all lines. This type of invariance is unique to two dimensions and
comes from the fact we have introduced an auxiliary field hαβ on the
worldsheet [60].

We can use these symmetries to completely gauge fix our worldsheet metric.
This is possible due to our two-dimensional metric only having three inde-
pendent components. This is first done by choosing a reparametrisation of
the worldsheet coordinates such that our metric is locally conformally flat
and introducing a function Λ(σ) onto the worldsheet:

hαβ = e2Λ(σ)ηαβ (3.17)

This is what is called our conformal gauge. We can further fix this using our
third symmetry, Weyl invariance, effectively setting the function Λ = 0:

hαβ = ηαβ (3.18)

leaving the flat metric or Minkowski metric ηαβ. Using these invariances we
are able to reduce the Polyakov action to more simple form:

SP =
T

2

∫
Σ

dτdσ
(
Ẋ2 −X ′2

)
(3.19)
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Here Ẋ = ∂X
∂τ

and X ′ = ∂X
∂σ

.

Our equations of motion are derived using the variational principle. We
can vary our action with respect to two parameters - our coordinates Xµ and
our auxiliary field we introduced hαβ. This could’ve been done earlier from
our original Polyakov action, but now we’ve fixed our metric to be flat our
equation of motion from varying Xµ is simply the free wave equation:

∂α∂
αXµ = 0. (3.20)

We obtain the second equation of motion by varying with respect to the
metric hαβ. This gives us the stress-energy tensor, in our flat gauge this is
once again simplified to:

Tαβ = 0. (3.21)

This gives us the following two constraints

X ′ · Ẋ = 0 (3.22)

Ẋ2 +X ′2 = 0. (3.23)

Now redefining our worldsheet coordinates to light-cone coordinates:

σ± = τ ± σ. (3.24)

Our equation of motion becomes:

∂+∂−X
µ = 0 (3.25)

This also gives us an easier way to present our general solution of our free
wave equation 3.20. This is a superposition of left- and right-moving waves

Xµ(τ, σ) = Xµ
L(σ+) +Xµ

R(σ−). (3.26)

Here, Xµ
L and Xµ

R are two arbitrary functions. As mentioned at the start of
this chapter, we have to specify boundary conditions. These are periodic and
given in equation 3.4. Applying our boundary conditions, we can express our
left- and right-moving periodic solutions in Fourier modes:

Xµ
L(σ+) =

1

2
xµ +

1

2
α′pµσ+ + i

√
α′

2

∑
n6=0

1

n
α̃µne

−inσ+

(3.27)

Xµ
R(σ−) =

1

2
xµ +

1

2
α′pµσ− + i

√
α′

2

∑
n6=0

1

n
αµne

−inσ− (3.28)
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These equations do not independently satisfy our periodic boundary condi-
tion 3.4. However, when combined our solution is periodic:

Xµ = xµ + α′pµτ︸ ︷︷ ︸
centre of mass motion

+ i

√
α′

2

∑
n6=0

1

n

(
α̃µne

−inσ+

+ αµne
−inσ−

)
︸ ︷︷ ︸

string oscillations

. (3.29)

xµ and pµ are the position of the center of mass, and momentum of the string
respectively. We require that our spacetime coordinate solution Xµ be real;
this implies the coefficients of the Fourier modes

αµn = (αµ−n)∗ and α̃µn = (α̃µ−n)∗. (3.30)

These coefficients classically represent the amplitudes of the nth oscillation
mode, are zero modes for the left and right moving parts must match:

α̃µ0 = αµ0 =

√
α′

2
pµ (3.31)

Imposing the equation of motion from variation of the metric we obtain the
Virasoro constraints

(Ẋ ±X ′)2 = 0. (3.32)

To quantise our string, these are promoted to operators with the commuta-
tion relations:

[xµ, pν ] = iηµν and [αµn, α
ν
m] = [α̃µn, α̃

ν
m] = nηµνδn+m (3.33)

and the rest of our commutation relations are zero. The second of these
commutator relations should look familiar, this is just the usual quantum
harmonic oscillator creation and annihilation operators. We can see this by
redefining them

an =
αn√
n

and a†n =
α−n√
n

with n 6= 0. (3.34)

To clarify, our left- and right-moving nth modes are α̃n and αn respectively.
We differentiate between the creation and annihilation operators by the sign
of the subscript; if n < 0 then it is a creation operator and n > 0 represents
an annihilation operator. The easiest way to quantise the bosonic string is in
the light-cone gauge, to move to this gauge we introduce spacetime light-cone
coordinates:

X± =
1√
2

(
X0 ±XD−1) (3.35)
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This fixes two of ourD spacetime coordinates leaving us withD−2 remaining.
We label these the transverse coordinates [65] and use the notation XI with
I = 1, ..., D − 2 to represent them. We fix one of our coordinates to:

X+ = α′p+τ (3.36)

which fixes our gauge completely. However, this choice removes our manifest
Lorentz invariance but this is something we will fix later with solve later by
with a critical dimension. This adjusts our commutators slightly [41] [13]:

[x−, p+] = −i, [xi, pj] = δij, (3.37)

[αin, α
j
m] = [α̃in, α̃

j
m] = nδijδn+m,0 [αin, α̃

j
m] = 0. (3.38)

Now we can use these to express our light-cone Hamiltonian of the string, we
must be careful with the ordering of our creation and annihilation operators
so we introduce the normal ordering constants a and ã which account for the
uncertainty of the ordering:

H =
D−2∑
i=1

p2
i

2p+
+

1

α′p+

(
N + Ñ − a− ã

)
(3.39)

where we have used the number operators:

N =
∑
i

∞∑
n=1

αi−nα
i
n and Ñ =

∑
i

∞∑
n=1

α̃i−nα̃
i
n. (3.40)

Using this, we can construct our Hilbert space. We do this by first defining
our vacuum or ground state |0, pµ〉, this is the state which is annihilated by
all annihilation operators

αin|0, pµ〉 = α̃in|0, pµ〉 = 0. (3.41)

Our normal ordering constants must satisfy:

a = ã =
D − 2

24
. (3.42)

This actually comes from imposing Lorentz invariance for our first excited
state which in turn requires a massless state which gives us a = ã = 1.
This is beyond this quick overview, but we will be covering calculating the
critical dimension for the superstring in detail and further reading can be
found in both [60] and [65]. From these conditions, it’s easy to see that
this is a theory which requires D = 26 space-time dimensions and this is the
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critical dimension of the bosonic string. Using our creation operators, we can
construct our Hilbert space by acting with successive creation operators on
the vacuum. A condition on physical states requires them to be level matched
N = Ñ , an idea we will expand on when we cover the heterotic string. Using
the mass-shell condition (which is a feature of the global Poincaré symmetry)
and combining with the Hamiltonian we can obtain an expression for the
string mass:

M2 =
2

α′
(N + Ñ − a− ã). (3.43)

Analysing the states of the spectrum:

• Ground state:

|0, pµ〉 (3.44)

We see that the ground state, where N = Ñ = 0, will have a negative
mass squared term; this is an instability of the model and is a unphys-
ical tachyonic state. This would seem to appear to travel faster than
light and hence breaking the laws of special relativity, but really should
be considered as a unstable maximum in the field [60]. Once again, we
will discuss tachyonic states in more detail in a later chapter as they
are of particular importance to remove for our class of models.

• First excited state:

∑
1≤i,j≤D−2

Rijα
i
−1α̃

j
−1|0, pµ〉 (3.45)

The first excited state, where N = Ñ = 1 gives us a massless vector bo-
son. This must be massless which we consider as the photon. Here, Rij

is a second rank tensor of the SO(1, D−1) Lorentz group. This will not
fit into a SO(D− 1) representation but can be fitted into the 24⊗ 24
representation of SO(24) [60]. This gauge group can be decomposed
into its irreducible representations containing traceless symmetric ten-
sor, anti-symmetric tensor and the trace each with it’s own associated
field [65][60]. Firstly, the traceless symmetric component generates a
massless spin 2 field Gµν . The particle associated with this field is the
gravition and is the natural appearance of gravity (general relativity) in
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string theory. The anti-symmetric tensor represents the Kalb-Ramond
field Bµν , which a rank 2 tensor generalisation of the electromagnetic
potential Aµ [60]. The trace representation gives us a scalar field Φ and
corresponding particle is the dilaton.

• Second and higher excited states:
Our second excited state is degenerate and can represented in two ways:

αi−1α
j
−1α̃

i
−1α̃

j
−1|0, pµ〉 and αi−2α̃

i
−2|0, pµ〉 (3.46)

All states with N = Ñ ≥ 2 are all massive states, that all fit nicely
into SO(D− 1) representations (unlike our first excited state). This is
the symmetric tensor representation [60].

The bosonic string appears to ’solve’ the infamous problem of gravity by the
appearance of a spin 2 particle naturally within the spectrum. However, it
also comes with a lot of it’s own unique problems. Firstly, like it’s name
suggests, it’s an entirely a theory of bosons. No fermions appear in the
spectrum and hence it cannot be a phenomenologically complete theory. To
introduce fermions to spectrum, we must introduce a supersymmetry. This
can be done either to the worldsheet as we will introduce in the next section
or instead to spacetime itself. One glaring issue we briefly mentioned is the
tachyonic ground state. This is an unphysical state and later in our string
models we will be taking specific care to ensure removal of these. Finally,
the conformal anomaly of the bosonic string is only able to be cancelled in
D = 26. This gives us an extra 22 unseen dimensions than we observe (the
usual 3 with 1 temporal dimension). This is a problem which can be solved
by compacting the extra dimensions onto a manifold, usually either a torus or
a Calabi-Yau manifold but this is not something we will be exploring further.
Further reading on compacting extra dimensions and manifolds can be found
in the books [12] and [13].
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3.2 The superstring

In the last section, we were left with a theory describing only bosons and with
a range of problems such as a tachyon within the spectrum, leaving us with
an unrealistic theory and one that can be solved with the introduction of
supersymmetry. Here, we can begin to discuss the Ramond-Neveu-Schwarz
formalism that we will use (worldsheet SUSY). There is another formalism
called the Green-Schwarz formalism which requires space-time SUSY. In the
supersymmetry section, we detailed that current experiments, mainly con-
ducted at the LHC, have massively restricted the window for space-time
superpartners. Therefore, it is looking increasingly unlikely that space-time
supersymmetry exists. Supersymmetry can still be used as an important tool
for us. We will, however have to restrict ourselves to worldsheet supersym-
metry. As we see later, we will specifically use models which do not include
a spacetime supersymmetry generator. Motivated by the lack of observa-
tion of these superpartners. We start by introducing worldsheet fermionic
superpartners for our bosonic fields Xµ(τ, σ) [25]:

Xµ(τ, σ)→ Xµ(τ, σ), ψµ(τ, σ) (3.47)

Our superstring action in our conformal gauge is a modification of the Polyakvov
action:

S = SB + SF = −T
2

∫
Σ

dτdσ(∂αXµ∂
αXµ + iψ̄µρα∂αψµ) (3.48)

here, ρα are the two-dimensional gamma matrices analogs to 2.11:

ρ0 =

(
0 −1

1 0

)
and ρ1 =

(
0 1

1 0

)
(3.49)

and obey a Dirac algebra {ρα, ρβ} = 2ηαβ. These are analagous to the four-
dimensional gamma matrices common in quantum field theory. We must
mention that ψ̄ is our Dirac adjoint and related to the Hermitian adjoint in
the following way:

ψ̄ = ψ†iρ0 (3.50)

our worldsheet fermionic fields ψµ are two component Majorana spinors
(meaning they are real) and are defined by [40]:

ψµ =

(
ψµ−

ψµ+

)
(3.51)
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when we move back to our light-cone coordinates defined as σ± = τ ± σ.
Looking at our action 3.48, we can see that the bosonic term is unchanged
from the bosonic string and hence it’s equations of motion will be same
as derived in the previous section. Now, we will briefly only consider the
fermionic contributions and their corresponding boundary conditions and
equations of motion. In our light-cone coordinates, our fermionic action is:

SF = iT

∫
Σ

dσ+dσ−(ψµ−∂+ψ−µ + ψµ+∂−ψ+µ) (3.52)

The equation of motion for the two spinor components can be easily seen
from our first term and is the Dirac equation γα∂αψ = 0 or explicitly in
components

∂+ψ− = 0 and ∂−ψ+ = 0. (3.53)

Here, we have dropped the indices. The first component describes a left-
moving wave and the second a right-moving wave. These equations of motion
are called the Weyl conditions in two dimensions [12], this shows that there
is a decoupling of the left- and right-moving degrees of freedom. Here, we
could show that there’s a global worldsheet supersymmetry. Varying both
the bosonic and fermion fields, for the total action 3.48, showing the mixing
of the two sets of fields in the following way:

