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Abstract

In this report we detail a classification of a group of free fermionic
models in four-dimensionnal heterotic theory. This classification is basi-
cally going a step further in the classification undertaken in paper [11].
We mainly expose calculations that will be used to do computationnal
work and then provide an insight in the properties of this class of models
in terms of matter content. So this report should be regarded as uncom-
plete, since it deals more about methodology than results.
In part two we expose briefly the basis of string theory, from classical
strings to superstrings, then in part three we move to heterotic strings and
more specifically free fermionic models, which is our frame for the classi-
fication. Finally we detail the methodology and calculations for studying
the gauge group and matter content of SO(6) × SO(4) models and we
expose our expectations and ideas for future work.

Dans ce rapport nous présentons une classification d’un groupe de modèles
de type libres fermions dans le cadre d’une theorie des cordes hétérotiques
à quatre dimensions. Cette classification poursuit le travail entrepris dans
l’article [11]. Nous exposons les calculs qui seront utilisés dans un tra-
vail statistique informatique à venir et présentons le contenu de cette
classe de modèles en termes de particules. Ce rapport n’est donc que la
première partie du projet de recherche, puisqu’il traite principalement de
méthodologie et prépare des résultats futurs.
Dans la seconde partie nous exposons rapidement les bases de la théorie
des cordes, depuis la corde classique jusqu’aux supercordes, puis, dans
la partie trois nous introduisons les cordes hétérotiques et plus partic-
ulièrement les modèles de type fermions libres, qui constituent le cadre
de notre étude. Enfin nous détaillons la méthodologie et les calculs pour
étudier le groupe de gauge et le contenu physique des modèles SO(6) ×
SO(4) et nous exposons nos attentes ainsi que quelques idées pour pour-
suivre cette étude.
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1 Introduction

During these three months I have studied a specific branch of string theory -
free fermionic heterotic models - and contributed to do some calculations pro-
viding a description of a class of models one can obtain from ABK rules [1, 2]
(Antoniadis, Bachas, Kounnas).
String theory no longer considers the fundamental objects in physics to be
point particules but one dimensional objects called stings or more generally
D-dimensional objects called D-branes. The main achievement of this theory is
to provide a frame for a possible quantum description of gravity. This makes
string theory a good candidate for a grand unified theory of physics (GUT). For
a few decades a lot of efforts have been put in trying to see the Standard Model
(SM) or the Minimal Supersymetric Standard Model (MSSM) emerge from the
matter content of string theory, altogether with some acknowledged properties
like the stability of the proton (half life > 1032 years).
The ABK rules provide a frame to develop four dimensional models in the par-
ticular context of heterotic strings, as will be explained below. The ultimate
purpose of these constructions is to obtain an explicit expression for the partition
function of a one-loop diagram and then to derive predictions perturbatively.
The difficulty in this procedure is to understand how to select the relevant mod-
els in the infinity of possible models. A first step in this research consists in
looking at the content in terms of gauge bosons and chiral families of those
models in order to know which of them could contain the Standard Model (or
MSSM).
The main part of my project has been to describe the gauge groups and the
matter contents of one class of models and to set some algorithmic rules to de-
rive them from the free parameters of the theory. A similar work had already
been completed for a simplier class of model, so what I have done is basically
to go a step further in this classification.
The last stage of this project is to compute the calculations and try to see some
properties emerging concerning the number of chiral families. This computa-
tionnal work will be achieve in the next months by another person involved in
the project.
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2 Strings and superstrings

One can find an introduction to string theory and superstrings in references
[4, 5, 6].
The first step in building string theory is the quantization of the classical string,
providing a theory of free bosonic strings.

2.1 Classical strings

We consider a fixed Pseudo-Riemannian space-time M of dimension D, with
coordinates X = (Xµ), µ = 0, 1, ..., D − 1 and a metric Gµν(X).
The motion of a relativistic string in M is described by a two dimensional surface
Σ, which is called the world-sheet. We introduce coordinates σ = (σ0, σ1) on
the world-sheet, so that we have the map :

X : Σ −→M : σ −→ X(σ) (1)

We take σ0 to be the time-like coordinate (taking its values from −∞ to +∞)
and σ1 to be space-like (taking its values in a finite interval) and parameterizing
the string at any given instant.

The natural action for the relativistic string is its area (Nambu-Goto action):

SNG =
1

2πα′

∫
Σ

d2σ|detGαβ |1/2, (2)

where 1
2πα′ is the energy per length (or tension) of the string and Gαβ is the

induced metric on the world-sheet :

Gαβ =
∂Xµ

∂σα
∂Xν

∂σβ
Gµν , (3)

α, β = 0, 1 are world-sheet indices.
An equivalent and more convenient expression of the action is given by the
Polyakov action, which reduces in a standard gauge, called conformal gauge, to
:

S =
1

4πα′

∫
Σ

d2σ ηαβ∂αX
µ∂βX

νGµν(X), (4)

with ηαβ = Diag(−1, 1).

We now specify the metric to be the Minkovsky metric Gµν(X) = ηµν =
Diag(−1, 1, ..., 1).
The equation of motion then reduces to a free wave equation :

∂2Xµ(σ) = ∂α∂αX
µ(σ) = 0. (5)

The general solution of this equation is a superposition of left- and right-moving
waves :

Xµ(σ) = Xµ
L(σ+) +Xµ

R(σ−), (6)
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where σ+ = σ0 + σ1 and σ− = σ0 − σ1.

