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Abstract

Although the Standard Model has long been considered as an amazingly
predictive model in describing Nature, and is still reckoned as very accurate
from many points of view, most of the physics community is now convinced
that it cannot describe truly our world. Many theories have been developed to
enhance the Standard Model in order to take into account new phenomena, out
of which is the Minimal SuperSymmetric Model (often named as MSSM), but
this new theory itself requires a larger context to account for the different values
of its parameters. Different new contexts have been analyzed, and the one in
which I will develop my work is string theory, and more precisely the heterotic
superstring, which is one of the five consistent theories of strings. In the frame
of the heterotic string, I will focus on the free fermionic construction. One
important feature of this formalism is to achieve a very standard-like description.
The aim of this study is to determine certain important phenomenological issues
in the framework of the MSSM, namely the µ-problem, which is one problem
of the theories beyond the Standard Model that the strings are very likely to
solve.

Bien que le Modèle Standard soit considéré depuis longtemps comme un
modèle extrêmement prédictif, et que sa précision soit reconnue sur de nom-
breuses expériences, la plupart de la communauté physicienne est convaincue
qu’il ne peut décrire entièrement notre univers. De nombreuses théories ont
été développées pour étendre ce modèle, tel le Minimal SuperSymmetric Model
(MSSM). Cette théorie elle-même peut dériver de plusieurs contextes. Différents
contextes ont été étudiés, et mon travail se situera dans celui de la théorie des
cordes, plus précisement la supercorde hétérotique, une des cinq théories des
cordes existantes. Je m’appuyerais sur une construction fermionique libre de
cette supercorde, qui présente l’avantage de parvenir à un modèle très proche
du Modèle Standard. Le but de ce travail est de résoudre certains des problèmes
rencontrés par le MSSM, notamment le problème du terme µ, pour lequel les
thèories des cordes semblent adaptées.
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Chapter 1

Introduction

Experimental values of all physical experiments are always compared to
the expected value of the Standard Model, for it is currently the best predictive
model physicists have. However there are crucial theoretical issues that this
model cannot handle, this is the reason why we are looking for a theory beyond
the Standard Model. First of all, the SM1 is a quantum field theory, and does
not include the notion of General Relativity, although we know that this latter
is probably true. And moreover there are a number of parameters that need to
be set ad-hoc – which weakens the predictive power of the model – and at last,
the mass differences between the three generations of particles as the various
coupling constants of the forces are likely to have a deeper explanation. The
MSSM model was created as the nearest extension from the SM by including
supersymmetry, which we believe is a necessity for beyond the Standard Model
theories. However, we still have some parameters that must be fixed, and the
MSSM does not solve all the problems that the SM has to face. We have then
turned to string theory to get an explanation of these problem.

I will focus my work on the µ problem, that can be described shortly (I will
come back upon it later) as the following : the superpotential of the MSSM
contains the term µhh where h, h are the two Higgs states of the model. Exper-
imentally the value of µ is fixed to be at a certain scale (the electroweak scale,
because the Higgs are supposed to acquire a mass at the electroweak breaking),
but there is no theoretical justification for this. A possible reason would be the
existence of a new symmetry that forbids this term in the superpotential (we
will see how), and that would be broken at the scale that matches with the
experimental bounds. The search of such a symmetry will be the aim of the
construction of our string model.

Although string theories were first investigated in relation to the strong inter-
actions in the nuclei, their major appealing aspect is that they include naturally
the gravitation interaction (whereas ordinary quantum field theory is incompat-
ible with General Relativity). The other interesting fact is that, by combining
string theory with Supersymmetry in an heterotic string, the underlying gauge
group will be SO(32) or E8×E8, which include the Standard Model gauge group

1Standard Model
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(which is SU(3)C × SU(2)L × U(1)Y ) via the Grand Unification gauge group
SO(10). Understanding the way how mathematical consistency requirements
(upon which I shall come back) would turn into realistic and accurate physical
constraints was a major point for string theory.
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Chapter 2

Free-fermionic construction

The aim of this theoretical part is not to give a lecture on string theory, which is
far from the purpose of this report, but only to state the axioms and properties
that I have considered as true and used in the description of my model. This
being said, let us start with some bases of string theory.

The fundamental point in string theory is that particles are not any more
seen as point particles, but as strings. The specific feature of the string is that,
in addition to the movement of the center of mass, it gives rise to vibrational
modes, and so one could imagine that these vibrational modes would be used as
additional degrees of freedom of the particles, and could account for the quan-
tum numbers for instance.

Here we describe the string by the variableXµ(σ, τ), whereXµ is the position
of a point of the string parametrized by the time τ and the coordinate along the
string σ. X is a point of a D-dimensional space, which index is µ, wherein the
string is moving (normally we would expect it to be a four dimensional space as
usual Riemann or Minkowski spaces, but we will see that more dimensions can
be required). The part of the space swept by the string is called the world sheet.
The next step is to write down the action of the string. There are different
formulations (some of these being equivalent) and the one which is most often
taken is the sigma model action, also called the Polyakov action :

Sσ = −1
2
T

∫
dσdτ

√
−hhαβ∂αXµ∂βXµ

where hαβ is the metric of the world sheet, deduced from the metric of the
space, h its determinant, and T is the tension of the string.

Using the invariance of the action under the Poincare transformations, the
world sheet reparametrizations and the Weyl transformations (which are de-
scribed in the Appendix A.1) we can rewrite the Polyakov action as

S = −T
2

∫
dσdτ ∂αXµ∂

αXµ

Note that we do not fix completely the invariance under these latter transfor-

4



mations, we will fix them completely by choosing two other gauges (namely the
superconformal gauge and the light cone gauge, as we will see).

Now we must consider the fact that the theory we want to describe – the
MSSM – introduces bosonic and fermionic fields that are related each other by
a supersymmetric transformation. This is achieved by the action:

S = −T
2

∫
dσdτ (∂αXµ∂

αXµ + ψ
µ
ρα∂αψµ)

where X is the bosonic field and ψ the fermionic field, here represented by a

Majorana spinor ψµ =
(
ψµ+
ψµ−

)
. It can be shown that this action is invariant

under a specific supersymmetric transformation (see Appendix A.2).

We can now derive from the action the equations of motion for both Xµ and
ψµ in terms of light-cone coordinates which are σ± = τ ± σ:

∂+∂−X
µ = 0 and ∂+ψ

µ
− = ∂−ψ

µ
+ = 0.

The general solution for these types of equations is a decomposition in left and
right-movers as follows:

Xµ(σ, τ) = Xµ
R(σ−) +Xµ

L(σ+).