δXµ = ε̄ψµ (3.54)

δψµ = ρα∂αX
µε (3.55)

where ε is a constant infinitesimal Majorana spinor. Since we already know
we have worldsheet supersymmetry, this is not necessary. There is also two
conserved currents coming from our two global worldsheet symmetries of
the action. These are the energy momentum tensor Tαβ, which comes from
our translational invariance, and a supercurrent JµA from our supersymmetry.
These can be derived using the Noether method and details can be found in
references [12] [64]. Explicitly, in our light-cone gauge these are:

Jµ± = ψµ±∂±Xµ (3.56)

T++ = ∂+Xµ∂+X
µ +

i

2
ψµ+∂+ψ+µ (3.57)

T−− = ∂−Xµ∂−X
µ +

i

2
ψµ−∂−ψ−µ (3.58)

T−+ = T+− = 0 (3.59)

The last line comes from our Weyl invariance. What we find when following
the same quantisation steps as the bosonic string is that there are negative
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norm states within the spectrum, which appear from our time-like boson and
fermion and mustn’t exist in the physical spectrum. We solved this in the
previous chapter by fixing our gauge to the light-cone gauge using conformal
invariance. The same procedure can also be done for our superstring, using
superconformal invariance, and introducing the RNS Virasoro conditions to
ensure these negative norm states are removed:

J+ = J− = T++ = T−− = 0. (3.60)

We will not actually use this now, but it will be useful for when we want to
analyse our spectrum physical states, as it will allow us to create independent
physical states by acting upon the vacuum with transverse operators without
having to worry about negative norm states. Another piece of the puzzle is
to define our boundary conditions, like our bosonic string we will only be
discussing closed strings. We have two possible periodicity conditions:

ψµ±(τ, σ) = ±ψµ±(τ, σ + π). (3.61)

In these conditions, the choice of positive sign on the right means periodic
which is called Ramond (R) boundary conditions, whilst the negative sign is
anti-periodic called Neveu-Schwarz (NS). This type of boundary conditions
will be revisited when we move onto the Free Fermionic Formulation. We
can give our mode expansions for our right-movers

ψµ−(σ, τ) =
∑
n∈Z

dµne
−2inσ− and ψµ−(σ, τ) =

∑
r∈Z+ 1

2

bµr e
−2irσ− (3.62)

then for the left-movers we have

ψµ+(τ, σ) =
∑
n∈Z

d̃µne
−2inσ+

and ψµ+(τ, σ) =
∑
r∈Z+ 1

2

b̃µr e
−2irσ+

. (3.63)

Here, the Fourier coefficients for the fermionic fields will be once again pro-
moted to operators upon quantisation following the same rules as the bosonic
string, with n, r < 0 the creation and n, r > 0 the annihilation operators.
The closed string therefore, has four possible sectors coming from the tensor
product of the pairings of boundary conditions. States with NS-NS and R-
R are space-time bosons, whereas states in NS-R and R-NS are space-time
fermions [12]. To quantise, we once again introduce promote our Fourier
coefficients to operators. This is canonical quantisation. Our bosonic oper-
ators αµm and α̃µm still obeying the commutation relations 3.38 but now our
fermionic fields obey the equal-time anti-commutator relations

{ψµA(τ, σ), ψνB(τ, σ′)} = πδABδ(σ − σ′)ηµν . (3.64)

29



Inserting into our mode expansions gives us our fermionic commutators

{bµr , bνs} = {b̃µr , b̃νs} = ηµνδr+s,0 (3.65)

{dµm, dνn} = {d̃µm, d̃νn} = ηµνδm+n,0 (3.66)

and our bosonic commutators are still

[xµ, pν ] = iηµν and [αn, αm] = [α̃n, α̃m] = mδm+nη
µν . (3.67)

The subscripts n,m take integer values, whereas r,s take half-integer values.
Once again, our ground state in our Fock space is defined as the state which
is annihilated by all annihilation operators. Our ground state in the Neveu-
Schwarz sector

αµm|0, pµ〉NS = bµr |0, pµ〉NS = 0 for m, r > 0 (3.68)

and for the Ramond sector

αµm|0, pµ〉R = dµm|0, pµ〉R = 0 for m > 0. (3.69)

There are exactly similar expressions for the left-moving ground states. The
Neveu-Schwarz ground state is unique and is a spin-0 spacetime scalar whereas
the Ramond ground state is degenerate[12]. All excited states in the NS sec-
tor are space-time bosons (spin-0) and all our bosons have half-integer energy
spacing as the operator bµr changes the energy level by a half integer unit
[40]. The Ramond sector corresponds to fermions with integer energy spac-
ing coming from the dµn operator and this asymmetry in the energy spacing
of fermions and bosons must be solved with a GSO projection [40], which we
will introduce shortly and will be of vital importance for our free fermionic
models. The reason for this degeneracy in the R sector is that the dµ0 opera-
tor doesn’t affect the mass of a state and hence dµ0 |0〉R has the same mass as
|0〉R [40] [61]. This degeneracy can be seen by look at the zero mode Ramond
fermionic operator which satisfy a Clifford algebra:

{dµ0 , dν0} = ηµν . (3.70)

This allows us to identify the zeroth mode operator in terms of the higher
dimension (later we will show this is D = 10 through the critical dimension)
gamma matrices Γµ. These are analogous to the four dimension gamma
matrices we introduced in equation 2.11. We won’t go into details on the
construction here, but further reading on both gamma matrices and other
important SUSY algebra can be found here [55].

dµ0 =
1√
2

Γµ (3.71)
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the gamma matrices satisfy a Dirac algebra

{Γµ,Γν} = 2ηµν . (3.72)

This means they are spinors which allow degeneracy. This is analogous to
the four dimension Dirac equation 2.10 allowing spin up and down.

We will now use our energy-momentum tensor Tαβ and supercurrent JµA to
define our super Virasoro generators and algebra. This derivation follows
Becker [12]. Using our super-Virasoro constraints introduced in 3.60 to help
define our Fourier components of T++ and J+:

Lm =
1

π

∫ π

−π
dσeimσT++ = L(b)

m + L(f)
m . (3.73)

The bosonic contribution is the same as defined previously

L(b)
m =

1

2

∑
n∈Z

: α−n · αm+n : m ∈ Z. (3.74)

the fermionic contribution is dependent on the sector, in the NS sector

L(f)
m =

1

2

∑
r∈Z+ 1

2

(
r +

m

2

)
: b−r · bm+r : m ∈ Z (3.75)

and in the R sector

L(f)
m =

1

2

∑
n∈Z

(
n+

m

2

)
: d−n · dn+m : m ∈ Z. (3.76)

Once again, there are equivalent conditions for the left-movers. We can define
the modes of the supercurrent by integrating over the string, giving us the
supercurrent mode in our NS sector

Gr =

√
2

π

∫ π

−π
dσeirσJ+ =

∑
n∈Z

α−n · br+n r ∈ Z +
1

2
(3.77)

and in our R sector

Fm =
∑
n∈Z

α−n · dm+n m ∈ Z. (3.78)

This allows us to define the zero mode operator, which we will use to define
our mass squared of our excited states

L0 =
1

2
α2

0 +NNS/R. (3.79)
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Here we have introduced the number operator NNS/R, similar to the number
operators introduced for the bosonic string 3.40. We have to remember that
we also have the left-moving operators for our closed string. The left-moving
operators all have exact definitions but are defined with a tilde. Our number
operators, for our right-movers, can be defined as

NNS =
∞∑
n=1

α−n · αn +
∞∑
r= 1

2

rb−r · br, (3.80)

NR =
∞∑
n=1

α−n · αn +
∞∑
n= 1

2

d−n · dn. (3.81)

The NS sector obeys the following super-Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
D

8
m(m2 − 1)δm+n,0, (3.82)

[Lm, Gr] =
(m

2
− r
)
Gm+r, (3.83)

{Gr, Gs} = 2Lr+s +
D

2

(
r2 − 1

4

)
δr+s,0 (3.84)

and the R sector follows a slightly different super-Virasoro algebra

[Lm, Ln] = (m− n)Lm+n +
D

8
m3δm+n,0, (3.85)

[Lm, Fn] =
(m

2
− n

)
Fm+n, (3.86)

{Fm, Fn} = 2Lm+n +
D

2
m2δm+n,0. (3.87)

It is useful to note that there is no normal ordering constant when we define
F0, which we will later use this to find the normal ordering constant of the
R sector aR. When defining our Fock space, we used the definitions 3.68 and
3.69. We can expand this to the Virasoro generators by requiring the positive
modes annihilate the physical state |Φ〉 [12]. This gives us for our NS sector

Gr|Φ〉 = 0 r > 0, (3.88)

Lm|Φ〉 = 0 m > 0, (3.89)

(L0 − aNS)|Φ〉 = 0 (3.90)

and similarly the conditions on physical states in the R sector

Fn|Φ〉 = 0 n ≥ 0, (3.91)

Lm|Φ〉 = 0 m > 0, (3.92)

(L0 − aR)|Φ〉 = 0. (3.93)
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The last equation in both sectors comes from the ambiguity in the ordering of
the creation and annihilation operators. These are the superstrings normal
ordering constants, similar to the bosonic case. Using our number operators
defined in 3.80 and 3.81, we get a mass formula for our closed string by
combining with the corresponding left-moving conditions

M2 =
2

α′
(NA + ÑB − aA − aB). (3.94)

This is almost exactly as the bosonic string mass formula 3.43. Except, now
our number operators for our right moving NA and left moving ÑB can be
either NS or R independently. We still need to determine our normal ordering
constants, but from this equation we can see that the mass squared of our
string is dependent on the pairing of boundary conditions. We require that
both the left- and right-moving sectors of our closed string be level matched,
giving us the condition:

NA − aA = ÑB − aB. (3.95)

In order to calculate our normal ordering constants, we need to impose
Lorentz invariance. We will do this in detail since we glossed over it for
the bosonic string. This can be done in the NS sector and is seen in the
references [12] [64]. We first construct an first excited state |φ〉 of the form

|φ〉 = G− 1
2
|χ〉. (3.96)

|χ〉 must satisfy our physical state condition for our Virasoro generators 3.88

Lm>0|χ〉 = 0, (3.97)

the physical state conditions for successive states of the supercurrent 3.89
and the zero mode oscillator 3.90 which we can equate

G 1
2
|χ〉 = G 3

2
|χ〉 =

(
L0 − aNS +

1

2

)
|χ〉 = 0. (3.98)

This constant of 1
2

in the last equality comes fromG− 1
2

lowering the eigenvalue

of L0 from aNS to aNS − 1
2

[64]. All we have to do is prove that G 3
2
|χ〉 =

G 1
2
|χ〉 = 0, but since G 3

2
is a consequence of G 1

2
then the only condition

which needs to be checked is G 1
2

[12]. This is given by

G 1
2
|φ〉 = G 1

2
G− 1

2
|χ〉. (3.99)
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Rearranging of our anti-commutator relation 3.84 to give us

G 1
2
G− 1

2
= {G− 1

2
, G 1

2
} −G− 1

2
G 1

2
(3.100)

and remembering that our anti-commutator is equal to

{G− 1
2
, G 1

2
} = 2L0, (3.101)

when we plug in r = −1
2

and s = 1
2
. Leaving the following relation:

G 1
2
|φ〉 =

(
{G− 1

2
, G 1

2
} −G− 1

2
G 1

2
}
)
|χ〉 = 2L0|χ〉 = 2

(
aNS −

1

2

)
|χ〉 !

= 0

(3.102)

which can only vanish if:

aNS =
1

2
. (3.103)

The Ramond normal ordering constant can be calculated using the same
method, but it is easier to extract it as a consequence of F 2

0 = L0 giving us:

aR = 0. (3.104)

To determine our critical dimension, the one which preserves Lorentz invari-
ance, we can either go up another state in the NS sector or use our Ramond
sector. We consider a state in the R sector of the form:

|φ〉 = F0F−1|χ〉 (3.105)

with |χ〉 once again satisfying our physical state conditions

F1|χ〉 = (L0 + 1)|χ〉|χ〉 = 0. (3.106)

Once again, the introduction of the constant in the last term comes from the
F1 operator lowering the eigenvalue of the state, now by an integer value.
We need to show that L1|φ〉 is annihilated [12] [64]. Then using aR = 0 we
are left with

L1|φ〉 =
(1

2
F1 + F0F1

)
F−1|χ〉 =

1

4

(
D − 10)|χ〉 !