To go further we have to specify the boundary conditions at the end of the
string.
One possible choice is to take periodic boundary conditions, which corre-
spond to closed strings :

Xµ(σ0, σ1 + π) = Xµ(σ0, σ1), (7)

where we assumed that σ1 ∈ [0, π] parameterizes the full string for a given σ0.
In this case we can express the solutions of the wave equation :

Xµ(σ) = xµ + 2α′pµσ0 + i
√

2α′
∑

n∈Z,n6=0

αµn
n
e−2inσ+

+ i
√

2α′
∑

n∈Z,n6=0

α̃µn
n
e−2inσ− ,

(8)
where xµ, pµ are real parameters, (αµn)∗ = αµ−n and (α̃µn)∗ = α̃µ−n (due to the
reality of Xµ). xµ is the position of the center of mass of the string and pµ is
its total momentum.

If we do not take the periodic boundary conditions, then we need to impose
another set of constraints to make the variation of the action vanish and pre-
serve the wave equation. There are two possible choices :

• the Dirichlet boundary conditions,

Xµ(σ1 = 0) = constant1, Xµ(σ1 = π) = constant2, (9)

• the Neumann boundary conditions,

∂1X
µ(σ1 = 0) = 0, ∂1X

µ(σ1 = π) = 0. (10)

These conditions lead to expressions of Xµ(σ) in terms of oscillators as in the
closed string case, but now the left- and right-moving waves are coupled so that
we end up with a superposition of stationary waves. These solutions describe
what is called the open string.
Since in the rest of this report we will only work with closed strings, I will not
develop further the formalism of open strings.

2.2 Quantized bosonic strings

We now state that the parameters xµ, pµ, αµn and α̃µn become quantum operators
satifying the following canonical commutation relations

[xµ, pν ] = iηµν , (11)
[αµm, α

ν
n] = mηµνδm+n,0, (12)

[α̃µm, α̃
ν
n] = mηµνδm+n,0. (13)
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and other commutators equal zero.
These canonical relations can be deduced from the required conditions

[Xµ(σ0, σ1),
1

2πα′
∂0X

ν(σ0, σ1′)] = iηµνδ(σ1 − σ1′), (14)

which are the commutation relations of the canonical quantization procedure.
The reality conditions become hermiticity relations (xµ)+ = xµ, (pµ)+ = pµ,
(αµn)+ = αµ−n and (α̃µn)+ = α̃µ−n.
One can introduce the operators

aµn =
αµn√
|n|
, ãµn =

α̃µn√
|n|
, n 6= 0, (15)

which satisfy the commutation relations of creation (n > 0) and annihilation
(n < 0) operators.

Let us now remark that in this construction we ignore the fact that we are free
to impose some conditions the world-sheet coordinate σ0, σ1. Imposing these
conditions is fixing a gauge. A particularly convenient gauge is the light-cone
gauge, where we impose

X+(σ0, σ1) = x+ + 2α′p+σ0, (16)

with the light-cone space-time coordinates

X+ =
1√
2

(X0 +XD−1) (17)

X− =
1√
2

(X0 −XD−1) (18)

XIunchanged, I = 1, ..., D − 2. (19)

In the light-cone gauge X−, p− as well as all the operators α−n and α̃−n are de-
termined in terms of pI , αIn and α̃In, which are the remaining degrees of freedom
of the theory.
From now we place ourself in the light cone gauge. The indice I will always
refers to a space-time indice going from 1 to D − 2. What follows is called
ligth-cone quantization as opposed to the (equivalent) covariant quantization.

To construct the space of states we first introduce ground states |k >, where
k = (kI), defined by the relations

pI |k >= kI |k >, aIm|k >= ãIm|k >= 0, m > 0, (20)

so these states are eigenstates of the total momentum operators and carry no
oscillator excitation.
Then a basis B of the space of possible states is obtained by acting with creation
operators :

B = {aI1−m1
...ãJ1
−n1
|k > | ml, nl > 0}. (21)
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As explained in ref. [4, 5, 6, 7] , the Euler-Lagrange equations coming from
the Nambu-Goto action lead to the mass-shell condition :

M2 = −pµpµ =
2
α′

(N + a+ Ñ + ã) (22)

where N and Ñ are the number operators definied by

N =
+∞∑
n=1

naI−nan I (23)

Ñ =
+∞∑
n=1

n ãI−nãn I , (24)

and a and ã are ordering constants comming from the ambiguity of the ordering
of creation and annihilation operators. These constants have to satisfy the
relation

a = ã = −D − 2
24

(25)

In order to provide an invariant action under Lorentz transformations ([4]) one
can show that we must have a = ã = −1, so that the dimension of space-time
must be D = 26. In the covariant quantization procedure the value of the or-
dering constants and thus the value of the dimension D = 26 enables to remove
unphysical states from the theory ([5, 6]).

In addition the Euler-Lagrange equation gives the relation

N = Ñ (26)

which states that the ”‘number”’ of left-moving oscillators must be equal to the
”‘number”’ of right-moving oscillators.