Similarly ψ turns to have one component which is left-moving ψ+ and one right-
moving ψ−. By taking the superconformal gauge, we have that each component
of the energy-momentum tensor must vanish (see Appendix A.3), which leads
to four more equations :

∂+X
µ∂+Xµ = ∂−X

µ∂−Xµ = 0

ψµ+∂+ψ+µ = ψµ−∂−ψ−µ = 0

2.1 Closed string and mode expansion

We must now introduce the fact that we are dealing with closed string, which
are characterized by periodical boundary conditions

X(σ, τ) = X(σ + π, τ),

if we take π to be the length of the string. The boundary conditions on ψ are
derived from the supersymmetric action and include antiperiodicity :

ψ+(σ) = ±ψ+(σ + π) and ψ−(σ) = ±ψ−(σ + π)

Hence we see that this allows us to develop X± and ψ± in Fourier modes, as
they are periodic or antiperiodic.

(Periodicity) ψµ± =
∑
n∈Z

dµne
−2inσ±

(AntiPeriodicity) ψµ± =
∑

r∈Z+1/2

bµr e
−2inσ±
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The periodic conditions are called Ramond, and antiperiodic Neveu-Schwarz.
The expansion of X is slightly more complicated, since XR and XL are a priori
not periodical, but only their derivatives as periodical and can be developed
as ∂−X

µ
R = ls

∑
n∈Z α

µ
ne
−2inσ− (and the same goes for the left-movers). The

coefficients dn and br are often called raising operators for n < 0 and lowering
oscillators for n > 0.

It is useful to denote the right-movers by a bar (dn,br), in order to avoid
confusion. As ψ± are real (ψ is a Majorana spinor) we must have that d−n = d∗n
and b−r = b∗r , the same conditions being obtained for the bosonic fields by
stating that Xµ is real.

2.2 Quantization

I will now consider only fermions, because the free-fermionic construc-
tion mainly makes use of fermions. However nearly the same results hold for
a bosonic string (some slight differences as replacement of anticommutators by
commutators must be taken into account).

The next step is to quantize the theory, which is done by assuming the canon-
ical fermionic anticommutation relations {ψµA(σ, τ), ψνB(σ′, τ)} = πηµνδA,Bδ(σ−
σ′), which tuns into

{dµm, dνn} = ηµνδm+n

{bµr , bνs} = ηµνδr+s

in terms of Fourier modes.

We have also here another constraint which arises from the vanishing of the
energy-momentum tensor (see Appendix A.3), which states:

Lm|φ〉 = Lm|φ〉 = 0 for all m > 0 and

(L0 − a)|φ〉 = (L0 − a)|φ〉 = 0

where Lm = 1
2

∑∞
n=−∞ : dm−ndn :, the semi-columns (:) indicating the normal-

ordering prescription. I have used here the periodic modes, but the equation
holds as well for anti-periodic fermions. Here two specific requirements that
arise from fixing the physical states to be of positive norm : first, the dimen-
sion of the space must be 26 if there is no supersymmetry and 10 otherwise.
Secondly the parameter a must be a=0 for a periodic field and a=1

2 for an an-
tiperiodic field in a supersymmetric case, and a=1 in a non supersymmetric case.

The last equation (on L0) is known as the Virasoro constraint or the mass
equation, and states that our states must be massless (to respect Lorentz in-
variance) :

α′M2 = −a+
∞∑
n=1

nd−ndn +
∞∑
r= 1

2

rb−rbr = −a+
∞∑
n=1

nd−ndn +
∞∑
r= 1

2

rb−rbr

where M2 = −pµpµ and pµ = T
∫ π
0
dσẊµ(σ) is the total momentum of the

string.
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2.3 The heterotic String

We have until now discussed a string theory with N=2 world-sheet supersym-
metry, because we needed to add a fermionic field to our bosonic field. However,
an interesting feature of the closed string is that the supersymmetric transfor-
mations decouple in the left and right-movers. Indeed, taking for instance the
bosonic part of a infinitesimal transformation:

δXµ = εψµ

We can write it as δ(Xµ
R + Xµ

R) = εAψ
µ
+ + εBψ

µ
− which by derivation and

integration turns into two equations

δXµ
R = εAψ

µ
+ + C and δXµ

L = εBψ
µ
− − C

We get rid of the constant by assuming that XR and XL are defined with
the same integration constant (remember that XR is obtained from the series
expansion of ∂−XR, and similarly for XL). We end up with the two decoupled
equations:

δXµ
R = εAψ

µ
+

δXµ
L = εBψ

µ
−

This correspond to two different supersymmetric transformations. With a simi-
lar work on the whole supersymmetric transformation, we can express our N=2
world-sheet supersymmetry as an N=1 world-sheet supersymmetry on the left-
movers and an N=1 world-sheet supersymmetry on the right-movers.

The aim of this point is that we can construct a model where the string
has a N=1 world-sheet supersymmetry on the left-movers and no supersym-
metry on the right movers, which will at the end generates a N=1 space-time
supersymmetry, one of the requirements of the model. Until now I had mostly
been working on supersymmetric strings, but all the results apply to a non-
supersymmetric string, the main point being that there are no fermionic field
in that case.

This could seem quite weird as first glance because canceling the central
anomaly require that the space-time dimension for right-movers is 26 and 10 for
the left-movers, although one would expect to have the same space-time dimen-
sion. However, as we will see, we can reduce the two numbers of dimensions
to the same value, which can furthermore be taken as equal to four in order
to match with our real 4-dimensional space-time. This last step is achieved
through compactification.

2.3.1 Compactification

We have seen that the left and right movers (in any superfield) were
decoupled. Thus we can add to our model more fermions that would be only
right or left moving. The aim is that they would contribute to cancel the central
charge, and thus reduce the space-time critical dimension. Indeed if we add
44 right-moving fermions and 18 left-moving fermions, the conformal anomaly
would become:

CL = −26 + 11 +DL +
DL

2
+

18
2
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CR = −26 +DR +
44
2

where DL and DR are the left and right space-time dimension. We see here that
for the same 4-dimensional space-time for both movers, the conformal anomalies
are canceled, and thus the theory can be conformally invariant.

We may ask ourselves what do these additional fermions mean, as we are only
trying to describe one superfield Y with its bosonic and fermionic components.
They can be seen as internal degrees of freedom (such as internal symmetries) or
extra dimensions. Indeed this internal fermionic part of the action is as follow:

1
π

∫
d2σ (i

18∑
1

λ1
j∂+λ

1
j + i

44∑
1

λ2
j∂+λ

2
j ).

There is a global SO(18)L × SO(44)R symmetry, under which the internal
fermions transform as fundamental representations.