= 0 (3.107)

which is only satisfied when

D = 10. (3.108)
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Now we know that the superstring is a theory in D = 10, it is also useful to
discuss the spectrum of theory. This will be done for the open string, which
is actually just considering only one of the left- or right-moving sectors on
it’s own. We then can create the closed string spectrum by taking the ten-
sor product of the left- and right-moving components. Due to the choice of
boundary conditions for each sector, this can be rather complicated. Espe-
cially if we jumped straight into the closed string, so it’s easier to consider
the open string first. It is useful to move to the light-cone gauge, which
allows us to create all physical excitation by acting up the ground state with
the transverse raising modes, denoting this with a superscript i. To move to
the light-cone gauge, we need to use conformal and super-conformal invari-
ance, for both our bosonic and fermionic coordinates respectively. We can
use our super-Virasoro constraints 3.60, for our bosonic coordinates we use
the Energy-Momentum tensor to fix:

X+(σ, τ) = x+ + p+τ. (3.109)

Now fixing our fermionic coordinates, using the constraint on the super cur-
rent, our spacetime fermionic coordinates (in the NS sector only) become:

Ψ+(σ, τ) = 0. (3.110)

In the R sector, we have to keep the zero mode of the Ψ+ expansion [12],
which we will see why in the ground state. This means in our light-cone
gauge that now our lightcone coordinates, X+ and X− as well as Ψ+ and
Ψ−, are no longer independent degrees of freedom. This can be seen from
the definitions

X± =
1√
2

(
X0 ±XD−1

)
(3.111)

Ψ± =
1√
2

(
Ψ0 ±ΨD−1

)
. (3.112)

This removes our reparametrisation invariance for both the bosonic and fer-
monic coordinates, as well as the manifest Lorentz invariance, but we fix the
latter by working in the critical dimension D = 10.
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Neveu-Schwarz Sector

Starting with the NS sector, we obtain the NS mass-shell condition by com-
bining 3.94 with 3.80:

α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
r= 1

2

rbi−rb
i
r −

1

2
(3.113)

• Ground state:
The ground state of the NS sector is defined as the state which is
annihilated by αin and bir with n, r > 0:

|0, pµ〉NS, (3.114)

which must also satisfy,

αµ0 |o, pµ〉NS =
√

2α′pµ|0, pµ〉NS. (3.115)

The factor
√

2α′ is a normalisation factor [64]. Our ground state has a
mass squared of M2 = − 1

2α′
, meaning it is tachyonic. Using the same

reasoning as for the bosonic string, this is an unstable maximum. We
will discuss how this is removed from the spectrum shortly through the
use of a GSO projection.

• First excited state:
The first excited state is obtained by acting upon the ground state with
the raising oscillator with the lowest frequency [12], this is bi− 1

2

. For

clarity, our first excited state would not be the one which ai−1 acts upon
the ground state as instead this raises the eigenvalue by an integer unit
rather than half integer.

bi− 1
2
|0, pµ〉NS (3.116)

Acting with this oscillator will give us a massless state M2 = 0. The
superscript i on our oscillator represents the transverse directions of
our spacetime, in the light-cone gauge this actually means we are left
with 8 transverse directions. Our first excited state is a massless vec-
tor (needed for Lorentz invariance), which actually confirms both our
critical dimension D = 10 and our normal ordering constant aNS = 1

2
.

Higher order excited states are left from discussion, as we are only interested
in the massless states for phenomenology.
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Ramond Sector

The Ramond sector has the following mass-shell condition, which we obtain
in the same way as for the NS sector, but now instead using the Ramond
number operator 3.81:

α′M2 =
∞∑
n=1

αi−nα
i
n +

∞∑
n=1

ndi−nd
i
n (3.117)

• Ground state:
As discussed previously when we defined our Fock space, the Ramond
ground state is degenerate due to dµ0 not changing the mass of the state.
It is the state which is annihilated by both αin and din with n > 0:

|0, pµ〉R (3.118)

and must also satisfy

F0|0, pµ〉R = 0. (3.119)

Using our explanation before and our redefinition of d0 given in 3.71,
we see that our ground state is a spinor (which allows degeneracy).
This initially causes a problem when we realise that our zero mode dµ0
actually contains the D = 10 gamma matrices, which is 32× 32 matrix
with 32 components [12]. A solution comes by first applying Majorana
reality conditions, reducing our number of independent components by
half to 16. A further condition comes from the ground state having
to satisfy the Dirac equation. This reduces the number of indepen-
dent components to 8. The ground state of the Ramond sector is an
irreducible spinor of Spin(8) or SO(8).

• First excited state:
We have two options for our first excited state in our Ramond sector

αi−1|0, pµ〉R and di−1|0, pµ〉R (3.120)

However, it is obvious to see from 3.94 that the first and all higher
excited states will be massive so for our discussion they aren’t relevant.

The tachyonic ground state of the NS is a problem for us, as we want a theory
which only consists of physical states. We will also want a theory which can
sustain, if required, spacetime supersymmetry rather than just worldsheet
supersymmetry. Upon inspection, we can see if we were actually able to shift
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the NS first excited state to the ground state and remove the tachyonic state
then we’d have the same number of physical bosonic and fermionic degrees
of freedom in the ground (and further excited states). The method of do-
ing this is called a GSO projection, originally introduced Gliozzi, Scherk and
Olive [37]. We will introduce this in the next section and this is something we
will further generalise later for combination of states in the GGSO projection.

First, we will quickly discuss the closed string spectrum. This is formed
by the tensor product of both left- and right-movers.Before we discussed the
possible combinations before as being R-R, NS-NS, NS-R and R-NS coming
from the pairings of boundary conditions in each sector. There are actually
two different types of oriented closed superstring theories: type IIA and type
IIB which actually depend on the relative chirality of the left- and right-
moving R ground states [12]. This will be clearer after the next section, but
for now it suffices to understand that type IIA have the left and right R
sectors with opposite chirality and type IIB have the same chirality. Again,
we are only interested in the massless states, with these the only states inter-
esting for phenomenology. We will then explain why we actually use another
type of theory, heterotic strings, for the construction of our models and the
advantages of using heterotic strings over type IIA and type IIB strings.

The massless states of the type IIA theory:

|−〉R ⊗ |+〉R, (3.121)

b̃i− 1
2
|0〉NS ⊗ bj− 1

2

|0〉NS, (3.122)

b̃i− 1
2
|0〉NS ⊗ |+〉R, (3.123)

|−〉R ⊗ bi− 1
2
|0〉NS. (3.124)

The massless states of the type IIB theory:

|+〉R ⊗ |+〉R, (3.125)

b̃i− 1
2
|0〉NS ⊗ bj− 1

2

|0〉NS, (3.126)

b̃i− 1
2
|0〉NS ⊗ |+〉R, (3.127)

|−〉R ⊗ bi− 1
2
|0〉NS. (3.128)

From this, we can see these two theories differ only by the relative chirality
of the R-R sector. It is possible to actually map these two theories together
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using a target space duality (T-duality) transformation, more reading focused
on this can be found in reference [36]. Our type IIA/B strings have N = 2
supersymmetry, and IIA is a non-chiral and IIB a chiral D = 10 supergravity
theory [4]. We are going to move away from this to the heterotic string. The
heterotic string only has N = 1 supersymmetry which as mentioned in the
supersymmetry section is the only possible way to construct realistic models
[63]. After this, we will actually see that in a specific construction of these
heterotic strings, namely the free fermionic formulation, that it’s possible
to construct many realistic models algorithmically (by computer generation)
whilst showing the breaking patterns to the Standard Model gauge group.
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3.3 GSO projection

The last section showed that not only was the superstring spectrum not
spacetime supersymmetric, but more worryingly it fell to the same tachyonic
fate as our bosonic string in the ground state. This can be fixed by introduc-
ing a GSO projection for the states, pioneered by Gliozzi, Scherk and Olive
[37]. We apply a projection operator PGSO to a physical state |ψ〉 [4]:

|ψ〉 → PGSO|ψ〉. (3.129)

This actually accomplishes two things, first it allows us to have a spacetime
supersymmetry by matching the number of fermionic and bosonic states for
a particular level. It additionally allows us to keep our theory modular in-
variant. Modular invariance will be properly introduced in the free fermionic
models chapter but an overview comes from thinking of our theory as a
conformal field theory, mapped onto a torus. A conformal field theory is
really just a theory that looks the same at all different length scales and only
depends on the angles [60]. Modular invariance allows us to re-scale and
reorient the torus with a particular set of transformations, without changing
the underlying theory.

In the NS sector our projection operator is

PGSO =
1

2

[
1− (−1)F

]
(3.130)

where we have introduced the fermion number operator F , given by

F =
∞∑
r= 1

2

ηµνb
µ
−rb

ν
r . (3.131)

When the GSO projection is applied to the NS sector, any states with an
even number of b oscillators will be removed. Therefore, we see upon ap-
plication of the GSO projection that we are able remove the tachyon from
ground state of the NS sector. The R sector is different and must include
a chirality operator Γ11, which is the D = 10 analog of the D = 4 chirality
operator γ5 introduced in 2.13. This can be justified by our definition of our
zero mode operator d0 3.71.

In the R sector our projector operator is

P±GSO =
1

2

[
1∓ Γ11(−1)F

]
. (3.132)
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3.4 The heterotic string

As we have seen, a closed string allows the left- and right-moving fields to be
decoupled. This allows us the flexibility on to treat each separately and is
the basis of the heterotic string. In this construction, we impose supersym-
metry on the left-moving fields only, whilst treating the right-moving fields
as bosonic. This is different from our type IIA/B strings introduced above,
as type II strings have supersymmetry on both the left- and right-movers.
For a general superstring, the conformal anomaly is given by the sum of
the individual anomaly contributions for each field and multiplied by their
dimensional weighting [25]:

ctotal = cbg + cfg + cXµ ·D + cψµ ·D (3.133)

here cbg and cfg are the Faddeev-Popov ghost fields. These come from trying
to maintain manifest Lorentz invariance during path integral quantisation.
They are introduced to cancel the unphysical non-transverse degrees of free-
dom which arise [61]. It is easy to see that the left- and right-moving fields
are going to have differing critical dimensions and conformal anomalies. Con-
sidering our fermions have conformal weight of 1

2
and our bosons of weight

1:

cL = −26 + 11 +D +
D

2
= 0 ⇒ D = 10 (3.134)

cR = −26 +D = 0 ⇒ D = 26 (3.135)

The left-moving sector forms a superconformal algebra with N = 2 super-
symmetry and contains our superstring fields Xµ

+ and ψµ+ with µ = 0, ..., 9.
The left-moving sector is hence of critical dimension D = 10. The right-
moving sector forms a conformal algebra and has the usual bosonic fields Xµ

−
n with index µ = 0, ..., 25, critical dimension D = 26. We can then cancel our
anomalies by compactifying our extra 16 space-time dimensions onto a flat
torus. Modular invariance imposes some conditions on how we can do this,
requiring even and self-dual lattices with only two possible options E8⊗E8 or
SO(32). These are the HO and HE heterotic strings respectively. We could
then further compactify six dimensions onto a Calabi-Yau manifold, preserv-
ing N = 1 space-time supersymmetry giving the E6 group in four-dimensions
[25].