As we are interested in low energy physics we have to look at the states with
lowest energy.
This theory contains states of negative mass-squared, called tachyons, which are
a priori not physical and shall be removed by additional constraints.
Then the first excited states are the massless states∑

1≤I,J≤D−2

RI,J a
I
−1ã

J
−1|k >, (27)

where RI,J are the elements of an arbitrary square matrix of size D − 2.
These states can be split into three groups (ref. [4]):

• ∑
1≤I,J≤D−2

SI,J a
I
−1ã

J
−1|k >, (28)

where the matrix SI,J is symetric and traceless. These states correspond
exactly to the one particle graviton states one can find in a quantum
theory of the free gravitational field.
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• ∑
1≤I,J≤D−2

AI,J a
I
−1ã

J
−1|k >, (29)

where the matrix AI,J is antisymetric. These states correspond to the one
particle states of a Kalb-Ramond field, which is an antisymetric tensor
field with two indices Bµν (kind of generalization of the Maxwell gauge
field Aµ).

•
S aI−1ã

I
−1|k >, (Isummed from 1 to D − 2), (30)

where S is a constant coming from the decomposition of RI,J into a sy-
metric traceless part, an antisymetric part and a part proportional to the
identity matrix. This single state corresponds to a one particle state of a
massless scalar field called dillaton field.

As we can see, this construction naturally gives rise to gauge bosons, so that it
is called bosonic string theory. In order to obtain fermions, we have to introduce
superstrings.

2.3 Superstrings

The principle of superstrings is to consider two sets of new space-time variables
or fields ψµ+(σ), ψµ−(σ) with the property that they anticommute rather than
commute. These two sets of variables compose a space-time spinor with two
components Ψµ, called Majorana spinor.
The action of the string becomes the RNS action :

S =
1

4πα′

∫
Σ

d2σ (∂αXµ∂αXµ + i Ψ̄µρα∂αΨµ), (31)

where ρα are the two-dimentional spin matrices

ρ0 =
(

0 i
i 0

)
, ρ1 =

(
0 −i
i 0

)
, (32)

and Ψ̄µ = Ψµ†ρ0.
This action is invariant under global world-sheet supersymmetry transforma-
tions :

δXµ = ε̄Ψµ, δΨµ = −iραε∂αXµ. (33)

The equations of motion are the wave equation and the Dirac equation

∂2Xµ = 0, ρα∂αΨµ = 0. (34)

They imply a decoupling between what appear to be left and right-moving
world-sheet fields

ψµ+ = ψµ+(σ+), ψµ− = ψµ−(σ−). (35)
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S =
1

2πα′

∫
Σ′
dσ+dσ− (∂+X

µ∂−Xµ − i ψµ+∂+ψ+µ − i ψµ−∂−ψ−µ). (36)

Requiring the vanishing of the boundary terms when varying the action leads to
two types of boundary conditions for each of the fermion field, then for instance
for ψµ+ we have the possibilities :

• the Ramond (or R) boundary conditions which are periodic

ψµ+(σ0, σ1 = π) = ψµ+(σ0, σ1 = 0), (37)

• the Neveu-Schwarz (or NS) boundary conditions which are antiperiodic

ψµ+(σ0, σ1 = π) = −ψµ+(σ0, σ1 = 0). (38)

Then the equations of motion lead to the following mode expansions :

ψµ+ =
∑
n∈Z

dµne
−2inσ+

, for R boundary conditions, (39)

ψµ+ =
∑

r∈Z+ 1
2

bµr e
−2irσ+

, for NS boundary conditions, (40)

and similar expressions for right-moving fermion fields, providing another set of
mode-oscillators d̃µn, b̃

µ
r .

When we go to quantization of these world-sheet fermion fields, we obtain the
anticommutation relations :

{dµm, dνn} = ηµνδm+n,0, in the R-sector, (41)
{bµr , bνs} = ηµνδr+s,0, in the NS-sector, (42)

from the required relations

i

4πα′
{ψµ+(σ0, σ1), ψν+(σ0, σ1′)} = iδ(σ1 − σ1′)ηµν . (43)

(We have similar relations for right-moving fermions)

We obtain a basis of the space of physical states, in the light-cone gauge,
by acting on the vacuum with creation operators aI−n, d

I
−m or bI−r, d̃

I
n or b̃Ir ,

n,m, r > 0, I = 1, ..., D − 2.

The mass-shell condition becomes

M2 = −pµpµ =
2
α′

(N + a+ Ñ + ã) (44)
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where N and Ñ are the number operators definied by

N =
+∞∑
n=1

naI−nan I +
∑

r∈N+ 1
2

r bI−rbr I (45)

Ñ =
+∞∑
n=1

n ãI−nãn I +
∑

r∈N+ 1
2

r b̃I−r b̃r I , (46)

for NS boundary conditions in both left and right-moving sectors. For different
boundary conditions we have similar expressions involving dIn and d̃In.
The ordering constants a and ã are given by

a = −D − 2
24

+ aψ+

ã = −D − 2
24

+ aψ−

aψ± =
D − 2

24
R-boundary conditions

= −D − 2
48

NS-boundary conditions (47)

The condition on the dimension D preserving the invariance of the action under
Lorentz transformations becomes D = 10. In this case we have

a = −1
3

+ aψ+

ã = −1
3

+ aψ−

aψ± =
1
3

(R)

= −1
6

(NS). (48)

The relation between left and right-moving number operators is now

N + a = Ñ + ã. (49)

One crucial point to notice at this stage is the fact that with R-boundary
conditions the oscillators dI0 and d̃I0 act on the vaccum (ground states) without
adding any mass, so they degenerate the vaccum. In the rest of this discussion
we will forget the total momentum of the string and consider the vacuum to
be one ground state |0 >, which is degenerated under the action of zero mode
oscillators in the R-sector in |s >= |±,±, ...,± > giving 2D−2/2 ground states
per side (left and/or right) with R-boundary conditions. An explanation of this
process can be found in ref. [7].