At this point we are left with 74 fields, which are the four space-time co-
ordinates of Xµ, ψµ, and X

µ
(remember that we have a left and right moving

bosonic field, but only a left moving fermionic field), and the 18 left and 44
right additional fermions. We can reduce this number of fields by imposing the
light-cone gauge. The light-cone gauge eliminates the coordinate “±” of the
lagrangian (with X± = X0 ±XD−1, where D is the space dimension, similarly
we get ψ±). So we are left with only the transverse coordinates of Xµ, ψµ, and
X
µ
, which gives a total of fields of 68.

The string states (which represent the particle present in the theory) are
obtained by acting with the raising operators on the ground state, which is by
definition annihilated by any lowering operator. The states form then an Hilbert
space.
The set of boundary conditions from which we derived the mode expansions
– remember that each fermion can have two possible boundary conditions – is
called a sector (and thus each state belongs to one sector).

2.4 Partition function and consistency conditions

Instead of calculating the action of our string (which would be the next
logical step), we can compute the one-loop partition function. Indeed it can
be proved that this partition function includes all the physical states and is
sufficient to derive some constraints on our model. This partition function is an
integration over all possible world-sheets, in the case of the one-loop partition
function the wold-sheets are tori, so we need to integrate over all different tori.

In this case, not only will the fermions which propagate around the string
have a boundary condition around the string (i.e. towards the σ coordinate),
but they also can pick up a phase by propagating along the τ dimension, as
formulated in f → −e−iα(f)πf (hence we will have α = 1 for periodicity and 0
for antiperiodicity). That means that we have boundary conditions on “time”
direction and “space” directions.
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We have now 68 fields to consider, our 62 internal fermions, the two trans-
verse coordinates of Xµ

L, Xµ
R and ψµ. There is no choice of boundary conditions

for the bosonic fields (which must be periodic), however there are some for the
fermionic fields, we said that they could be periodic or anti-periodic (we will see
later on that there are more general boundary conditions). Hence the partition
function must include all possible combinations of 64 boundary conditions of
the fermions, and this integrated over all inequivalent tori. We can thus write
it as:

Z =
∑
α,β

C

(
α

β

)
Z[α, β]

where α and β are sets of 64 two-dimensional boundary conditions (one ”space“
boundary condition, while the other is ”time“).

I will not reproduce here the work on the partition function (however the
main formulas are in the appendix A.4), but I will use directly its consequences.
Indeed, requiring the partition function to be invariant under modular transfor-
mations gives us a specific set of rules to characterize the states, which will be
described in the next chapter.

We end up by finding that there are several partition functions that abide
by our constraints, each of them being specified by a set of boundary condi-
tion vector bi (each of the component of a boundary condition vector being the
boundary condition of a fermion) and with a set of coefficients C(bi, bj) asso-
ciated to these vectors in the partition function. Hence this construction will
provide us with different models, each specified by a set of vectors and a set of
associated coefficients.

9



Chapter 3

Building a free-fermionic
model

3.1 The ABK rules

We have seen that for each consistent heterotic superstring model, there
is a partition function defined by a set of boundary conditions vectors and a set
of coefficients associated to each pair of these vectors. What we assume now is
that for each set of boundary conditions vectors and set of associated coefficients
verifying some specific rules, there is a consistent model of heterotic superstring.
A definition of these rules was given by Antoniadis, Bachas and Kounnas 1so I
will refer to them as the ABK rules (however these rules were also developed
by Kawai, Lewellen and Tye). We will see first what these rules are, and then
how we derive the phenomenology of such a model from its boundary condition
vectors and its coefficients.
For further convenience we will call the boundary conditions vectors used to
define a model the basis vectors (as it will be explained later on) and the coef-
ficients the one-loop phases (as they appear in the partition function).

3.1.1 Rules on the basis vectors

I start by recalling that all these rules come from the modular invariance of the
partition function.

First, these vectors span a subgroup of ((R/{2Z})64,+) called Ξ, as we have
64 fermions and the boundary condition is defined modulo 2, as the phase is
−i α(f)π (α = 1, 0 for periodic and antiperiodic conditions). The reason why
all the phases are not all in Z2 (i.e. periodic or antiperiodic) will be explained
later on, and come from generalized boundary conditions. In our study we
may however restrict to rational phases. Thus, because of this condition of
rationality, there is for each basis vector bi an integer Ni which is the smallest
natural integer n such as n bi = 0. Thus we can write each element ξ of Ξ as

1Four-Dimensional Superstrings. Published in Nucl.Phys.B289:87,1987
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follows:
ξ =

∑
i

nibi

with
mi ∈ [1, Ni]

Secondly the bi must form a basis of Ξ which means that they are linearly
independent.

We will use a scalar product over this group, which is slightly different from
the usual one

a.b =
f∑

Left−movers

(a(f)b(f)) −
f∑

Right−movers

(a(f)b(f))

that will help us to define two other rules:
For all basis vectors bi, bj

Ni bi.bi = 0 [8] and Ni∨Nj bi.bj = 0 [4]

where Ni∨Nj is the least common multiple of Ni and Nj . Lastly, the vector 1
(that is to say each boundary condition equals 1), is always part of the basis.

3.1.2 Rules on the one-loop phases

Before talking about these coefficients I introduce the useful notation
δbi

= eiπbi(ψ
µ) where bi is a basis vector. Here ψµ is a complex fermion that I

will describe later.

The possible values of the one-loop coefficient C(bi, bj) =
(
bi

bj

)
are:(

bi
bj

)
= δbi

e
2iπ n

Nj

where n is an natural integer. Being taken with this form, the coefficients must
then obey the two rules : (

bi
bj

)
= eiπ

bi.bj
2

(
bj
bi

)∗

(
bi
bi

)
= −eiπ

bi.bi
4

(
bi
1

)
We can extend the coefficients to Ξ×Ξ with the formula

(
bi

bi+bk

)
= δbi

(
bi

bi

)(
bi

bk

)
,

combined with the other rules this gives us a unique value for each
(
α
β

)
(α, β ∈ Ξ),

the formula being given in Appendix B.1. Hence we have now characterized all
the coefficients of the partition function.
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3.2 Deriving the states

We know from our theoretical study that for each vector α ∈ Ξ there is
an Hilbert space of states that are obtained by acting with raising operators on
the vacuum. Such a state could be:

b5− 1
2
b8− 1

2
d12
−1|0〉

which is the state obtained by acting on a ground state (i.e. annihilated by all
lowering oscillators) with the oscillators b− 1

2
of the 5th and 8th fermions (I have

assumed an implicit numeration of the 68 fields), they are here antiperiodic,
and the d−1 oscillator of the 12th field which is periodic (and so it can be either
a fermionic or a bosonic field).