Instead, we are going to use the free fermionic formulation which was in-
troduced by two separate groups (Antoniadis, Bachas and Kounnas - ABK)
[8][6] and Kawai, Lewellen and Tye - KLT) [43][42]. In this project, we will be
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using the ABK formalism. We consider our extra degrees of freedom as free
fermions (we could also choose these to be bosons and this is called the free
bosonic construction) on the string worldsheet. This modifies our anomaly
equation: 3.135

cL = −26 + 11 +D +
D

2
+
NfL

2
(3.136)

cR = −26 +D +
NfR

2
. (3.137)

We want a four-dimensional spacetime D = 4, so we can plug this in and
then setting both the left and right parts equal to zero [40], giving the result

NfL = 18 and NfR = 44. (3.138)

Our four-dimensional heterotic string therefore has an extra 18 real Majorana-
Weyl left-moving fermions and 44 real Majorana-Weyl right-moving fermions.
Working in complex coordinates defined by

z = τ + iσ and z̄ = τ − iσ. (3.139)

This means we now have the following fields, here z represents our left-movers
and z̄ represent our right movers

Xµ(z, z̄), µ = 1, 2 (3.140)

ψµ(z), µ = 1, 2 (3.141)

λi, i = 1, ..., 18 (3.142)

λ̄j, j = 1, ..., 44. (3.143)

The spacetime bosons and fermions are restricted to two degrees of freedom,
which are transverse, hence we are in the light-cone gauge. Our free fermionic
heterotic string action is

S =
1

π

∫
d2z
(
∂zXµ∂z̄X

µ − 2iψµ∂zψµ − 2i
18∑
i=1

λi∂zλ
i − 2i

44∑
j=1

λ̄j∂z̄λ̄
j
)

(3.144)

The λi and λ̄i do not have a spacetime index and are considered as internal
degrees of freedom of the conformal field theory [46]. This finishes our review
of string theory. We will now move onto the main topic of this project, which
is construction of free fermionic models.
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Chapter 4

Free Fermionic Models

The aim of this project is to be able to link the Standard Model to string
theory. Analyse a realistic string model, which reproduces many of the fea-
tures of the Standard Model. The best models are built in the free fermionic
formulation [5, 6, 8]. We will now introduce the common notation of the
fermionic fields and the one that we will be using for the rest of this project.
It is useful to note that we will be complexifying some of our right-moving
worldsheet fermions 3.143, this can be done by combining two real fermions
[40]

λab =
1√
2

(λa + iλb), (4.1)

λ∗ab =
1√
2

(λa − iλb). (4.2)

We will only really be interested in the worldsheet fermions moving forward.
We must remember we also have our space-time bosonic 3.140 fields on our
left-moving SUSY sector and our right non-SUSY sector which we will pack-
age as

Xµ, with µ = 0, 1, 2, 3. (4.3)

Now, our worldsheet 18 left-moving 3.142 and 44 right-moving 3.143 free
fermions that we introduced in the previous section can be represented in
the following way

{ψµ, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, ψ̄∗1,...,5, η̄∗1,2,3, φ̄∗1,...,8} (4.4)

here, the complex fermions are represented with a ∗ superscript but we will
drop this notation after this. The η̄1,2,3, ψ̄1,...,5 and φ̄1,...,8 correspond to the
gauge groups U(1)3, SO(10) and SO(16) respectively [28].
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4.1 Boundary Conditions and Modular In-

variance

For perturbative theories, it’s important to consider the construction of the
one-loop partition function. This involves integrating over all the indepen-
dent tori. We can determine which tori are independent from each other
by considering the two non-contractible loops which form the tori and con-
sidering the set of transformations which preserve modular invariance [40].
Modular invariance is found to be a fundamental symmetry of all closed string
models. These modular transformations are a discrete set of transformations
that leave the world-sheet string action invariant [22]. Defining a complex
parameter or ’modular parameter’ τ which parametrises the inequivalent tori
by

τ = τ1 + iτ2, (4.5)

here, τ1 is considered a spatial coordinate and τ2 a time coordinate [40]. We
want to find transformations in which nothing changes if we re-scale and
reorient the torus. we find that the torus invariant under transformations of
the form

T : τ → τ + 1 (4.6)

S : τ → −1

τ
(4.7)

Where T redefines the same torus and S swaps the coordinates and reorients
the torus [40]. These transformations called the modular group, with the
following group algebra [40]

τ → aτ + b

cτ + d
. (4.8)

We can interpret this as a matrix(
a b

c d

)
(4.9)

this allows us to see our transformations more clearly as

T =

(
1 1

0 1

)
and S =

(
0 −1

1 0

)
. (4.10)
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The fundamental domain of our modular parameter, which will be the domain
we integrate over is:

F = {τ ∈ C : |τ | ≥ 1, −1

2
≤ Re(τ) <

1

2
, Im(τ) > 0}. (4.11)

Any region outside of this can be mapped, by our modular transformations,
to inside our fundamental domain.

We must define our boundary conditions for each of our worldsheet fermions.
As usual these will be NS or R but the way we define these will be slightly
different. Each worldsheet fermion can be parallel transported around the
non-contractible loops of the torus, picking up a phase

f → −eiπα(f)f. (4.12)

Real fermions pick up an integer phase α(f) = 0, 1, which correspond to NS
and R boundary conditions respectively [5]. Complex fermions instead pick
up a phase of α(f) = (−1, 1] [40]. Our torus has two non-contractible loops,
so we must define each fermion with the phase picked up on both of these
loops. A single fermion f would be defined with the phases[

α(f)

β(f)

]
(4.13)

but we must define something we call a spin structure for all 64 of our world-
sheet fermions. Reintroducing our new notation from 4.4, we are left with
the spin structure α of a single non-contractible loop [40]

α = {α(ψµ1 ), ..., α(ω6)|α(ȳ1), ..., α(φ̄8)} (4.14)

and similar for our second loop β. So our complete spin structure can be
represented as [

α

β

]
. (4.15)

It is this large choice of combinations of different phases for our fermions
which will allows us to construct our range of models, as shown in [23].

To compute the one-loop amplitude, which is our physical partition func-
tion we must integrate both the bosonic and fermionic contributions over the
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fundamental domain [25, 46]:

Z =

∫
F

dτdτ̄

(Im τ)2
Z2
B

∑
Spin structure

C

(
α

β

) 64∏
f=1

ZF

[
α

β

]
. (4.16)

Our bosonic contribution ZB should look familiar

ZB =
1√

Im τ |η(τ)|2
(4.17)

here η(τ) is the Dedekind eta function defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn), with q = e2πiτ . (4.18)

The first two terms dτdτ̄
(Im tau)2 and ZB are already modular invariant; the ABK

rules [8] are defined by imposing modular invariance under our transfor-
mations S and T on the rest of of the contributions. The one-loop phase
coefficients C

(
α
β

)
will be covered in the next section when we will state the

ABK rules. A full derivation can be found in the original text [8] or appendix
c in [4].
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4.2 ABK Rules

In the last section, we stated the partition function for the heterotic string.
Upon imposing modular invariance we gain the the ABK/KLT rules, which
were originally derived by two separate research groups. The KLT formalism
developed in [43, 42] is equivalent but we are going to be using the formalism
developed by Antoniadis, Bachas and Kounnas in [8, 6]. Our fermions, as
described in the previous section, pick up a phase when parallel transported
around the two non-contractible loops of the torus. These correspond to our
boundary conditions. Our models are going to be built by defining a set of
basis vectors, which are themselves the set of 64 boundary conditions. A
general basis vector can be defined as

bi = {α(ψµ1 ), ..., α(ω6)|α(ȳ1), ..., α(φ̄8)} (4.19)

and α(f) is our boundary condition for the fermion f taking values of

α(f) =


0 Anti-periodic (NS)

1 Periodic (R)
1
2

Complex

. (4.20)

Our boundary conditions in our non-SUSY model will only ever be NS or R
which simplifies a lot of the calculations. This will be especially apparent
when we introduce the GGSO projection in the next section. The collection
of all our basis vectors form an finite additive group Ξ which span a space of
2N+1 sectors defined by a linear combination of the basis vectors [30]:

Ξ =
N∑
i=1

mjbi, with mj = 0, ..., Nj − 1 (4.21)

where Nj · bj = 0 mod 2. This formula is just really a fancy way of saying
all our basis vectors need to be linearly independent and a vector is not a
basis vector if it can be made from a combination of the other basis vectors.
This will be more apparent when we compare the basis vectors of our model
to previous works, we will find that a vector common in other models z2 can
actually be created through a linear combination of our other basis vectors
and hence should not be included. Our basis vectors have to be selected
carefully. Thinking of our model as a conformal field theory means that our
basis vectors need to be modular invariant and this is used to derive our
ABK rules.
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Rules on the Basis Vectors

Imposing modular invariance gives us the following 5 rules on our basis vec-
tors:

1. The basis vector, where all our boundary conditions are periodic must
be in our group

1 ∈ Ξ (4.22)

2. There must be an even number of real fermions

3. Our basis, which can be chosen to be canonical

N∑
i=1

mibi = 0 ⇔ mi = 0 mod Ni, ∀i (4.23)

4. The basis must obey the condition:

Nijbi · bj = 0 mod 4 (4.24)

5. The basis must also obey the condition, if Ni is even:

Nibi = 0 mod 8 (4.25)

The scalar product of two our our basis vectors, α and β, is given by:

α · β =
(∑
Left

−
∑
Right

)
α(f)β(f) (4.26)

here complex fermions are weighted as 2 real fermions. This can be seen from
our complexification formula 4.1, which will will repeat here just for clarity:

λab =
1√
2

(λa + iλb),

λ∗ab =
1√
2

(λa − iλb).
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Rules on the Phase Coefficients

When imposing modular invariance we also get the following rule on the
one-loop phase coefficients:

1.

C

(
bi
bj

)
= δbie

2iπ
Nj

n
= δbje

iπ
2
bi·bje

2iπ
Ni

m
(4.27)

2.

C

(
bi
bi

)
= −e

iπ
4
bi·biC

(
bi
1

)
(4.28)

3.

C

(
bi
bj

)
= e

iπ
2
bi·bjC

(
bj
bi

)∗
(4.29)

4.

C

(
bi

bj + bk

)
= δbiC

(
bi
bj

)
C

(
bi
bk

)
(4.30)

here, the ∗ means conjugate, but we will only have real boundary conditions
in our models so this doesn’t really affect us. δbi is called the spacetime
spin statistics index [40], which is either ±1 depending whether the sector bi
contains our spacetime fermions ψµ:

δbi =

{
−1 bi contains ψµ

1 bi does not contain ψµ
(4.31)
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4.3 GGSO Projections and Mass Formulae

In section 3.3, we introduced the concept of being able to project out cer-
tain states of our fermionic string. Specifically, this was used to remove the
tachyon from the spectrum and match the number of fermionic and bosonic
states. We would now like to be able to perform GSO projections on each of
our basis vectors, which contain combinations of states, this extension is the
Generalised GSO (GGSO) projection [37]. Our GGSO projection is given by

eiπbi·Fα|s〉α = δαC

(
α

bi

)∗
|s〉α, (4.32)

here |s〉α is a state in the sector α ∈ Ξ. States which satisfy this expression
are kept in the spectrum. Whereas states that do not are projected out, like
our fermionic string tachyon.

The string we are dealing with is heterotic, which means the mass of the
left- and right-moving sectors is decoupled and we can consider them sep-
arately. We still require our mass to by level matched, i.e. satisfying the
Virasoro condition:

M2
L

!
= M2

R, (4.33)

where the masses of the left- and right-moving sectors are given by

M2
L = −1

2
+
αL · αL

8
+NL (4.34)

M2
R = −1 +

αR · αR
8

+NR. (4.35)

The NL,NR are the sum of the left- and right-moving oscillators

NL,R =
∑
fL,R

νf +
∑
f∗L,R

νf∗ (4.36)

here νf,f∗ are the frequencies of the fermion f or complex conjugate fermion
f ∗ and are given by

νf =
1 + α(f)

2
, νf∗ =

1− α(f)

2
. (4.37)

We will be interested in the sectors which are tachyonic, so we can ensure
they are removed, and for the sectors which are massless. We are now ready
to construct our non-SUSY models.
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Chapter 5

Non-supersymmetric models

A lot of work has been done in previous in the free fermionic formulation
introduced in [8, 43, 5]. Early three generation standard-like models and
their construction happened in the late eighties / early nineties and can be
found in [7, 29, 27]. Later research focused on models containing a common
basis of five basis vectors {1, S, b1, b2, b3}, called the NAHE set [26], which
generates a gauge group of SO(10) ⊗ SO(6)3 ⊗ E8. In these models, the
S-vector generates an N = 4 spacetime supersymmetry which is broken to
N = 2 then N = 1 by the b1 and b2 vectors respectively, whilst the final
b3 either preserves or removes the remaining spacetime supersymmetry [28].
Additional extensions of these models came from adding additional basis vec-
tors which allowed the breaking of the SO(10) gauge group into commonly
recognised GUT gauge groups.