At this point one can find the low energy states (tachyon, massless, ...) in

11



each of the four possible sectors R-R, R-NS, NS-R, NS-NS, finding space-time
bosons (incuding the graviton, dillaton and antisymetric tensor) and space-time
fermions, as described in ref. [6].

In order to be closer to the notations of the litterature about heterotic strings,
I will adopt from now a slightly different formalism (see ref. [8, 5]) where we
consider the couple of variables

z = σ0 + iσ1, z̄ = σ0 − iσ1, (50)

and, by gauge fixing, we obtain the action

S =
1

2πα′

∫
Σ

dzdz̄ (∂zXµ∂z̄Xµ + i ψµ∂zψµ + iψ̄µ∂z̄ψ̄µ), (51)

where ψµ = ψµ(z) and ψ̄µ = ψ̄µ(z̄) correspond to left and right-moving fermion
fields.
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3 Free fermionic models

3.1 Heterotic string and free fermionic models

In order to get an overview of the construction of the heterotic string in four
dimensions, one can refer to [8, 7].

The heterotic string corresponds to a particular construction of the string, where
we consider the superstring formalism for the left-moving world-sheet fields and
the bosonic formalism for the right-moving world-sheet fields. This means that
we only keep the superconformal invariance for the left movers, so that we con-
sider the fields :

Xµ
+(z), ψµ(z), µ = 0, ..., 9. (52)

Xµ
−(z̄), XJ

−(z̄), µ = 0, ..., 9, J = 10, ..., 25. (53)

where z = τ + iσ, z̄ = τ − iσ.
This theory implies that the dimension of space-time is D = 10. The 16 addi-
tional bosonic right-moving fields XJ

−(z̄) no longer carry a space-time indice, so
we call them internal world-sheet fields.

Now for the specific need of our models, we are going to interpret these 16
bosonic internal fields as fermion fields. This reinterpretation is made possible
by the equivalence

: eiX
J
−(z̄) := λ̄2J−1(z̄) + iλ̄2J(z̄), (54)

where λ̄x is our notation for a right-moving fermion field, called as well right-
moving Majorana-Weyl fermion.
This equivalence is refered as bosonisation or fermionisation in the litterature
and is detailed, for instance, in ref. [5].

This construction lets us with a heterotic string in a ten dimensional space-
time.
Now we are interested in such a model in a four dimensional spacetime, so what
we do is just following the same procedure and restrict the spacetime indice µ
to run only from 0 to 3 and add additionnal free Majorana-Weyl fermionic fields
both in the left and right-moving sectors so that the conformal anomaly cancels
(we replace missing spacetime coordinates by internal fermionic fields to make
the theory coherent). The set of fields we consider in this theory are :

Xµ(z, z̄), µ = 0, ..., 3
ψµ(z), µ = 0, ..., 3
λi(z), i = 1, ..., 18
λ̄j(z̄), j = 1, ..., 44. (55)
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The string action takes the form :

S =
∫
d2z[∂zXµ∂z̄Xµ − 2iψµ(z)∂zψµ(z)− 2iλi(z)∂zλi(z)− 2iλ̄j(z̄)∂z̄λ̄j(z̄)]

(56)
The models of particle physics derived from this construction are called free

fermionic models.
From now we restrict ourselves to the light-cone gauge, where the field X0,3

and ψ0,3 can be expressed as a combinaison of the other fields and are no longer
degrees of freedom.

3.2 Boundary conditions

In order to provide predictions in a perturbative theory, we are interested in the
partition function of a one-loop diagram, which corresponds to the world-sheet
being a torus (vacuum to vacuum string amplitude). On this world-sheet we
have to specify two boundary conditions for the two non-contractible loops of
the torus for each (free) fermionic field. These conditions express the shifts of
phase of the fermionic fields under parallel transport around a non-contractible
loop.

f → −eiπα(f)f (57)

where f is a fermionic field and the minus sign is conventional.
A set of specified phases for all world-sheet fermions for one non-contractible
loop is called a spin structure and it is expressed as a 64 dimensional boundary
condition vector. In our notation a generic vector is given by

~b = {α(ψ1), α(ψ2), α(λ1), ..., α(λ18)|α(λ̄1), ..., α(λ̄44)}. (58)

Two of these vectors or spin structures specify the boundary conditions for
the fermionic fields on the toroidal world-sheet. To two spin structures ~bi,~bj we

associate the partition function Z
(~bi
~bj

)
.

In this report the theory we have developped only consider periodic (R) or
antiperiodic (NS) boundary conditions, so α(f) can only take the values 1 (R)
or 0 (NS).