3.2.1 Periodic fermions and complex fermions

Here we notice that as a d0 oscillator either anticommute or commute
with all lowering oscillators (whether they are bosonic of fermionic fields), so
d0|0〉 is also annihilated by all lowering oscillators and hence is a ground state.
As d0d0 is proportional to the identity (because of the anticommutation relation
{dµ0 , dν0} = ηµν), we see that each periodic field generates a doubly degenerated
ground state. In the following the vacuum will be described by two states |+〉i
and |−〉i where i is the number of the field and we will refer to them as Ramond
vacua (as they come from periodic fermions).

I will also introduce the notation for complex fermions. Indeed each pair of
our real fermions that have the same boundary conditions in each basis vector
(and thus in all the possible sectors) can be paired as

λij =
1√
2
(λi + iλj)

This fermion has a conjugate which is linearly independent:

λij∗ =
1√
2
(λi − iλj)

as the λi are reals. Thus we have replaced two real fermions by a complex one
and its conjugate. As λij has the same boundary condition and verifies the
same equations, it can be expanded in Fourier modes.
We may here pay attention to the fact that the coefficients of the expansion of
λij∗ are not the conjugates of those of λij . Indeed with the expansion λij∗ =∑
r∈Z+ 1

2
cijr e

−2inσ± we have
cijr = bir − ibjr

where bir is the coefficient in the expansion of the real fermion i (for the purpose
of the example I have taken an antiperiodic expansion, but this is analogous for
a periodic expansion).
However if we call bij the coefficient of the expansion of λij , we have bijr =
bir + ibjr 6= cij∗r since bir are complex numbers.
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There is a great difference between the conjugate of the oscillator of a com-
plex fermion and the oscillator of the conjugate of a complex fermion, indeed if
one is a raising operator the other will be a lowering operator.

The complex fermions allow us to have different boundary conditions : in-
deed the general boundary condition will be ψ(σ+2π, τ) = −e−απψ(σ, τ), where
α is a real in ]-1,1] and the same goes for the time condition.

We can check that the oscillators from a complex fermions have the same
anticommutation relation :

{λijr , λkls } =
1
2
{λir + iλjr, λ

k
s + iλls} = δ(i,j)=(k,l)δr−s

with the implicit rule that 2 complex fermions cannot share a real fermion (un-
less, of course, they are conjugate of each other).

As an example the superpartners ψµ=1, ψµ=2 of the bosonic field have al-
ways in our model the same boundary conditions and are paired in a complex
fermion ψµ. We will see in our study that some of the fermions are always
complex fermions. I give here a set of names for the real fermions, and a set of
usual pairing, which will mainly be used after.
Real left fermions
{ψµ1, ψµ2, χ1, y1, ω1, χ1, y1, ω1, χ2, y2, ω2, χ3, y3, ω3, χ4, y4, ω4, χ5, y5, ω6}
Real right fermions
{y1, ω1, y1, ω2, y2, ω3, y3, ω4, y4, ω5, y6, ω6}

And the complex fermions are
Complex left fermions {ψµ, χ12, χ34, χ34}
Complex right fermions {ψ1

, ψ
2
, ψ

3
, ψ

4
, ψ

5
, η1, η2, η3, φ

1
, φ

2
, φ

3
, φ

4
, φ

5
, φ

6
, φ

7
, φ

8}
As we notice here, the last 16 complex right fermions are always in a complex-
ified form. Moreover some of the fermions are not paired (precisely the y and
ω), which is due to the fact that their boundary conditions do not always allow
a pairing.

3.2.2 The massless spectrum

We can focus on the mass of the states we are creating, indeed for each state
the mass is given by the Virasoro constraint, so that acting with an oscillator
d−n (or b−r) will raise the mass term of n (or r).
The Mass formula must take all fermions into account, and will hence be slightly
different from the one we saw above.

M2 = −1
2

+
αL.αL

8
+NL = −1 +

αR.αR
8

+NR

where αL is the left part of α (which is the sector we are looking at) and αR the
right part (the minus sign in the scalar product must not be counted in αR.αR).
NL =

∑
i,r,n rb

i
−rb

i
r + ndi−nd

i
n is the sum of the oscillator numbers over all the

left-moving fermions, NR being defined similarly.
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The states we will be interested in are the massless states (because we need
the spectrum of the effective string theory) that are deduced from every vector
α ∈ Ξ. We will call the set of states generated by α a sector (as mentioned
before), and thus the spectrum is the union of all the sectors.

3.2.3 The GSO projection

One of the consequences of the modular invariance of the partition func-
tion is that part of the possible states must be taken away, which is done by
applying a GSO projection (from its authors Gliozzi, Scherk and Olive) which
is the following:
in the Hilbert space generated by α the only states which survive are the |s〉 so
that (

eiπbj•F − δα

(
α

bj

)∗)
|s〉 = 0

for all the basis vectors bj . Here we have to define a fermion number F =

• +1 for a real antiperiodic oscillator

• +1 for a complex antiperiodic oscillator

• -1 for the conjugate of a complex antiperiodic oscillator

• 0 for a Ramond vacua |+〉

• -1 for a Ramond vacua |−〉

and a new scalar product •:

bj • F =
∑

Left−movers

(bj(f)F (f)) −
∑

Right−movers

(bj(f)F (f))

where the sum runs on complex or reals fermions.

To have a little insight of how this projection arises (a complete insight
simply needs to derive thoroughly the partition function), I may say that this
partition function is the trace of an operator (constructed with the Hamiltonian
operator and the oscillator number), which can be written as a product of
operators. Thus, if a state is in the kernel of one of these operators, it will have
no contribution to the partition function, and thus can be taken away (we say
that it was projected out by the operator).

3.2.4 Charges

We are now able to produce the massless spectrum, as we know how to
build the states in each sector and how to project into physical states with GSO
projections, but we are also interested in the internal symmetries that were rep-
resented by the additional internal fermions, which will produce the gauge group.

The easiest way to construct the gauge group is to find the gauge bosons in
the massless spectrum, and then finding the group structure which they can fit
with. Then all the massless spectrum can be described in terms of representa-
tions of this group. It is a major point in our aim to obtain realistic model that
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our gauge groupe be of the form SU(3)× SU(2)× U(1)×G×GH where G is
a group which is broken at the standard model scale and GH an hidden group
under which the hidden matter transforms, and also to find the generation of
fermions with the same quantum number under SU(3)× SU(2)× U(1) that in
the standard model.