The latest papers use an extended basis and research has been heavily fo-
cused on the classification [9, 24, 23, 30]. The model presented is going to
use a modified version of the unbroken SO(10) basis vectors, used in the
classification paper [23] where the ei, i = 1, ..., 6 basis vectors will instead be
grouped in pairs as Ti, i = 1, 2, 3. This pairing of basis vectors has been used
in the paper [32], focused on strings with positive cosmological constants.
This differs from our selection of basis vectors in a few distinct ways.
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5.1 Basis Vectors

We will use the basis presented in [32] with a few modifications:

1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6 | y1,...,6, ω1,...,6, ψ
1,...,5

, η1,2,3, φ
1,...,8},

S̃ = {ψµ, χ1,...,6 | φ3,4,5,6},
T1 = {y1,2, ω1,2 | y1,2, ω1,2},
T2 = {y3,4, ω3,4 | y3,4, ω3,4},
T3 = {y5,6, ω5,6 | y5,6, ω5,6},

b1 = {ψµ, χ12, y34, y56 | y34, y56, η1, ψ
1,...,5}, (5.1)

b2 = {ψµ, χ34, y12, y56 | y12, y56, η2, ψ
1,...,5},

b3 = {ψµ, χ56, y12, y34 | y12, y34, η3, ψ
1,...,5},

z1 = {φ1,...,4},
α = {ψ̄4,5, φ̄1,2}. (5.2)

The addition of the α vector breaks the SO(10) gauge group to the Pati-
Salam gauge group SO(4)⊗SO(6). Pati-Salam models were classified in [9].
Our model differs from those Pati-Salam classification paper in the following
way:

1. The SUSY generating vector is replaced with a SUSY breaking vector
S → S̃

2. The ei, i = 1, ..., 6 are paired up into the T1,2,3

3. b3 is its own basis vector rather than a linear combination

4. z2 appears as a linear combination so is not present in the basis

5. ψµ is Ramond in the b1,2,3 rather than NS

These changes have a few consequences, which we will talk about briefly but
later discuss in more detail throughout this section. The replacement of the
SUSY-vector S with S̃ has a few key consequences, the obvious one is there
is no generation of the N = 4 spacetime supersymmetry. Lack of space-
time supersymmetry means further consideration of the tachyonic sectors is
required. Tachyonic sectors and specifically the removal of these through
choices of GGSO coefficients are now of primary importance and will be a
major discussion of this work.
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Another consequence of the change of basis vectors is now that the vec-
tor z2 is not linearly independent and cannot be included as a basis vector.
We can actually see that z2 can be created from the combination:

z2 = 1 +
∑
i

Ti +
∑
i

bi + z1 = {φ̄5,...,8} (5.3)

and whenever z2 is included following this it refers to this linear combination,
rather than a independent basis vector. The inclusion of b3 as a basis vector
also comes from the change to S̃, as it can no longer be created from a linear
combination. Later, we will discuss on the grouping of the ei basis vectors
into Ti’s, how this constrains the moduli space and our models ability of the
model to generate three generation models. Another useful combination is:

x̃ = b1 + b2 = b3 = {ψµ, χ1,...,6|ψ̄1,...,5, η̄1,2,3} (5.4)

What we are going to do next is present all the possible tachyonic and mass-
less sectors ML,R ≤ 0 that can arise in our model. This is done quickly by
running the basis vectors through some simple Python code and then ensur-
ing our sectors are linearly independent. Running this code, we see that we
are left with a total of 243 sectors to analyse. These are listed throughout
the next sector, but we will focus our analysis on the observable sectors.
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5.2 Tachyonic Sector Analysis

For our Tachyonic sectors, we are going to group them by mass level. This
is just (M2

L,M
2
R) and it allows us to more easily sort them. We require the

tachyons to be level matched M2
L = M2

R, so in some sectors we are going to
need an addition of an oscillator and these are called vectorial sectors. The
already level matched tachyonic states are the spinorial tachyons.

Mass Level Vectorials Spinorials Total

(−1
2
,−1

2
) {λ̄i}|NS〉 z1, α, z1 + α, z2 5

(−1
4
,−1

4
) {λ̄i}Ti Ti + z1, Ti + α, Ti + z1 + α, Ti + z2 15

As we can see from the table, we have 5 tachyons in the (−1
2
,−1

2
) mass level

and 15 in the (−1
4
,−1

4
) mass level. This gives us a total of 20 tachyonic

states. We will now discuss the projector for each of these states.

5.2.1 Absence of Tachyons - Tachyonic Projectors

We can summarise the tachyons and the corresponding vectors will project
them into a table:

Sector Projecting vectors

{λ̄i}|NS〉 all

z1 T1, T2, T3, b1, b2, b3, z2

α S̃, T1, T2, T3, z2

z1 + α T1, T2, T3, z2

z2 T1, T2, T3, b1, b2, b3, z1, α

{λ̄i}Ti S̃, Tj, Tk, bi, z1, α, z2, x̃

Ti + z1 Tj, Tk, bi, x̃, z2

Ti + α S̃, Tj, Tk, z2

Ti + z1 + α Tj, Tk, z2

Ti + z2 Tj, Tk, bi, x̃, z1, α
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{λ̄i}|NS〉 Tachyonic Sectors Projection Conditions

The conditions on the phases to project the NS tachyonic sector are seen in the table below:

Oscillator C
(
NS
1

)
C
(
NS
S̃

)
C
(
NS
T1

)
C
(
NS
T2

)
C
(
NS
T3

)
C
(
NS
b1

)
C
(
NS
b2

)
C
(
NS
b3

)
C
(
NS
z1

)
C
(
NS
α

)
C
(
NS
z2

)
C
(
NS
x̃

)
ȳ1,2 + - + - - - + + - - - -

ȳ3,4 + - - + - + - + - - - -

ȳ5,6 + - - - + + + - - - - -

ω̄1,2 + - + - - - - - - - - -

ω̄3,4 + - - + - - - - - - - -

ω̄5,6 + - - - + - - - - - - -

ψ1/2/3 + - - - - + + + - - - +
¯ψ4/5 + - - - - + + + - + - +

η̄1 + - - - - + - - - - - +

η̄2 + - - - - - + - - - - +

η̄3 + - - - - - - + - - - +
¯φ1/2 + - - - - - - - + + - -
¯φ3/4 + + - - - - - - + - - -
¯φ5/6 + + - - - - - - - - + -
¯φ7/8 + - - - - - - - - - + -
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{λ̄i}T1 Tachyonic Sector calculation

First, we need to check the mass squared level of both the left- and right-
movers

M2
L = −1

2
+
αL · αL

8
+NL == −1

2
+

2

8
+NL = −1

4
+NL (5.5)

M2
L = −1 +

αR · αR
8

+NR = −1 +
2

8
+NR = −3

4
+NR. (5.6)

From this, we can see we need the sum of the right-moving oscillators to be
NR = 1

2
. We can calculate the frequencies of these oscillators:

νf =
1 + α(f)

2
=

1

2
(5.7)

and we see this is satisfied when α(f) = 0. so single complex (or two real)
NS right-mover is required for level matching. In this sector our NS right-
movers are {ȳ3,4, ȳ5,6, ω̄3,4, ω̄5,6, ψ̄1/2/3/4/5, η̄1/2/3, φ̄1/2/3/4/5/6/7/8}. Here, the
superscripts separated with a comma indicate they are grouped together
and the slash means each each is a separate oscillator. The list of our
projectors will be calculated at the same way as the sectors which aren’t
level matched. We are effectively looking for the basis vectors/combinations
which do not ’overlap’ with T1. Hence we can see that our projectors are
S̃, T2, T3, b1, z1, α, z2, x̃. We must calculate the conditions of projection of
the {λ̄i}T1 tachyon for all the combinations of these possible oscillators and
projectors.

• if oscillator is {ȳ3,4} then:
S̃ projection:

eiπS̃·Fȳ3,4eiπS̃·FT1 |ξ〉 = δT1C

(
T1

S̃

)
|ξ〉 (5.8)

We can see that S̃ · Fȳ3,4 = 0 and S̃ · FT1 = 0. Whilst clearly δT1 = 1
as the sector T1 does not contain spacetime fermions ψµ. Hence we are
left with the condition on the phase:

C

(
T1

S̃

)
=

{
1 =⇒ in

−1 =⇒ projected
(5.9)

T3, z1, α, z2, x̃ projections: We can use the same reasoning to speed
things up a bit here. We see that the projectors which also have no
’overlap’ with the ȳ3,4 oscillator and hence hold the same condition on
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the phase are T3, z1, α, z2, x̃. These calculations will be therefore left
out as they are identical to the S̃ calculation.

C

(
T1

T3

)
= C

(
T1

z1

)
= C

(
T1

α

)
= C

(
T1

z2

)
= C

(
T1

x̃

)
(5.10)

=

{
1 =⇒ in

−1 =⇒ projected
(5.11)

We will now show what happens when an oscillator overlaps with the
projector by considering the T2 and b1 projections.
T2, b1 projections:
we will firstly just consider the b1 projector and show that T2 is similar.

eiπb1·Fȳ3,4eiπb1·FT1 |ξ〉 = δT1C

(
T1

b1

)
(5.12)

Now we can see that the difference is now eiπb1·Fȳ3,4 = −1 and hence
flips our phase coefficient. The same will be true of T2. This gives us
the conditions on the phase coefficients:(

T1

T2

)
= C

(
T1

b1

)
=

{
1 =⇒ projected

−1 =⇒ in
(5.13)

• For the other oscillators each calculation is similar. The phases to
project out the {λ̄i}T1, {λ̄i}T2 and {λ̄i}T3 tachyons are summarised in
the tables below.
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{λ̄i}Ti Tachyonic Sectors Projection Conditions

Oscillator C
(
T1

S̃

)
C
(
T1

T2

)
C
(
T1

T3

)
C
(
T1

b1

)
C
(
T1

z1

)
C
(
T1

α

)
C
(
T1

z2

)
C
(
T1

x̃

)
ȳ3,4 - + - + - - - -

ȳ5,6 - - + + - - - -

ω̄3,4 - + - - - - - -

ω̄5,6 - - + - - - - -

ψ̄1/2/3 - - - + - - - +

ψ̄4/5 - - - + - + - +

η̄1 - - - + - - - +

η̄2/3 - - - - - - - +

φ̄1/2 - - - - + + - -

φ̄3/4 + - - - + - - -

φ̄5/6 + - - - - - + -

φ̄7/8 - - - - - - + -

Oscillator C
(
T2

S̃

)
C
(
T2

T1

)
C
(
T2

T3

)
C
(
T2

b2

)
C
(
T2

z1

)
C
(
T2

α

)
C
(
T2

z2

)
C
(
T2

x̃

)
ȳ1,2 - + - + - - - -

ȳ5,6 - - + + - - - -

ω̄1,2 - + - - - - - -

ω̄5,6 - - + - - - - -

ψ̄1/2/3 - - - + - - - +

ψ̄4/5 - - - + - + - +

η̄2 - - - + - - - +

η̄1/3 - - - - - - - +

φ̄1/2 - - - - + + - -

φ̄3/4 + - - - + - - -

φ̄5/6 + - - - - - + -

φ̄7/8 - - - - - - + -
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Oscillator C
(
T3

S̃

)
C
(
T3

T1

)
C
(
T3

T2

)
C
(
T3

b3

)
C
(
T3

z1

)
C
(
T3

α

)
C
(
T3

z2

)
C
(
T3

x̃

)
ȳ1,2 - + - + - - - -

ȳ3,4 - - + + - - - -

ω̄1,2 - + - - - - - -

ω̄3,4 - - + - - - - -

ψ̄1/2/3 - - - + - - - +

ψ̄4/5 - - - + - + - +

η̄3 - - - + - - - +

η̄1/2 - - - - - - - +

φ̄1/2 - - - - + + - -

φ̄3/4 + - - - + - - -

φ̄5/6 + - - - - - + -

φ̄7/8 - - - - - - + -
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5.3 Massless Sector Analysis

In total, we have 223 massless sectors. These can be split into three groups:
197 spinorials, 21 vectorials and 5 enhancements. We will present and group
all the sectors, but for the analysis in this paper we will only be focusing on
the observable sectors (for both the spinorial and vectorials).

5.3.1 Spinorials

There is a total of 197 spinorial massless sectors. These are sectors which are
of mass level (4, 8) and do not require an oscillator. We will group these by
observable sectors, hidden and exotic sectors and then further split them into
fermionic and bosonic sectors which depends on the presence of the spacetime
fermions.