Two usefull spin structures are given by the vectors

~1 = {1, 1, ..., 1} all boundary conditions periodic (59)
~0 = {0, 0, ..., 0} all boundary conditions antiperiodic (60)

For the bosonic fields Xµ the theory imposes the boundary conditions to be
periodic.
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3.3 Modular invariance

We would like now to give a general expression for the partition function of a
one-loop string amplitude. To do that we need to consider all possible torus.
Basically a torus can be seen as a parallelogram whose opposite sides correspond
each other, so that for instance the points of the right side are the same as those
of the left side. If we parameterize the torus in the complexe plane we need two
complexe parameters τ1, τ2 for the two sides of the parallelogram. z = xτ1 +yτ2,
x, y ∈ [0, 1], describes the torus(τ1, τ2).
Actually one can see that, making use of the reparameterization z → λz, one
complexe parameter τ is only needed since the other can be fixed to 1,

z = x+ yτ, x, y ∈ [0, 1]. (61)

In addition one can notice that the torus is left invariant by the two following
transformations

T : τ −→ τ + 1 redefines the torus (62)
S : τ −→ −1/τ swaps the two coordinates, reorients the torus (63)

These transformations generate a group of tranformations, called modular group,

τ −→ aτ + b

cτ + d
, a, b, c, d ∈ Z, ab− cd = 1. (64)

A function invariant under these transformations is called modular invariant.

The total one-loop partition function then requires to integrate over all inde-
pendent values of τ ,

Z =
∫
D

dτdτ̄

Im(τ)2
Z(τ), (65)

where D is one region of the complexe plane matching the independent values
of τ and dτdτ̄

Im(τ)2 is chosen because it is modular invariant.
Then we have to require that Z(τ) is modular invariant as well, which means
that the partition function of a torus does not change because of reparameteri-
zation.
Details can be found in ref [7].

3.4 ABK rules

The ABK rules are general rules for model building in free fermionic 4D-heterotic
theory. They have been developped originally by Antoniadis, Bachas and Koun-
nas in the papers [1, 3].
These rules come from the modular invariance constraint imposed on the parti-
tion function of one-loop diagrams (torus Z(τ)) and multiloop diagrams. If we
remember the fermionic construction we have done above, we know that each
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possible one-loop amplitude corresponds to two sets of boundary conditions on
the torus τ or spin structures ~α, ~β (64 components vectors). We can call the
associated partition function Z

(
~α
~β

)
(τ), so that we have

Z(τ) =
∑

spin structures ~α,~β

C

(
~α
~β

)
Z

(
~α
~β

)
(τ), (66)

where C
(
~α
~β

)
are complexe phases.

As the 64 fermion fields on the world-sheet (torus) are free, which means with-
out interactions between themselves, the partition function Z

(
~α
~β

)
is simply the

product of the partition functions associated to each fermion field, which can
take only four values : Z

(
0
0

)
(τ), Z

(
0
1

)
(τ), Z

(
1
0

)
(τ), Z

(
1
1

)
(τ). These four functions

of τ have been calculated (see for instance [8, 5])and these calculations show
that the modular transformations T and S result in permutations of these four
functions (the expressions of these four functions are exchanged by T and S).
Thus imposing modular invariance for Z(τ) results in constraints on the phases
C
(
~α
~β

)
, which in some cases must be equal.

The resulting relations, given by ABK, are :

C

(
~α

~α

)
= −e iπ~α.~α4 C

(
~α
~1

)
(67)

C

(
~α
~β

)
= e

iπ~α.~β
2 C

(
~α
~β

)
(68)

C

(
~α

~β + ~δ

)
= eiπ~α(ψµ)C

(
~α
~β

)
C

(
~α
~δ

)
(69)

C

(
~α
~β

)
= ±1 (70)

where α(ψµ) = α(ψ1) = α(ψ2) = 0 or 1, and the product ~α.~β is defined by

~α.~β =

1
2

∑
left fermions

−1
2

∑
right fermions

 ~α(f)~β(f). (71)

When two fermion fields λi, λj have the same set of boundary conditions they
can be combine in a complex fermion

φij =
1√
2

(λi + iλj). (72)

We say that one complexe fermion is equivalent to two real fermions. This
formalism is usefull for practical calculations.
Then we have

~α.~β =

1
2

∑
left real

+
∑

left complex

−1
2

∑
right real

−
∑

right complex

 ~α(f)~β(f) (73)

16



These relations do not explain how to choose the spin structures, actually they
imply that different states corresponding to different spin structures must exist
together. To make the theory coherent one has to choose a basis of spin struc-
tures (~bi), i = 1, ..., N , then the spin structures corresponding to physical states
are all the combinations of these basis vectors, so that the spin structures form
a finite group Ξ, with the operation

~α+ ~β = {~α(f1) + ~β(f1), ..., ~α(f64) + ~β(f64)} (74)

where
0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0. (75)

Then the choice of the basis (bi) of Ξ (we now drop the arrow under basis
vectors) must satisfy the following conditions :∑

i

mibi = 0 iff ∀i, mi = 0mod 2 (independence)

∀i, j, bi.bj = 0mod 2
∀i, bi.bi = 0mod 4 (76)

b1 = ~1 (~1 ∈ Ξ)

These are not the general ABK rules, but these rules applied to the simplest
case where the spin structures contains only 0’s and 1’s.