Another requirement for our model is to an have anomaly-free model, for
instance with charges with a vanishing trace over the states. However there
is often one U(1) symmetry that remains anomalous, and we have to break it
by the Dine-Seiberg-Witten mechanism. I do not emphasize this calculation,
which I have not studied in details, but the interesting point for our study is
that this mechanism gives non vanishing VEV (vacuum expectation value) to
some superfields, and thus can give heavy mass to some states.

3.3 The aim of this model

Let us remind the aim of our model. We want to find new symmetries
that would be broken at the current experimental scale (that is why they would
not have been already detected), but which would account for the phenomeno-
logical issues of the proton decay and the µ problem, two well-known problems
of the MSSM. The first one is due to the presence in the superpotential of
non-renormalizable terms that mediate the proton decay : these terms are not
sufficiently suppressed to account for the long life-time (1031 years) of the pro-
ton. The second one deals with the term µh1h2 in the superpotential (where
h1, h2 are the two Higgs doublet of the MSSM) : the current experiments fix the
value of µ at a certain scale (the electroweak scale), although there is nothing
predicting this scale in the MSSM. An additional symmetry would be helpful
in the first case by suppressing the unwanted operators (those who mediate a
fast proton decay) of the superpotential; indeed, as long as the symmetry is
not broken the non-vanishing terms of the superpotential must have a vanishing
total charge under this symmetry (and so this suppresses the operators with a
non-zero charge). In the second case this symmetry would suppress the term
µh1h2 by giving non-opposite charges to h1 and h2, up to a certain scale which
would match with the experimental bounds.
To that extent we have to derive the whole massless spectrum, calculate the
symmetries, veryfing if they are anomalous or not, and calculate the superpo-
tential. This will be done in the study of every model.
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Chapter 4

Analysing a model

I have first obtained the massless spectrum of a realistic model with
a set of basis vectors and the associated phases given 1(I have reproduced
these in Appendix B.2). The bibliographic researches I did upon the standard-
like free fermionic models (as in Minimal Standard Heterotic String Models.
Eur.Phys.J.C50:701-710,2007., Phenomenological study of a minimal superstring
standard model. Nucl.Phys.B593:471-504,2001 and others) indicated that these
types of models imply a high amount of simple calculations. Indeed there are
usually 8 basis vectors that lead to about 512 different sectors, and although
these vectors are composed mainly of 0 and 1 this leaves us with a huge amount
of equations to verify, only to check the ABK rules. I decided then to imple-
ment a program to check the consistency rules, derive the massless spectrum,
find the suitable gauge group and calculate the superpotential. Of course all of
this was not obtained from the first try, but I improved the program as I my
understanding of the model grew.

4.1 How to calculate the spectrum

4.1.1 ABK rules and sectors

The first thing to do, when given a set of basis vectors and theirs co-
efficients, is to make sure that they verify the ABK rules. This can be easily
done by a program, and in the same time the program can find all the possible
sectors.

4.1.2 Massless spectrum

As we are interested by the massless states only, we have to check the
Virasoro condition for M=0, which give us a constraint on the oscillators. More
precisely, we know how many different oscillators are in the expression of a state
of a given sector. For example if we get the equation N=1, that means that
we can have either 2 oscillators of the form b− 1

2
or one oscillator d−1. More

generally, as some of the fermions can have a rational boundary conditions, we
1 A New standard - like model in the four-dimensional free fermionic string formulation.

A.E. Faraggi, Phys. Lett. B 278 (1992)
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may have several combinations as two b− 1
4

and one b− 1
2
, and so on.

All the periodic fields are also generating doubly degenerated Ramond vacua
with their operator d0, as we said before, that multiplies in the same way the
number of possible states (to be more precise, having n periodic fermions turn a
single state into a spinorial representation of SO(n)). Here again, finding all the
states that match the Virasoro condition and applying then the GSO projection
is a work that can be done using a program.

There are however some specific features that I have used which will be use-
ful later : first the fermions must be paired as much as possible. Indeed we will
have Ramond vacua only for complex fermions (and not their conjugates). Fur-
thermore if we want to write all the possible Ramond vacua of complex fermions,
we need to have a complete pairing, but this is impossible in this model. We will
then have another pairing, which is specific to Ramond vacua and which allows
to pair a left-moving and a right-moving real fermion. Such a pairing would
be y2y2, because they have the same boundary conditions in each sectors. We
call this pairing an Ising model, we will see them again when calculating the
superpotential. In fact Ising models rise a small problem in the GSO projec-
tion : indeed there is a scalar product of the fermion number of a state with
a basis vector of the form

∑
(Left−Right), whereas the Ising model operator

is neither Left or Right : this is solved by transforming the scalar product to∑
(Left−Right+ Ising-Model).

Here we must pay attention to the fact that there is actually two different pair-
ing in our model, one which is used to determine the Ramond vacua (where
we can have Ising model operators) and one which is used to determine the
oscillators acting on the vacuum (where there are only left and right-moving
oscillators but where we have also the conjugates of the complex fermions).

I will know describe the states I obtained with the first model. We can
partially describe them by the sector where they come from, as an example if α
is a sector, then α+S is the sector which contains the superpartners of the states
of α. Here S is a basis vector given in Appendix B.2. This being said we only
have to characterized half of the spectrum, the other being its superpartner.
Thus it is often quite useful to characterized the states by the sector.

4.1.3 Description of the spectrum

We are now talking about the specific model I cited at the beginning of the
chapter. The first point that I will make is about the space-time spin
of the states. Indeed states that are in a sector where the fermion ψµ is an-
tiperiodic will be bosons (either spin 1 if ψµ is acting as an oscillator or spin
0 scalar otherwise), whereas states where ψµ is periodic will be in a spinorial
representation of SU(2) (because of the Ramond vacua) and thus have spin 1

2 .
Acting with a bosonic oscillator Xµ will also raise the spin by one, so we can
also have spin 3

2 and spin 2 particles. Now let us analyze the different states

• The graviton/gravitino
Its is a generic feature of heterotic strings that they always contain a gravi-
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ton. Here we find it in the 0 sector (where all fermions are antiperiodic) in
the form ψµ− 1

2
δX

ν

−1|0〉 (which is a spin 2 particle). Our study will not be
linked any more with this graviton but it is important to realize that this
permit to include the gravity in our model. The graviton will of course
have a superpartner, in the S sector, the gravitino with spin 3

2 .