Observable

There are 12 (actually 13, which we explain below) twisted sectors corre-
sponding to the fermionic observable 16/1̄6 of SO(10) which come from the
combinations:

B1
pq = b1 + pT2 + qT3 (5.14)

B2
pq = b2 + pT1 + qT3 (5.15)

B3
pq = b3 + pT1 + qT2 (5.16)

We obtain the projectors for our spinorial/anti-spinorial 16/1̄6’s sectors of
SO(10):

P 1
pq =

1

23

[
1− C

(
B1
pq

T1

)] 2∏
i=1

[
1− C

(
B3
pq

zi

)]
(5.17)

P 2
pq =

1

23

[
1− C

(
B2
pq

T2

)] 2∏
i=1

[
1− C

(
B3
pq

zi

)]
(5.18)

P 3
pq =

1

23

[
1− C

(
B3
pq

T3

)] 2∏
i=1

[
1− C

(
B3
pq

zi

)]
(5.19)
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We can distinguish between our spinorials and anti-spinorials with appropri-
ate projections, for example for B1

pq:

e
iπ(b2+(1−q)T3)·F

B1
pq |ξ〉B1

pq
= δB1C

(
B1
pq

b2 + (1− q)T3

)
|ξ〉B1

pq
(5.20)

=⇒ eiπ(F (ψµ)−F (ψ̄1,...,5))|ξ〉B1
pq

= −C
(

B1
pq

b2 + (1− q)T3

)
|ξ〉B1

pq
(5.21)

=⇒ eiπF (ψ̄1,...,5)|ξ〉B1
pq

= −ch(ψµ)C

(
B1
pq

b2 + (1− q)T3

)
|ξ〉B1

pq
(5.22)

we define our spacetime chirality ch(ψµ) = +1. The chirality of our surviving
16/1̄6’s is given by:

χ1
pq = −ch(ψµ)C

(
B1
pq

b2 + (1− q)T3

)
P 1
pq (5.23)

χ2
pq = −ch(ψµ)C

(
B2
pq

b1 + (1− q)T3

)
P 2
pq (5.24)

χ3
pq = −ch(ψµ)C

(
B3
pq

b1 + (1− q)T2

)
P 3
pq. (5.25)

What differs in our models in comparison to other models is the spacetime
fermions are Ramond in b1, b2, b3. This means our x̃ sector also contributes
to our observable 16/1̄6’s. Another feature of the x̃ sector is that it can act
as a map from fermion ↔ boson:

B4 = x̃ = b1 + b2 + b3 = {ψµ, χ1,...,6|ψ̄1,...,5, η̄1,2,3} (5.26)

We can similarly construct a projector for the x̃ sector:

P 4 =
1

25

3∏
i=1

[
1− C

(
x̃

Ti

)] 2∏
j=1

[
1− C

(
x̃

zi

)]
. (5.27)

We actually get both a 16 and 1̄6 from the x̃ sector, so we will deal with this
separately if the sector is present. We can then count the number of 16/1̄6’s
for B1,2,3 to these equations we need to remember to add an addition 16 and
1̄6 to each:

N16 =
1

2

∑
A=1,2,3,4

PA
pq(1 + χApq) (5.28)

N1̄6 =
1

2

∑
A=1,2,3,4

PA
pq(1− χApq). (5.29)
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Here the factor 1
2

is just a normalising factor from the construction of the

equation. S̃ means that no superpartner sectors arise for the SO(10) 16/1̄6’s,
i.e. we have no supermultiplets. The 16/1̄6 representations of SO(10) de-
composed under the Pati-Salam group, i.e. SO(6) ⊗ SO(4) ≡ SU(4) ⊗
SU(2)L ⊗ SU(2)R, given in 2.40:

16→ (4, 2, 1) + (4̄, 1, 2) = NL + N̄R (5.30)

1̄6→ (4, 1, 2) + (4̄, 2, 1) = NR + N̄L (5.31)

We determine whether our spinorials/anti-spinorials have left or right chiral-
ity by a projection with the α vector. This will allow us to determine the
chirality of the ψ̄4,5. We can show this more explicitly to explain:

e
iπα·F

BApq |ξ〉 = δBApqC

(
BA
pq

α

)
|ξ〉 (5.32)

=⇒ ch(ψ̄4,5) = −C
(
BA
pq

α

)
. (5.33)

The convention, adopted in [31], for left/right chirality is:

C

(
BA
pq

α

)
=

{
+1 =⇒ Left

−1 =⇒ Right.
(5.34)

Combining this with our spinorial/anti-spinorial counting expressions, we are
able to count the number of left and right moving spinorial/anti-spinorials:

NL =
1

4

∑
A=1,2,3,4

PA
pq(1 + χApq)

[
1 + C

(
BA
pq

α

)]
(5.35)

N̄R =
1

4

∑
A=1,2,3,4

PA
pq(1 + χApq)

[
1− C

(
BA
pq

α

)]
(5.36)

N̄L =
1

4

∑
A=1,2,3,4

PA
pq(1− χApq)

[
1 + C

(
BA
pq

α

)]
(5.37)

NR =
1

4

∑
A=1,2,3,4

PA
pq(1− χApq)

[
1− C

(
BA
pq

α

)]
. (5.38)

Finally, we can count the total number of fermion generations ng. Here, we
must be mindful of the degeneracy of the states. We actually get a factor of
4 for each sector present:

ng = 4
(
NL − N̄L

)
= 4

(
N̄R −NR

)
(5.39)
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Hidden

These are the spinorial sectors which contain the hidden group ¯φ1,...,8, but do
not contain the observable group ψ̄1,..,5. We get 24 hidden bosonic spinorial
sectors of the form:

B1
pq + x̃+ z1 (5.40)

B2
pq + x̃+ z1 (5.41)

B3
pq + x̃+ z1 (5.42)

B1
pq + x̃+ z2 (5.43)

B2
pq + x̃+ z2 (5.44)

B3
pq + x̃+ z2 (5.45)

(5.46)

We also get an additional 6 hidden bosonic sectors, which come from the
addition of z1 and z2 to the scalars:

Ti + Tj + z1 (5.47)

Ti + Tj + z2 (5.48)

where i 6= j. There are a total of 48 hidden fermionic sectors:

B1
pq + S̃ + x̃ (5.49)

B2
pq + S̃ + x̃ (5.50)

B3
pq + S̃ + x̃ (5.51)

B1
pq + S̃ + x̃+ z1 (5.52)

B2
pq + S̃ + x̃+ z1 (5.53)

B3
pq + S̃ + x̃+ z1 (5.54)

B1
pq + S̃ + x̃+ z2 (5.55)

B2
pq + S̃ + x̃+ z2 (5.56)

B3
pq + S̃ + x̃+ z2 (5.57)

B1
pq + S̃ + x̃+ z1 + z2 (5.58)

B2
pq + S̃ + x̃+ z1 + z2 (5.59)

B3
pq + S̃ + x̃+ z1 + z2 (5.60)
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Exotic

Exotic sectors are those which contain both the observable ψ̄1,..,5 and the
hidden group φ̄1,...,8. We get 48 exotic bosonic sectors of the form:

B1
pq + x̃+ α (5.61)

B2
pq + x̃+ α (5.62)

B3
pq + x̃+ α (5.63)

B1
pq + x̃+ z1 + α (5.64)

B2
pq + x̃+ z1 + α (5.65)

B3
pq + x̃+ z1 + α (5.66)

B1
pq + S̃ + z1 + α (5.67)

B2
pq + S̃ + z1 + α (5.68)

B3
pq + S̃ + z1 + α (5.69)

B1
pq + S̃ + z1 + z2 + α (5.70)

B2
pq + S̃ + z1 + z2 + α (5.71)

B3
pq + S̃ + z1 + z2 + α (5.72)

and an extra 6 sectors which come from combinations involving the scalars:

Ti + Tj + α (5.73)

Ti + Tj + α + z1 (5.74)
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where i 6= j. There are 48 fermionic hidden sectors of the form:

B1
pq + α (5.75)

B2
pq + α (5.76)

B3
pq + α (5.77)

B1
pq + z1 + z2 + α (5.78)

B2
pq + z1 + z2 + α (5.79)

B3
pq + z1 + z2 + α (5.80)

B1
pq + S̃ + x̃+ z1 + α (5.81)

B2
pq + S̃ + x̃+ z1 + α (5.82)

B3
pq + S̃ + x̃+ z1 + α (5.83)

B1
pq + S̃ + x̃+ z1 + z2 + α (5.84)

B2
pq + S̃ + x̃+ z1 + z2 + α (5.85)

B3
pq + S̃ + x̃+ z1 + z2 + α (5.86)

(5.87)

and then 4 additional hidden fermionic combinations:

S̃ + α (5.88)

S̃ + α + z2 (5.89)

x̃+ α (5.90)

x̃+ z1 + α (5.91)
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5.3.2 Vectorials

There are a total of 21 vectorial massless sectors which we will now group..

Observable

There are 12 bosonic observable 10’s of SO(10) from the combinations:

V 1
pq = B1

pq + x̃ (5.92)

V 2
pq = B2

pq + x̃ (5.93)

V 3
pq = B3

pq + x̃. (5.94)

(5.95)

We can write projectors for our observable 10’s by considering two cases
which we are interested in. These are bi-doublets (oscillator is ψ̄4,5) and
triplets (oscillator is ψ̄1,2,3).The projectors for the bi-doublet case:

R1
pq =

[
1 + C

(
V 1
pq

T1

)][
1− C

(
V 1
pq

α

)] 2∏
i=1

[
1 + C

(
V 1
pq

zi

)]
(5.96)

R2
pq =

[
1 + C

(
V 2
pq

T2

)][
1− C

(
V 2
pq

α

)] 2∏
i=1

[
1 + C

(
V 2
pq

zi

)]
(5.97)

R3
pq =

[
1 + C

(
V 3
pq

T3

)][
1− C

(
V 3
pq

α

)] 2∏
i=1

[
1 + C

(
V 3
pq

zi

)]
(5.98)

This allows us to count the number of bi-doublets. We need to once again
remember the factor 4 which comes from degeneracy:

N ψ̄4,5

10 = 4
∑

A=1,2,3

RA
pq (5.99)

here the sum over p, q implicit. We can also construct projectors for the
triplets, which just differ in sign for the phase with α, just to differentiate
we will denote these with a tilde:

R̃1
pq =

[
1− C

(
V 1
pq

T1

)][
1 + C

(
V 1
pq

α

)] 2∏
i=1

[
1− C

(
V 1
pq

zi

)]
(5.100)

R̃2
pq =

[
1− C

(
V 2
pq

T2

)][
1 + C

(
V 2
pq

α

)] 2∏
i=1

[
1− C

(
V 2
pq

zi

)]
(5.101)

R̃3
pq =

[
1− C

(
V 3
pq

T3

)][
1 + C

(
V 3
pq

α

)] 2∏
i=1

[
1− C

(
V 3
pq

zi

)]
(5.102)
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which allows us to count the number of triplets:

N ψ̄1,2,3

10 = 4
∑

A=1,2,3

R̃A (5.103)

Scalar

There are
(

3
2

)
= 3 scalars. These are sectors with no observable or hidden

groups. We would have to be careful if we were planning to proceed with
classification here, as these combinations could contribute to the vectorial bi-
doublets (if oscillator ψ̄4,5) or triplets (if oscillator ψ̄1,2,3). Hence, in theory
should count their contributions. In this paper however, we are excluding
the contributions from these. If we wanted we could set up projectors for
these states and ensure they are projected. These scalars come from the
combinations:

Ti + Tj (5.104)

where i 6= j.

Exotic

The last 6 of our vectorial sectors are all exotic, at least without any os-
cillators. For classification, we would have to be careful again with what
oscillators could be present, ¯ψ1,2,3,4,5 oscillators could affect the observable
group and careful consideration would need to taken to ensure their projec-
tion. Likewise, these combinations could become purely hidden. We will not
be considering these in our analysis. We have the following combinations:

S̃ (5.105)

S̃ + z1 (5.106)

S̃ + z1 + α (5.107)

S̃ + z2 (5.108)

S̃ + z1 + z2 (5.109)

S̃ + z1 + α + z2. (5.110)
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5.3.3 Enhancements

Extra gauge bosons may arise from the originally (0, 8) combinations. We will
want these projected from our specific model when we come to our analysis.
We can summarise these with their corresponding projectors in the table
below:

Enhancement Projecting vectors

ψµ|z2 + z1〉 T1, T2, T3, b1, b2, b3, x̃

ψµ|z2 + α〉 T1, T2, T3

ψµ|z2 + z1 + α〉 T1, T2, T3

ψµ|S̃ + x̃+ z1 + α〉 T1, T2, T3, z1, α

ψµ|1 + S̃ + T1 + T2 + T3 + α〉 S̃, T1, T2, T3, z1, α

We need to be careful here and realise that if one of our projecting vectors
contains ψµ, we will get a flip of sign in the GGSO projection, hence to
project we will instead need a positive phase with the sector. We should
also consider that we could also get extra enhancements from the originally
tachyonic states (0,4) by both a left-moving ψµ and also a choice of right-
moving oscillators:

ψµ{λ̄i}|z1〉 (5.111)

ψµ{λ̄i}|α〉 (5.112)

ψµ{λ̄i}|z1 + α〉 (5.113)

ψµ{λ̄i}|z2〉 (5.114)

(5.115)

To ensure these enhancements are projected is little more complicated due
the range of choice of oscillators. We will deal with them the same way we
dealt with our tachyonic sectors with oscillators by tabulating them:
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Oscillator C
(
z1
T1