To complete this construction we have to impose another set of constraints
on physical states called GSO projection, this constraints come from calcula-
tions of the partition function, showing that the states contributing to it satisfy
these conditions, as detailed in [3]. The GSO projection selects the states |s >α
belonging to the α sector (meaning with α boundary conditions) satisfying

∀i, eiπbiFα |s >α= δαC

(
α

bi

)∗
|s >α (77)

where δα = eiπ~α(ψµ),

biFα =

 ∑
real + complex left

−
∑

real + complex right

 bi(f)Fα(f),

and Fα(f) is the fermion number operator

Fα(f) = 1
Fα(f∗) = −1 if f complex

Fα(|+ >) = 0 where |+ >= |0 > is the state of a degenerated vacuum
without oscillator (78)

Fα(|− >) = −1 where |− >= f†0 |0 > is the state of a degenerated vacuum
with zero mode oscillator
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To build a model we have to choose a set of basis vectors (spin structures) satis-
fying ABK conditions and we have to fix as well a set of free phases C

(
bi
bj

)
, so we

have a lot of free parameters, which is the main problem of free fermionic models.

Before applying these rules to a concrete example, it is crucial to know the
mass-shell relation for the string carrying these 64 real fermions, because what
we will look at is only the massless states, which are relevant in low-energy
physics. Indeed we expect to find all the particles of the SM or MSSM to be
massless in this first approach, because the first excited level above the mass-
less states is of the order of the Planck mass, which is far bigger than particle
physics masses. The mechanism which gives mass to particles comes from a
disconnected theory involving symmetry breaking and studied in details in lit-
terature, but which is not the object of this discussion.
The mass-shell relations for the string come from the relations (44),(49) applied
to the case of multiple fermion fields with various boundary conditions around
the string. We take D = 4 and for each internal fermion we add aλ = 1/24 if it
has periodic boundary condition or aλ = −1/48 if it has antiperiodic boundary
condition. Then we obtain the conditions, taking α′ = 2 for convienience, in a
string sector (or spin structure) α :

M2
L = −1

2
+
αL.αL

8
+

∑
left fermions

N(f) (79)

M2
R = −1 +

|αR.αR|
8

+
∑

right fermions

Ñ(f) (80)

M2
L = M2

R (81)

where αL and αR are the parts of the vector α corresponding only to the left
and right fermions respectively.

This formalism is pretty complicated, so we are going to see a simple exam-
ple to understand how it works.

The simplest set of basis vectors we can choose is to have only the vector ~1
in the basis, which is compatible with ABK conditions (76).
Then we have Ξ = {~1,~0}, so we have physical states in only two sectors.

The states in the ~1 sector have mass M2
L > 3/4 and M2

R > 7/4, so there is
no masseless states in this sector.

In the ~0 sector, also called NS-sector, the ground states verify M2
L = M2

R = − 1
2

which is negative, so they are tachyonic states and by the way unphysical.These
tachyonic states λ̄j |0 >NS are obtained by acting on the vacuum |0 >NS with
one right fermionic creation operator raising M2

R by one half. This is possible
because λ̄j has NS boundary condition (if it had R boundary condition it would
have raised M2

R by 1 and it would not satisfy M2
L = M2

R ). We use here the
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same notation for the fermionic field and the creation operator.
Then we have massless states obtained by acting on the vaccum in several ways
:

• ψI∂X̄J |0 >NS , where ∂X̄J replaces bosonic creation operator raising M2
R

by 1 and ψI replaces fermionic creation operator raising M2
L by 1/2. These

states correspond to the graviton, the dillaton and the antisymmetric ten-
sor we discussed before, but in four dimensions this time ;

• ψI λ̄iλ̄j |0 >NS , i, j = 1, ..., 44 (one left-moving and two right-moving cre-
ation operators). The fields carrying these states have the same commu-
tation relations as the generators of SO(44), so the states can be identified
with the gauge bosons of the gauge group SO(44) (adjoint representation
of SO(44));

• λk∂X̄J |0 >NS , k = 1, ..., 18. For similar reasons, these states can be
identified with gauge bosons of SU(2)6;

• λkλ̄iλ̄j |0 >NS . These states are bosons of scalar fields, charged under
SU(2)6 × SO(44).

Then we have to perform the GSO projection in this sector (NS-sector) :

•

eiπ
~1F~0ψI∂X̄J |0 >NS = eiπ(1+0)ψI∂X̄J |0 >NS

= −ψI∂X̄J |0 >NS
= 1× (−1)× ψI∂X̄J |0 >NS

= δ~0C

(
~0
~1

)∗
ψI∂X̄J |0 >NS

So the states ψI∂X̄J |0 >NS verify the GSO condition (only one in this
case because we have only one basis vector). In this calculation we used
C
(~0
~1

)
= −1, coming from the relations (69).