• The gauge group
The gauge bosons are the states that have a ψµ oscillator acting on the
vacuum (this oscillator being different from a zero mode). We get a cer-
tain number (37) in the 0-sector, that we will call the NS sector, as all the
fermions are antiperiodic in this sector. They are of the form ψµφaφb|0〉,
from now on I do not write the − 1

2 index of these oscillators as all the an-
tiperiodic fermions will give only these oscillators, no higher modes being
allowed because of the mass condition. We also get 16 in the 1+b1+b2+b3
sector. We have now to determine the structure of a gauge groupe that
they could fit in. We do this by assuming that each complex fermion
generates a current which leads to a Cartan generator of a specific alge-
bra, which means that all the states of the form ψµφaφa∗|0〉 where φa is a
complex fermion correspond to the Cartan generator. The group structure
is then obtained by calculating the roots associated to the others gauge
bosons in respect to these Cartan generators.
We end up with the group SU(3)×SU(2)×U(1)×U(1)×U(1)6×SU(5)×
SU(3)×U(1)×U(1). We can divide this group in the observable and the
hidden sector assuming that certain fermions are related to the observable
or the hidden sector by stating that the hidden group is the group under
which the fermionic states (that we will see in the next paragraph). It
turns out that the φ

i
generate the hidden group. and the hidden sector is

SU(5)× SU(3)×U(1)×U(1). We will see later that the U(1)×U(1)6 is
broken in this model by some fields acquiring VEV, which will leaves us
with a gauge group perfectly compatible with the Standard Model.

• The fermions generation
After having discovered our group of internal symmetries, it would be a
nice thing to get some fermionic states that would transform under this
group. The sectors b1, b2, b3 give us each 16 states that are in a 16 repre-
sentation of SO(10) usual for one generation of the Standard Model (that
means we get two triplets of SU(3) which correpond to the left-handed
quarks of type up and down, 2 singlets that are the left-handed electron-
type and neutrino leptons, one (3,2) (a triplet under SU(3) and a doublet
under SU(2)) which are the right-handed quarks and a doublet of SU(2)
for the right-handed leptons). All of these are spinors under the Ramond
vacuum of ψµ, and so they are fermions. Getting three generations of these
means that we have exactly all the fermions of the standard model. We
begin to see here why these models are called standard-like realistic mod-
els, as it could not be easily expected from our 8 basis vectors to generate
exactly the three generations with the right quantum numbers under the
observable symmetries (these generations are detailed in Appendix B.2).

• The hidden matter
They are also approximately 40 sectors that give states with non-zero
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quantum numbers under the hidden group. Hence these states correspond
to hidden matter. I will be concise about these states, because their main
utility is to acquire a VEV when canceling the anomalous symmetry which
is discussed in the next paragraph, and by coupling with matter states in
the superpotential give heavy mass to these states.

• The Higgs and other observable particles
There are still some states that transform uniquely under the observable
group that can be found in the NS sector and the b1 + b2 + α+ β sectors.
Some of them are doublets under SU(2) and neutral under the U(1), they
will turn to be Higgs particles (in fact, they will couple to the fermions
generations in the superpotential).

4.1.4 Anomalous symmetry

Out of the 8 U(1) symmetries, only one remains anomalous (i.e. with a
non-vanishing trace among the states) after an orthogonal transformation. The
breaking of this symmetry (which is described in A.E. Faraggi, Phys. Lett.
B 278 (1992)) will give VEV to some fields, in respect to a few constraints
describe by the Dine-Seiberg-Witten. The choice of the fields that get a VEV
will detremine which symmetries will be broken, because a field with a non-
zero charge under a U(1) symmetry (or in a non-trivial representation of a non
abelian group) breaks this symmetry when acquiring a VEV. In my first model,
we can choose these fields to break the observable group down to SU(3) ×
SU(2)× U(1), which is the gauge group in the Standard Model.

Since we found that our model was generating a very realistic spectrum, we
may now turn to calculate the superpotential to see how this model can help us
with the two issues of the MSSM we are dealing with.

4.2 The superpotential

In a string theory model, one must take into account all the terms,
whether they are renormalizable or not. In a standard model, the nonrenor-
malizable term are suppressed by the cutoff, but in our model they may have
important value, all the more that some fields can acquire large VEV and thus
compensate the ( 1

Ms
)n−3 term for higher order (where Ms is the string scale).

It is quite interesting to focus on the first order terms, which are the 3 dimen-
sion operators. The expression of the third-level superpotential in this model
and the way to obtain it are described in the Appendix B.3. We may only focus
on the relevant terms:

As an example we get the term hiuiQi where hi (i=1..3) is a scalar doublet of
SU(2) in the NS sector, and ui, Qi the right and left-handed quark as mentioned
before. We see here that these are Yukawa couplings between Higgs and the
fermions, that will give mass to the fermions. However from the three Higgs hi,
two of them will get heavy mass because of couplings with fields that acquire a
VEV (at higher orders. Hence there is only one generation that acquires a mass
term from the cubic superpotential, which is an explanation of the heaviness of
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the top quark.
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Chapter 5

Phenomenological issues:
The µ problem

5.1 The µ problem

We may now focus on some peculiarities of the physics given by the model.
I will focus more on the µ problem, which was the topic of my work.

Our aim, as we said before, is to find one U(1) symmetry in respect to which
h1h2, where h1, h2 are the two light Higgs, is not an invariant, that is to say h1

and h2 do not have opposite charges under this U(1). Hence this term would
be generated only when this U(1) is broken, and thus µ would be related to the
scale at which this U(1) is broken, and to Mstring directly.

I have been looking for such a symmetry in another model, a left-right sym-
metric model (see Flat directions in left-right symmetric string derived models.
Cleaver CLements Faraggi, Phys.Rev.D65:106003,2002.), where the SU(2)L ×
U(1)L is replaced by a SU(2)L × SU(2)R. The first thing to do is to identify
the Higgs, which is done by analyzing closely the superpotential. We only know
that the Higgs are doublets under SU(2)L/R, but to decide which doublets are
relevant we must see their couplings in the superpotential.
The search for Higgs is hence a necessary step in order to solve the µ problem.
However finding the Higgs require much more work that I thought during most
part of my internship : indeed you start by taking all the doublets under SU(2)
in the model that are neutral under SU(3) × U(1), which is an easy job, but
then you have to calculate the couplings of these doublets to the other particles
to see if they couple with the fermions generations, and at last you have to check
if some of these will acquire a heavy mass through a coupling with a field with a
large VEV. For instance in the first model (ref 1) we started with 8 Higgs, but
by analyzing the superpotential term up to the 7th order, we see that only two
combinations of these Higgs remain light. This problem was a major obstacle
in solving the µ problem, because before looking for a symmetry that would
differentiate the two Higgs doublets of the MSSM, I should have first found the
combinations of Higgs that remain light and check that there are only two of
them.
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In the model of Ref[1], the 8 Higgs doublets are in the NS sector and have the
following form
h1 = [(1, 0); (2,−1)]1,0,0,0,0,0
h2 = [(1, 0); (2,−1)]0,1,0,0,0,0
h3 = [(1, 0); (2,−1)]0,0,1,0,0,0
h45 = [(1, 0); (2, 1)]− 1