)
C
(
z1
T2

)
C
(
z1
T3

)
C
(
z1
b1

)
C
(
z1
b2

)
C
(
z1
b3

)
C
(
z1
x̃

)
C
(
z1
z2

)
ȳ1,2 + - - + - - + -

ȳ3,4 - + - - + - + -

ȳ5,6 - - + - - + + -

ω̄1,2 + - - + + + + -

ω̄3,4 - + - + + + + -

ω̄5,6 - - + + + + + -

ψ̄1/2/3/4/5 - - - - - - - -

η̄1 - - - - + + - -

η̄2 - - - + - + - -

η̄3 - - - + + - - -

φ̄5/6/7/8 - - - + + + + +

Oscillator C
(
α
S̃

)
C
(
α
T1

)
C
(
α
T2

)
C
(
α
T3

)
C
(
α
z2

)
ȳ1,2 + + - - -

ȳ3,4 + - + - -

ȳ5,6 + - - + -

ω̄1,2 + + - - -

ω̄3,4 + - + - -

ω̄5,6 + - - + -

ψ̄1/2/3 + - - - -

η̄1/2/3 + - - - -

φ̄3/4 - - - - -

φ̄5/6 - - - - +

φ̄7/8 + - - - +
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Oscillator C
(
z1+α
T1

)
C
(
z1+α
T2

)
C
(
z1+α
T3

)
C
(
z1+α
z2

)
ȳ1,2/ω̄1,2 + - - -

ȳ3,4/ω̄3,4 - + - -

ȳ5,6/ω̄5,6 - - + -

ψ̄1/2/3 - - - -

η̄1/2/3 - - - -

φ̄1/2 - - - -

φ̄5/6/7/8 - - - +

Oscillator C
(
z2
T1

)
C
(
z2
T2

)
C
(
z2
T3

)
C
(
z2
b1

)
C
(
z2
b2

)
C
(
z2
b3

)
C
(
z2
x̃

)
C
(
z2
z1

)
ȳ1,2 + - - + - - + -

ȳ3,4 - + - - + - + -

ȳ5,6 - - + - - + + -

ω̄1,2 + - - + + + + -

ω̄3,4 - + - + + + + -

ω̄5,6 - - + + + + + -

ψ̄1/2/3/4/5 - - - - - - - -

η̄1 - - - - + + - -

η̄2 - - - + - + - -

η̄3 - - - + + - - -

φ̄1/2/3/4 - - - + + + + +
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Chapter 6

Analysis of a specific
non-supersymmetric model

Here, we have ran a computer code to generate a possible model of the GGSO
phase coefficients:

C

(
vi
vj

)
=

1 S̃ T1 T2 T3 b1 b2 b3 z1 α



1 −1 −1 1 1 −1 −1 1 1 1 1

S̃ −1 1 −1 −1 −1 −1 −1 1 −1 −1

T1 1 −1 −1 1 −1 −1 1 1 1 −1

T2 1 −1 1 −1 −1 1 −1 −1 1 −1

T3 −1 −1 −1 −1 1 −1 −1 −1 −1 −1

b1 −1 1 −1 1 −1 −1 −1 1 −1 1

b2 1 1 1 −1 −1 −1 1 1 −1 −1

b3 1 −1 1 −1 −1 1 1 1 −1 −1

z1 1 1 1 1 −1 −1 −1 −1 1 −1

α 1 −1 −1 −1 −1 −1 1 1 1 1

(6.1)

We are going to check this model for the following:

1. Modular Invariance

2. Is the model tachyon free

3. What spinorial 16’s or 1̄6’s sectors are present and what are they under
the Pati-Salam (NL, N̄L, NR, N̄R)?

4. How many generations are there?
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5. What sector(s) give a vectorial bidoublet? i.e. {ψ̄4,5} as the oscillator?

6. Are there any triplet vectorials? {ψ1,2,3} oscillators

7. Are the enhancements projected?

6.0.1 Modular Invariance

We can check modular invariance by checking our GGSO phases against our
ABK rules for our phases , which are themselves derived by imposing modular
invariance. The two rules we will be using correspond to the diagonal 4.28
and off-diagonal 4.29 elements of the GGSO matrix:

C

(
bi
bi

)
= −e

iπ
4
bi·biC

(
bi
1

)
(6.2)

C

(
bi
bj

)
= e

iπ
2
bi·bjC

(
bj
bi

)
(6.3)

Here we will show the calculation for one diagonal element and one non-
diagonal element. Starting with a diagonal element, we will test the following
GGSO phase:

C

(
T1

T1

)
(6.4)

It must satisfy the following:

C

(
T1

T1

)
= −e

iπ
4
T1·T1C

(
T1

1

)
(6.5)

from the choice of GGSO phase 6.1 we see that:

C

(
T1

T1

)
= −1 and C

(
T1

1

)
= +1. (6.6)

Calculating the scalar product:

T1 · T1 = 0 =⇒ e
iπ
4
T1·T1 = 0, (6.7)

hence we can see this condition is satisfied. Repeating this for all our diagonal
elements we see all of the diagonal satisfies modular invariance. The off-
diagonal uses the second of the two equations presented, we will check the
following phase:

C

(
b2

α

)
. (6.8)
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The phase must satisfy the following:

C

(
b2

α

)
= e

iπ
2
b2·αC

(
α

b2

)
. (6.9)

From our model 6.1 we see that:

C

(
b2

α

)
= −1 and C

(
α

b2

)
= +1. (6.10)

The scalar product of the basis vectors:

b2 · α = −2 =⇒ e
ipi
2
b2·α = −1 (6.11)

and hence our condition is satisfied. Upon checking all the upper triangle,
we see that our model satisfies modular invariance.

6.0.2 Tachyons

We can check if this model has any tachyons by inserting our GGSO phases
of our model to our algebraic tachyon conditions contained in the appendix
A. This is easy done by running a quick Python script to check. Here, we
will be checking our model by hand rather than running a script by checking
the conditions for each possible tachyon.

• {λ̄}|NS〉 tachyon - For this, we could input our GGSO matrix into a
code to check against the condition to check every sector, which can
be seen in our appendix. However a single model like ours it’s faster to
check against the table 5.2.1 for the required conditions for projection
for each oscillator. We can use a trick to massively simplify this. We
can see in our table 5.2.1 that a negative phase with S̃ will project all
NS tachyons except φ̄3,4,5,6.

C

(
NS

S̃

)
= C

(
1 + 1

S̃

)
= C

(
S̃

1 + 1

)
(6.12)

= δS̃C

(
S̃

1

)
C

(
S̃

1

)
(6.13)

As δS̃ = −1 this means all these tachyonic states are projected. We are
left to deal with the φ̄3,4,5,6 oscillators and these are projected by any
of the bi phases.

• z1 tachyon projected as C
(
z1
T2

)
= −1
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• α tachyon is projected as C
(
α
S̃

)
= −1

• z1 + α tachyon projected because C
(
T1

z1

)
= −C

(
T1

α

)
• z2 tachyon: using the ’by hand’ argument presented in appendix A. we

can scan across the T1 row and see there is a odd number of negatives,
hence the z2 tachyon is projected by T1. This is effectively C

(
z2
T1

)
= −1.

• {λ̄i}T1 tachyon: once again it’s easier to scan across the the table for
a single model like ours:

– All oscillators except φ̄3,4,5,6 are projected by C
(
T1

S̃

)
= −1.

– φ̄3,4,5,6 projected by C
(
T1

T3

)
= −1

• {λ̄i}T2 tachyon:

– All oscillators except φ̄3,4,5,6 are projected by C
(
T2

S̃

)
= −1.

– φ̄3,4,5,6 projected by C
(
T2

T3

)
= −1

• {λ̄i}T3 tachyon:

– All oscillators except φ̄3,4,5,6 are projected by C
(
T3

S̃

)
= −1.

– φ̄3,4,5,6 projected by C
(
T3

T1

)
= −1

• {λ̄i}T2 and {λ̄i}T3 can use the two same GGSO phases to project all
their possible tachyons. This is easily seen from their tables.

• Ti + z1

– T1 + z1 tachyon is projected by C
(
z2
T1

)
= −C

(
z2
z1

)
.

– T2 + z1 tachyon is projected by C
(
x̃
T1

)
= −C

(
x̃
z1

)
.

– T3 + z1 tachyon is projected by C
(
T1

T3

)
= −C

(
T1

z1

)
.

• Ti + α

– T1 + α tachyon is projected by C
(
T2

T1

)
= −C

(
T2

α

)
.

– T2 + α tachyon is projected by C
(
T1

T2

)
= −C

(
T1

α

)
.

– T3 + α tachyon is projected by C
(
z2
T3

)
= −C

(
z2
α

)
.

• Ti + z1 + α easy to look across our matrix and if a projector has odd
number of negatives then will project the tachyon
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– T1 + z1 + α tachyon is projected by C
(
T2

T1

)
C
(
T2

z1

)
C
(
T2

α

)
= −1

– T2 + z1 + α tachyon is projected by C
(
T1

T1

)
C
(
T1

z1

)
C
(
T1

α

)
= −1

– T1 + z1 + α tachyon is projected by C
(
z2
T1

)
C
(
z2
z1

)
C
(
z2
α

)
= −1

• Ti + z2 we will use the by hand form which originally looks a lot less
convenient, but really in this form we can just check across a row of
the matrix and count the negatives of the sector phases.

– T1 + z2 tachyon is projected by C
(
α
T1

)
= −C

(
α
z2

)
.

– T2 + z2 tachyon is projected by C
(
T1

T2

)
= −C

(
T1

z2

)
.

– T3 + z2 tachyon is projected by C
(
T2

T3

)
= −C

(
T2

z2

)
.

Hence, we can conclude that our model is tachyon free. We will now look at
the observable sector of our model.

6.0.3 Observable Spinorials and Anti-Spinorials

For this, we can use our counting and chirality equations for each sector.
We can see that the x̃ sector is projected out and does not contribute to the
16/1̄6’s due to projection by the T2 phase. Hence, we only need to count the
contributions from the B1,2,3 sectors. We will show this for the B1 sectors
and then just state the results for B2,3 sectors. We first need to see which
of the B1 sectors survive the projection. We can neatly find conditions of
survival on p and q by splitting our projectors:

T1 : C

(
T1

b1

)
C

(
T1

T2

)p
C

(
T1

T3

)q
= −1(+1)p(−1)q (6.14)

z1 : C

(
z1

b1

)
C

(
z1

T2

)p
C

(
z1

T3

)q
= −1(+1)p(−1)q (6.15)

z2 : C

(
z2

b1

)
C

(
z2

T2

)p
C

(
z2

T3

)q
= −1(+1)p(+1)q. (6.16)

Solving these, we actually get two solutions which will survive:

p = q = 0 and p = 1, q = 0 (6.17)

which correspond to the sectors B1
00 = b1 and B1

10 = b1 +T2 respectively. We
now must determine the chirality of each sector independently, for b1

χ1
00 = −C

(
b1

b2 + T3

)
= −δb1C

(
b1

b2

)
C

(
b1

T3

)
= −(−1)(−1)(−1) = +1 (6.18)
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hence the sector b1 corresponds to a 16. On the other hand for our b1 + T2

sector we find:

χ1
10 = −1↔ 1̄6. (6.19)

Here, we have excluded the factor 4 for convenience in the calculation. We
will reintroduce this back at the end but it is important to remember what
looks like a single 16/1̄6 is actually four due to the degeneracy mentioned
previously. Now we have to determine the decomposition under the Pati-
Salam group. Using our condition 5.34, we find:

b1 ↔ NL (6.20)

b1 + T2 ↔ NR. (6.21)

Repeating this for the B2 and B3 sectors, we find two more surviving states
and their corresponding decomposition’s are:

B2
00 = b2 ↔ N̄R (6.22)

B3
11 = b3 + T1 + T2 ↔ N̄R. (6.23)

We can then summarise our spinorials as:

[NL, N̄L, NR, N̄R] = [1, 0, 1, 2] (6.24)

and this allows us to calculate the number of generations. Remembering to
account for the degeneracy factor of 4, as follows:

ng = NL − N̄L = N̄R −NR = 4. (6.25)

We see that this is actually a consequence of the grouping of our ei’s into the
Ti’s. This has restricted our ability to reproduce a three generation model.
This is due to the y’s and ω’s being the six internal directions of the orbifold.
Our twisted sectors, which give rise to our spinorials, correspond to fix points
on the orbifold and we can only generate three generation models when we
interpret the manifold as a lattice with:

Γ6,6 = Γ3
2,2 → Γ6

1,1. (6.26)

Our Ti’s are symmetric shifts and refer to complex Calabi-Yau manifolds
Γ6,6 = Γ3

2,2. This prevents us from creating three generation models, further
information can be found in the paper [24]. Instead, we would have to use
the non-grouped ei’s as basis vectors. These are not complex manifolds, but
instead describe the internal real circles of the six internal directions of the
orbifold.
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6.0.4 Observable Vectorials

To analyse our vectorials, we take a similar approach to the spinorials and
see for what p and q states will survive. Upon doing this, we find that the
only surviving observable vectorial sector is V 3

00, i.e V 3 with p = q = 0:

V 3 = b1 + b2 (6.27)

To see whether this sector gives us a bi-doublet or triplet, we need to check
the GGSO phase of the sector with α:

C

(
b1 + b2

α

)
= e

iπ
2

(b1+b2)·FαC

(
α

b1 + b2

)
(6.28)

= δαC

(
α

b1

)
C

(
α

b2

)
= −1. (6.29)

Therefore, we can see this sector will actually give us a bi-doublet rather than
a triplet. In fact, like our spinorial sectors, we need to take into consideration
the degeneracy of the states and we will actually get four bi-doublets in this
model.