•

eiπ
~1F~0ψI λ̄iλ̄j |0 >NS = eiπ(+1−1−1)ψI λ̄iλ̄j |0 >NS

= −ψI λ̄iλ̄j |0 >NS

= δ~0C

(
~0
~1

)∗
ψI λ̄iλ̄j |0 >NS

•

eiπ
~1F~0λk∂X̄J |0 >NS = eiπ(+1+0)λk∂X̄J |0 >NS

= −ψIλk∂X̄J |0 >NS

= δ~0C

(
~0
~1

)∗
λk∂X̄J |0 >NS
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•

eiπ
~1F~0λkλ̄iλ̄j |0 >NS = eiπ(+1−1−1)λkλ̄iλ̄j |0 >NS

= −λkλ̄iλ̄j |0 >NS

= δ~0C

(
~0
~1

)∗
λkλ̄iλ̄j |0 >NS

All the states we have found survive the GSO projection.
So in this model we have the graviton, the dillaton and the antisymetric tensors
(one can show that they are present in every possible model) and we have gauge
bosons for the large gauge group SU(2)6 × SO(44). This model has actually a
lot of weaknesses : the gauge group is too large compared to the SM or GUT
gauge groups, there is no fermion so we do not find the three families of the SM,
there is no supersymmetry, there are tachyonic states (they survive the GSO
projection as well).
To improve our model we need to add new basis vectors, see what are the mass-
less states, perform the GSO projections, then identify the gauge group, which
always come from the NS-sector, and try to find states corresponding to the
chiral fermions of the standard model. The classification, in terms of matter
content and gauge group, of the free fermionic models begun in the eighties and
goes on today. The most interesting features of these models are the emergence
of gauge groups which are possible candidates for grand unification (SO(10),
SU(5)) together with chiral families, the possibility to have N = 1 supersym-
metry and obviously the presence of the graviton in their spectrum.

We are now going to focus on a specified set of basis vectors and provide a
general survey of the particule content of the different models, wich is mainly
what I have done in the past few months.
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4 Classification of SO(6)× SO(4) models

4.1 Basis vectors

The choice of the basis vectors is arbitrary in free fermionic models. However
people have shown that the free four-dimensional heterotic fermionic theory is
equivalent to a geometrical formulation called Z2 × Z2 heterotic orbifold the-
ory where the extra six dimensions are compactified on a 6D-torus, resulting
in a 4D effective space-time. Then it appears that some transformations leav-
ing invariant the world-sheet of one-loop amplitudes in orbifold models can be
translated into specific choices of basis vectors in free fermionic models. For a
better understanding, one can refer to [9, 10, 5]. This choice leads to 12 basis
vectors vi, i = 1, ..., 12 (see ref [11]).
Before expressing these vectors we have to introduce new notations for the
fermionic fields living on the toroidal world-sheet :

λ3i−2 = χi

λ3i−1 = yi , i = 1, ..., 6
λ3i = ωi

λ̄2j−1 = ȳj

λ̄2j = ω̄j , j = 1, ..., 6

1√
2

(λ̄11+2j + iλ̄12+2j) = η̄j , j = 1, 2, 3

1√
2

(λ̄17+2j + iλ̄18+2j) = ψ̄j , j = 1, ..., 5

1√
2

(λ̄27+2j + iλ̄28+2j) = φ̄j , j = 1, ..., 8

then the list of the different world-sheet fermions is

{ψ1,2, χ1,...,6, y1,...,6, ω1,...,6|ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8}

The 12 basis vectors are

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|
ȳ1,...,6, ω̄1,...,6, η̄1,2,3, ψ̄1,...,5, φ̄1,...,8},

v2 = S = {ψµ, χ1,...,6},
v2+i = ei = {yi, ωi|ȳi, ω̄i}, i = 1, . . . , 6,
v9 = b1 = {χ34, χ56, y34, y56|ȳ34, ȳ56, η̄1, ψ̄1,...,5}, (82)
v10 = b2 = {χ12, χ56, y12, y56|ȳ12, ȳ56, η̄2, ψ̄1,...,5},
v11 = z1 = {φ̄1,...,4},
v12 = z2 = {φ̄5,...,8},

21



where the fermions between brakets are those with R-boundary conditions (pe-
riodic) and those not quoted have NS-boundary conditions (antiperiodic).

Without loss of generality we impose the following GSO phases :

c

(
1
1

)
= c

(
S

1

)
= c

(
S

ei

)
= c

(
S

bm

)
= c

(
S

zn

)
= −1, (83)

i = 1, ..., 6, m = 1, 2, n = 1, 2.

The models we obtain have N=1 supersymmetry.
Once we have performed GSO projections for massless states we end up in the
NS-sector with gauge bosons belonging to the adjoint representation of SO(10)×
U(1)3 × SO(8)2 and we can identify SO(10) with the gauge group under which
observable matter is charged, because SO(10) contains SU(3) × SU(2) × U(1)
as a subgroup, and the U(1)3×SO(8)2 is supposed to convey exotic interactions
for exotic matter which should not be charged under the observable SO(10) and
so would interact with standard matter only by gravitation.

Depending on the choices of GSO coefficients, meaning the phases C
(
bi
bj

)
, one can

obtain a large variety of different matter contents, appearing in several 16 and
1̄6 spinorial representations of SO(10), meaning families of 16 states charged
under SO(10) and transforming in the specific way of a spinorial representation
of SO(10). For specific choices of GSO phases one can find three families of
chiral matter, with their superparnters. Each family matches a standard model
family in terms of hypercharge and electromagnetic charge, that is why we call
them chiral families.
A review of these results (and more details) can be found in ref [11].

What we are going to do now is going beyond this classification by adding
a new basis vector α.This vector splits SO(10) in SO(6)× SO(4), which could
be an interesting candidate for GUT or a just another step towards SU(3) ×
SU(2)× U(1),

v13 = α = {η̄1,2,3, ψ̄1,2,3, φ̄1,2}.
We can choose one more GSO phase without loss of generality

c

(
S

α

)
= −1 .