2 ,−
1
2 ,0,0,0,0

where the notation stands for the representations of the gauge group
[(SU(3), UC); (SU(2), UL)]U1,U2,U3,U4,U5,U6 . The four other doublets are called
the complex conjugates of these 4 doublets, because they have opposite charges,
but they are not exactly the conjugate of the states. Thus, we have:

h1 = χ12{ψ4,5∗}η1|0〉

and
h1 = χ12{ψ4,5}η1∗|0〉

My program was able to calculate the third level superpotential in approxi-
mately 2 minutes. However going one order higher would multiply the calcula-
tion duration by a factor equal to the number of states, i.e. around 200. With
some few improvements I could have possibly go to the fourth and fifth order,
but going higher would have demanded a specific study in itself. That was
mostly the reason why I could not recognize properly the Higgs in my models,
and so could not find constraints of any candidate of U(1) symmetry.
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Chapter 6

Conclusion

The first point of this analysis is to show us how the femionic construction of the
heterotic string can be a powerful method to access to MSSM-like models easily.
Indeed we have found that many of the features of this model were to be derived
from the spectrum of a heterotic string. But the analogy is not the only goal of
our model, we have also found tools that could give us extra laws to describe
the MSSM, as is shown in the study of the µ problem. These are two reasons
that would lead us to carry out more concrete work on this kind of model. I will
however have a more neutral judgment on the free-fermionic models : there are
many different models, and each is very simple to define (what we need is just a
set of basis vector and their coefficients), and at first sight there is no reasons to
choose one model over an other (there are some specific constraints if we want
a standard like-model, i.e. with 3 generations and a suitable gauge group, but
that still leaves us with a lot of different models). In such circumstances what
we do is analyzing thoroughly one first model, see how we can derive interesting
features from it, and then turn to another model, but there is no such thing as
a theoretic way to obtain the best (or more realistic) model. To that respect,
I would be tempted to say (with the very little experience I have in this field)
that this fermionic construction is powerful to raise interest in string derived
theories, but is not likely to be the basis of the next Standard Model.
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Chapter 8

Appendix

A.1 Invariance of the string action

The string action in invariant under the following transformations:

• Poincaré transformations. These are the world-sheet affine transforma-
tions:

Xµ → aµνX
ν + bµ

where aµν stands for a lorentz transformation and bµ a translation.

• Reparametrizations If we change the coordinates σi to σ′i the action is
unaltered and we have:

if σi → σ′i = f i(σ) then hα,β(σ) =
∂fγ

∂σα
∂fδ

∂σβ
hγ,δ(σ′)

• Weyl transformations We can also rescale the metric:

hα,β → eφ(σ,τ))hα,β

• superconformal transformations and modular transformations.

These invariance will give us the freedom to take different gauges of our fields.
For instance the first thing we can do is reduce the metric hα,β to the Minkowski
metric, by using reparametrizations and Weyl rescaling. Weyl rescaling also ac-
counts for the vanishing of the trace of the energy-momemtum tensor.

However the change of the metric does not fix the invariance completely, and
we can add the light-cone gauge and superconformal gauge.

A.2 Supersymmetry over the world sheet

Using the world sheet super coordinates σ, τ, θ−, θ+ the generators of the super-
symmetric transformations are

QA = ∂
θ

A − (ραθ)A∂α
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and they are acting on the superfield Y related to the bosonic and fermionic
fields X and ψ by Y µ = Xµ + θψµ. In order to have an invariant acion it is
useful to introduce the supercovariant derivative DA = ∂

θ
A − (ραθ)A∂α

The action then have the form

S =
i

4π

∫
dσdτd2θDY µDYµ

which is developed as:

S = −T
2

∫
dσdτ (∂αXµ∂

αXµ + ψ
µ
ρα∂αψµ)

A.3 Superconformal gauge

The energy-momemtum tensor has the expansion

T−− ∝
∑
m

Lme
−imσ− and T++ ∝

∑
m

Lme
−imσ+

where Lm = 1
2

∑∞
n=−∞ : dm−ndn :. The terms T+−, T−+, which also vanish are

not relevant (because they are equivalent to the first equations of motion we
found).

The Lm form a super-Virasoro algebra, and by quantization of the string
we will require that all the positive Lm have to annihiliate the physical states,
which turn in

Lm|φ〉 = 0 for m¿0 (L0 − a)|φ〉 = 0

and the same goes for righ-movers Lm.
The a constant is there to parametrize the normal-ordering prescription of the
Lm. a is determined by the constraint that all the states must have a positive
norm.

A.4 Partition Function

We said that the partition function was a sum over all world-sheet of the topol-
ogy of a torus.

Implicitely we have thought each world sheet as describing a different phys-
ical event when we have formulated the sum, but we have seen that two world-
sheets that could be related by some transformations (as reparametrizations,
Poincarré and Weyl transformations, and so on) would describe the same event.
We then have to count each class of equivalence under these transformation
once. That means that we will integrate only over unequivalent tori.

This paragraph is a part of the work on partition function, that I give
only to have an insight on how the ABK rules can be derived from the in-
variance of the partition function. A complete work can be find in (Construc-
tion of Fermionic String Models in Four-Dimensions. by Kawai, Lewellen, Tye
Nucl.Phys.B288:1,1987.) and my calculations come from it.
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Every torus is parametrized by τ which is the rapport between the two dimen-
sions of the torus (i.e. in our case the length of the space dimension is the length
of the string 2π, and so the length of the time dimension will be 2πτ). The par-
tition function of one fermionic field propagating around a torus of parameter
τ can be computed as the sum of overlap between a state before and after one
time-loop on the torus, that means for a time equals to 2πτ . This sum of over-
lap will hence be the trace of an operator, which is derived from the Hamiltonian

Z[u, v] = Tr
(
ei2πτHuei2π( 1

2−v)Nu
)

We recognize here the action of the Hamiltonian Hu (which depend from the
space boundary condition u of the fermion) during a time 2πτ and the action of
the number operator Nu which count the number of oscillators (N =

∑
b−rbr).

Using the variable q = ei2πτ will simplifies the equation :

Z[u, v] = Tr
(
qHuei2π( 1

2−v)Nu
)

We can now see how this expression transform under a modular transformation
such as:

τ → −1
τ

Z[u, v] → ei2π(u− 1
2 )(v− 1

2 )Z[v,−u]

In taking account all the 64 fermions boundary conditions, we would have a
similar equation, where the phase would be given by a scalar product of the two
basis conditions vectors α, β. Assuming that the partition function is invariant
under modular transformations would so ensure some relations between the
coefficients of Z[α, β] and Z[β,−α] using scalar product of the vectors. We
have hence obtain one ABK rule.