6.0.5 Enhancements

To test whether our model has any enhancements, we can check our GGSO
phases against their projection conditions. We want a model which has no
observable group enhancements, as this would affect our observable gauge
group. Any hidden enhancements for the purpose of this analysis can be
ignored.

• ψµ|z1 + z2〉

– Projected by the phase with T1

• ψµ|z2 + α〉

– Projected by the phase with T2

• ψµ|z1 + z2 + α〉

– Projected by the phase with T2

• ψµ|S̃ + x̃+ z1 + α〉

– Projected by the phase with T1
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• ψµ|1 + S̃ + T1 + T2 + T3 + α〉

– Projected by the phase with T3

The next set of enhancements can have oscillators and each oscillator case
must be determined individually.

• ψµ{λ̄i}|z1〉

– All enhancements excluding ȳ5,6/ω̄5,6 are projected by C
(
z1
T3

)
= −1

– The case with oscillator ȳ5,6 can be projected with C
(
z1
b1

)
= −1

– The remaining enhancement with a ω̄5,6 can’t be removed giving
us a hidden enhancement.

• ψµ{λ̄i}|α〉

– All enhancements excluding ȳ1,2/ω̄1,1 are projected by C
(
α
T1

)
= −1

– The remaining two enhancements are projected by C
(
α
T2

)
= −1

• ψµ{λ̄i}|z1 + α〉

– All enhancements excluding ȳ1,2/ω̄1,1 are projected by C
(
z1+α
T1

)
=

−1

– The remaining two enhancements are projected by C
(
z1+α
T2

)
= −1

• ψµ{λ̄i}|z2〉

– All enhancements excluding those with oscillators ȳ1,2/ω̄1,2 are
projected by C

(
z2
T1

)
= −1

– The remaining enhancements are projected by C
(
z2
T3

)
= −1

In our model, we are left with no observable enhancements, which is impor-
tant not to change the overall observable gauge group. We only actually have
a single enhancement with comes from the z1 sector with the oscillator ω̄5,6.
This is a hidden group enhancement and the consequences of this are left out
of this discussion.
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Chapter 7

Conclusion

In this report, we have started from the beginning to try and motivate our
work on a non-supersymmetric model in the free fermionic formulation. We
started with recap of the highly successful and established Standard Model
and highlighted some of it’s key features which we aimed to be able to repli-
cate. We then highlighted some of it’s main flaws and current phenomena,
which it currently cannot explain, the main issue being the non inclusion of
gravity within it’s QFT framework.

We then progressed to look at some theories which go beyond the Standard
Model, namely grand unified theories, and how these embed the Standard
Model gauge group in higher rank simple and semi-simple groups. These
theories had a drawback of additional exotic gauge bosons in comparison to
the Standard Model which would facilitate rapid proton decay. The lifetimes
suggested by these groups in comparison to experimental limits ruled them
out as viable candidates. Whilst these tried to unify the strong, weak and
electromagnetic forces we were still missing gravity for total unification.
The bosonic and superstring were quickly derived using common quanti-
sation techniques. We motivated the introduction of the GSO projection,
which allowed to to solve the problems of the tachyonic states and level
matching (required if we wanted spacetime supersymmetry) of both strings.
We saw that the string introduced the graviton naturally into the spectrum
but whilst the type IIA/B superstring was successful at allowing the intro-
duction of fermions to our worldsheet, we weren’t afforded much flexibility.
Instead, we were able to take advantage of the decoupling of the left- and
right-moving sectors of the closed string to form the heterotic string, focused
on the free fermionic formulation.

The rest of the report focused on the construction of strings in the free

79



fermionic formulation and we we’re able to present a set of basis vectors
which allowed the creation of non-supersymmetric Pati-Salam string models.
We saw that the non-inclusion of usual SUSY basis vector meant that tachy-
onic states were not automatically projected, so only certain models with
GGSO phases to ensure projection of these tachyons could be considered.

Finally, we were able to analyse a specific model, this model was gener-
ated by a computer code designed by Ben Percival. We saw that the choice
of grouping the usual ei, i = 1, ..., 6 into T1,2,3 constricted the moduli space
and actually prevented us to be able to present a three generation model,
instead our model presented was four generational. Our choice of phases
actually gave us a single bi-doublet vectorial sector, which corresponds to
four bi-doublet states. All possible observable enhancements were projected
out of the spectrum. However, we were left with a single hidden group en-
hancement, as this didn’t affect our observable gauge group, we were happy
to ignore this.

Further work is currently in progress by both my supervisors during this
project, Alon Faraggi and Ben Percival, and also with another colleague
Viktor Matyas. This looks into the partition function structure and clas-
sification of non-supersymmetric SO(10) models. In this work the ei basis
vectors are chosen, with interest in calculating the constant part of the par-
tition function. The constant part of the partition function is linked to the
cosmological constant and this task in general, for all moduli spaces is very
difficult. This is due to non-level matched states also having contribution to
the partition function, meaning it is beyond current technologies.
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Appendix A

Algebraic Tachyon Projectors

This are designed algebraically so that they can be inserted into a computer
code which will check the existence of tachyons. We are only interested if
the following formulas return 0. If they don’t, then the model contains a
tachyon in the stated sector. If they return something other than zero, then
the number they return is the number of tachyons in that sector. For our
analysis this won’t be of interest, as we are only interested in finding tachyon
free models.
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A.1 (−1
2,−

1
2) tachyon projections

NS tachyon projection equation

We start with the most complex which is the NS tachyon:

WNS =
1

212

(
1− C

(
NS

1

))(
1 + C

(
NS

S̃

))(
1− C

(
NS

T1

))
(

1 + C

(
NS

T2

))(
1 + C

(
NS

T3

))(
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(
NS

b1

))
(

1− C
(
NS

b2

))(
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b3

))(
1 + C

(
NS
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))
(

1 + C

(
NS

α

))(
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(
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z2

))(
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(
NS

x̃

))
+
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(
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1

))(
1 + C

(
NS
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))(
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))
(
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(
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(
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(
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(
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α
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+
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(
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(
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(
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(
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(
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+
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(
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(

1 + C

(
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(
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(
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(
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α
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z2
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z1 tachyon projection equation

For the next four tachyonic sectors, the equations are much simpler as there
is no oscillators to complicate things. We can see that all of z1, α, z1 + α, z2

all do not contain spacetime fermions and hence we just require the phases
with any of the listed projectors to equal −1 to project out the tachyonic
state.

W z1 =
1

27

(
1 + C

(
z1

z2

)) 3∏
i=1

[(
1 + C

(
z1

Ti

))(
1 + C

(
z2

bi

))]

α tachyon projection equation

Wα =
1

25

(
1 + C

(
α

S̃

))(
1 + C

(
α

z2

)) 3∏
i=1

[(
1 + C

(
α

Ti

))]

z1 + α tachyon projection equation

For this one, we could proceed as normal or we could do a little rearrangement
using our GGSO phase conditions to get our conditions in a more convenient
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form. Here, we are using Y as a generic projector for our state:

C

(
z1 + α

Y

)
= e

iπ
2

(z1+α)·YC

(
Y

z1 + α

)
= e

iπ
2

(z1+α)·Y δz1+αC

(
Y

z1

)
C

(
Y

α

)
.

Well we know our state has no spacetime fermions and we are taking dot
product with a projector so:

C

(
z1 + α

Y

)
= C

(
Y

z1

)
C

(
Y

α

)
.

This means for this state we just need to consider whether the GGSO phases
of the projector with each of the basis vectors contained within our sector
are of opposite sign or equivalently it can be written:

W z1+α =
1

24

[
C

(
z2

z1

)
+ C

(
z2

α

)] 3∏
i=1

[
C

(
Ti
z1

)
+ C

(
Ti
α

)]

z2 tachyon projection equation

In our GGSO phase matrix, we won’t have the z2 coefficient, we could produce
a code to calculate this using the previous arguments giving us with a general
projector Y :

C

(
z2

Y

)
= C

(
Y

1

)
C

(
Y

z1

) 3∏
i=1

C

(
Y

Ti

)
C

(
Y

bi

)
. (A.1)

To check this by hand, we could look across the row of a projector for our
state and for these coefficients count the number of negatives. If this is odd
then the tachyon will be projected. If we wanted to input this into our code,
we can write this to check our coefficients for all our projectors as:

W z2 =
1

28

[
1 + C

(
z1

1

)
C

(
z1

z1

) 3∏
i=1

C

(
z1

Ti

)
C

(
z1

bi

)]

·

[
1 + C

(
α

1

)
C

(
α

z1

) 3∏
i=1

C

(
α

Ti

)
C

(
α

bi

)]

·
3∏
j=1

[
1 + C

(
Tj
1

)
C

(
Tj
z1

) 3∏
i=1

C

(
Tj
Ti

)
C

(
Ti
bi

)]

·
3∏
j=1

[
1 + C

(
bj
1

)
C

(
bj
z1

) 3∏
i=1

C

(
bj
Ti

)
C

(
bj
bi

)]
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A.2 (−1
4,−

1
4) Tachyon projections

Ti + z1 tachyon projection equation

With similar arguments as the z1 + α tachyon, we can write an equation for
projection as:

W Ti+z1 =
1

25
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)][
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)]
where i, j, k = 1, 2, 3 and i 6= j 6= k. This is easy to check by hand for a
single model by checking that a projector has opposite phase with Ti and z1.

Ti + α tachyon projection equation

Similar arguments for by hand and for construction of the equation:

W Ti+α =
1

24
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where i, j, k = 1, 2, 3 and i 6= j 6= k.

Ti + z1 + α tachyon projection equation

Similar arguments for by hand and for construction of the equation just now
need a factor 1

3
for each projector and can’t now use the opposite sign trick

when checking by hand:

W Ti+z1+α =
1
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α
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where i, j, k = 1, 2, 3 and i 6= j 6= k. When checking this by hand, we can
now use the the that there needs to be an odd number of minuses for the
projector phases.
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Ti + z2 tachyon projection equation

W Ti+z2 =
1

25
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)]
where i, j, k = 1, 2, 3 and i 6= j 6= k. Whilst this is a useful form for the
computer code which will ensure to calculate the extra phase coefficients of
the z2 sectors which will speed up the processing, this is not a convenient
form to check by hand. The way around this is to expand the z2 sector into
its components and express it as:
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. (A.7)

This allow us to check across a row of a basis vector projector and once again
count the number of negatives with each component of the sector.

89



Bibliography

[1] G. Aad et al. “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC”.
In: Physics Letters B 716.1 (Sept. 2012), pp. 1–29. issn: 0370-2693.
doi: 10.1016/j.physletb.2012.08.020. url: http://dx.doi.org/
10.1016/j.physletb.2012.08.020.

[2] G. Aad et al. “Observation of a new particle in the search for the Stan-
dard Model Higgs boson with the ATLAS detector at the LHC”. In:
Physics Letters B 716.1 (2012), pp. 1–29. issn: 0370-2693. doi: https:
//doi.org/10.1016/j.physletb.2012.08.020. url: http://www.
sciencedirect.com/science/article/pii/S037026931200857X.

[3] B. P. Abbott et al. “Observation of Gravitational Waves from a Binary
Black Hole Merger”. In: Phys. Rev. Lett. 116 (6 Feb. 2016), p. 061102.
doi: 10.1103/PhysRevLett.116.061102. url: https://link.aps.
org/doi/10.1103/PhysRevLett.116.061102.

[4] Superstring Phenomenology. Volume 049. Cargèse Summer School: Cos-
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