B.1 Formulae for the one-loop coefficients

From the last rule on the one loop phase,(
bi

bi + bk

)
= δbi

(
bi
bi

)(
bi
bk

)
one can extract a formula to calculate

(
α
β

)
, for any α, β ∈ Ξ but I will give here

th eexpression of
(
α
bi

)
where α =

∑
njbj and bi one of the basis vector, because

it is the formula used in the GSO projection:(
α

bi

)
= e

i
2πα.bi δ

−1+
P

j mj

bi

∏
j

(
bi
bj

)∗mj

B.2 First model

I write here explicitely the results of the model given in Ref:(A.E. Faraggi, Phys.
Lett. B 278 (1992)).

I write here the basis vectors, as a set of fermions with the following notation:
if a fermion is not in the set then its boundary condition is 0 (antiperiodic), if
it is in it will be equal to 1, and if it is in with the comment : 12 , it will be equal
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to 1
2

1 : All fermions are periodic
S : {ψµ, χ12, χ34, χ56}
b1 : {ψµ, χ12, y3y6, y4y4, y5y5, y3y6, ψ

1
, ψ

2
, ψ

3
, ψ

4
, ψ

5
, η1}

b2 : {ψµ, χ34, y1ω5, y2y2, ω6ω6, y1ω5, ψ
1
, ψ

2
, ψ

3
, ψ

4
, ψ

5
, η2}

b3 : {ψµ, χ56, ω1ω1, ω2ω4, ω3ω3, ω2ω4, ψ
1
, ψ

2
, ψ

3
, ψ

4
, ψ

5
, η3}

α : {y3y6, ω3ω3, ω6ω6, y1ω5, ω2ω4, ψ
1
, ψ

2
, ψ

3
, φ

1
, φ

2
, φ

3
, φ

4}
β : {y1ω5, ω1ω1, y5y5, ω2ω4, y3y6, ψ

1
, ψ

2
, ψ

3
, φ

1
, φ

2
, φ

3
, φ

4}
γ : {y2y2, ω2ω4, y4y4, y1ω5, y3y6, ψ

1
: 1

2 , ψ
2

: 1
2 , ψ

3
: 1

2 , ψ
4

: 1
2 , ψ

5
: 1

2 , η1 :
1
2 , η2 : 1

2 , η3 : 1
2 , φ

1
: 1

2 , φ
3
, φ

4
, φ

5
: 1

2 , φ
6

: 1
2 , φ

7
: 1

2}

One loop phases (as the matrix
((
bi

bj

)
)ij

)
):

1 1 −1 −1 −1 1 1 1i
1 1 1 1 1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 −1 −1 −1 1i
1 −1 −1 1 −1 −1 −1 −1i
−1 −1 −1 −1 1 −1 1 1i


Gauge Group

The observable gauge group is given by the gauge bosons that do not
involve the φ

i
fermions, there are all in the Neveu-Schwarz sector, and we can

compute it easily to obtain a group SU(3)× SU(2)×U(1)×U(1)×U(1)6, the
U(1) charges being given by:

U(1)C ψ
1
ψ̂

1

+ ψ
2
ψ̂

2

+ ψ
3
ψ̂

3

U(1)L ψ
4
ψ̂

4

+ ψ
5
ψ̂

5

U(1)1 η1η̂
1

U(1)2 η2η̂
2

U(1)3 η3η̂
3

U(1)4 y3y6 ˆ
y3y6

U(1)5 ω2y4 ˆ
ω2y4

U(1)6 y1ω5 ˆ
y1ω5

The hidden gauge group is much more complicated to obtain, indeed you have
18 gauge bosons (as a SO(4), a U(3) and three U(1)) from the NS sector that
are mixed with 16 bosons of the 1+b1 +b2 +b3 sector. However we can separate
the total group in a SU(5)× SU(3)× U(1)× U(1).

The matter states

We find in this model the three generations of fermions of the MSSM,
each in a bi (i=1..3) sector. We can specifiy them by their representation in the

28



gauge group. I write here the first generation.
[(1,+ 3

2 ); (1,+1)] 1
2 ,0,0,+

1
2 ,0,0

= e1L 1cm left-handed electron-type lepton.
[(1,+ 3

2 ); (1,−1)] 1
2 ,0,0,−

1
2 ,0,0

= N1
L 1cm left-handed Neutrino.

[(3,− 1
2 ); (1,−1)] 1

2 ,0,0,+
1
2 ,0,0

= e1L 1cm left-handed up-type quark.
[(3,− 1

2 ); (1,+1)] 1
2 ,0,0,−

1
2 ,0,0

= e1L 1cm left-handed down-type quark.
[(3,+ 1

2 ); (2, 0)] 1
2 ,0,0,−

1
2 ,0,0

= e1L 1cm right-handed quark multiplet.
[(1,− 3

2 ); (2, 0)] 1
2 ,0,0,+

1
2 ,0,0

= e1L 1cm right-handed lepton doublet.

B.3 Third level superpotential

Coefficients of the 3d operators

The third level superpotential is a sum over the product of any three
superfields: W =

∑
i,j,k AijkY

iY jY k, where the Y i describe all the superfields
in our spectrum. The way to calculate the amplitude Aijk is the following.

in order to have Aijk non-zero, the product Y iY jY k must be invariant under
any gauge transformation. For instance, let us take an infinitesimal transforma-
tion under a U(1) ;

δψ = iqαψ

where q is the charge of the ψ field under the U(1), and α being dependent
or not from x, since we we have a global or local symmetry. If we apply this
transformation to a product of two fields, we get

δ(ψ1ψ2) = ieα ψ1ψ2 (q1 + q2)

So we can see with this simple example that all the products in the superpo-
tential must have a vanishing total charge under each U(1).

If we turn to non-abelian symmetry the infinitesimal transformation is
δ(ψ1ψ2) = ig(ψ1

−→α .
−→
T ψ2 + ψ2

−→α .
−→
T ψ1)

That means that the three supefield must be in representations that cancels
each other, as for example a triplet in the adjoint representation, an anti-triplet
(hence in the conjugate representation) and a singlet.

For all the products that are invariant under gauge transformations, the
amplitude is determined using the correlators of the fermioic fields of each su-
perfields, a long procedure that is well explained in the Calculable Nonrenormal-
izable Terms In String Theory: A Guide For The Practitioner., from Kalara,
Lopez and Nanopoulos (Published in Nucl.Phys.B353:650-682,1991).
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