We will call these models SO(6)× SO(4) models.

For an introduction to group theory and representations in physics one may
see ref [12].

4.2 The gauge group

We can identify gauge bosons to the states whose associated fields transform as
adjoint representations of groups.
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In our case, after calculations, we know that gauge bosons may arise from the
following eleven sectors :

G =
{

0, z1, z2, z1 + z2, x, α, α+ z1, δ, δ + z1, δ + z2, α+ x
}

(84)
where

x = 1 + S +
6∑
i=1

ei + z1 + z2 = {η̄123, ψ̄12345} (85)

δ = α+ x+ z1 + z2 = 1 + S + α+
6∑
i=1

ei = {ψ̄45, φ̄345678} (86)

The 0 sector gauge bosons give rise, idependently of GSO phases, to the
gauge group :

SO(6)× SO(4)× U(1)3 × SO(4)1 × SO(4)2 × SO(8), (87)

which can also be written :

SO(6)obs × SU(2)L × SU(2)R × U(1)1 × U(1)2 × U(1)3

×SU(2)1 × SU(2)2 × SU(2)3 × SU(2)4 × SO(8)hid. (88)

We want to identify SO(6)obs×SU(2)L×SU(2)R to our observable gauge group
and the other part to the hidden gauge group. To provide a coherent model, we
should impose that no physical states are charged under both observable and
hidden gauge groups, however for this survey we will not take such constraint
into consideration and provide a global view of possible matter content.

The other sectors quoted in (84) can lead to enhancements of the observable
and/or hidden gauge group, depending on the choice of the GSO phases. En-
hancement is a procedure where gauge bosons from sectors other than NS-sector
give rise to a gauge group or combine with gauge bosons from other sectors to
provide a larger gauge group. In a first approach we would like to avoid en-
hancements because they lead to a larger gauge group whereas all our effort
have been put in reducing this gauge group. Avoiding enhancement is made
possible by a wise choice of GSO coefficients.

We use a slightly different notation here for GSO phases :

C

(
bi
bj

)
= eiπ(bi|bj), (bi|bj) = 0, 1 (89)

with the properties

(ai |aj + ak ) = (ai |aj ) + (ai |ak ) ,∀ ai : {ψµ} ∩ ai = ∅ (90)
(ai |aj ) = (aj |ai ) ,∀ ai, aj : ai · aj = 0 mod 4 (91)

Here are the conditions for enhancements in all possible sectors.
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• The x sector gauge bosons (x = {η̄123, ψ̄12345}) give rise to enhancement
in the observable sector when

(ei|x) = (zk|x) = 0 , ∀ i = 1, ..., 6, k = 1, 2. (92)

In this case the enhancement is

SO(6)obs × SU(2)L/R × U(1)′ =⇒ SU(6), (93)

where U(1)′ is a combination of the U(1)i.

• The z1 + z2 sector gauge bosons (z1 + z2 = {φ̄12345678}) give rise to en-
hancement in the hidden sector when

(ei|z1 + z2) = (bk|z1 + z2) = 0 , ∀ i = 1, ..., 6, k = 1, 2. (94)

In this case the enhancement is

SU(2)1/2 × SU(2)3/4 × SO(8)hid =⇒ SO(12). (95)

• The z1 sector gauge bosons (z1 = {φ̄1234}) give rise to different enhance-
ments in the following cases :

1. when
(ei|z1) = 0 , ∀ i = 1, ..., 6. (96)

we have an enhancement if

(z1|z2) = 0 (97)

or
(z1|z2) = 1, (z1|b1) = (z1|b2) = 0. (98)

In the case when (z1|z2) = 0 we have both the enhancements

SO(6)obs × SU(2)1/2 × SU(2)3/4 =⇒ SO(10) (99)
SO(4)obs × SU(2)2/1 × SU(2)4/3 =⇒ SO(8) (100)

when (z1|b1) = (z1|b2) = 1 (notice that the two groups do not over-
lap), or we have one enhancement

Ui × SU(2)1/2 × SU(2)3/4 =⇒ SO(6) (101)

corresponding to the three other cases for the bm phases.
In the case when (z1|z2) = 1 and (z1|b1) = (z1|b2) = 0, we have the
enhancement

SU(2)1/2 × SU(2)3/4 × SO(8)hid =⇒ SO(12). (102)
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2. when
∃! j, (ej |z1) = 1 (103)

we have an enhancement if

(z1|z2) = 0 (104)

and  (z1|b1) = 0 if j = 1, 2
(z1|b2) = 0 if j = 3, 4
(z1|b1) = (z1|b2) if j = 5, 6

(105)

In any of these cases the enhancement is

SU(2)1/2 × SU(2)3/4 =⇒ SO(5). (106)

• The z2 sector gauge bosons (z2 = {φ̄5678}) give rise to different enhance-
ments in the following cases :

1. when
(ei|z2) = 0 , ∀ i = 1, ..., 6, (107)

we have an enhancement if

(z1|z2) = 0, (z2|α) = 1 (108)

which corresponds to

SO(6)obs × SO(8)hid =⇒ SO(14) (109)

when (z2|b1) = (z2|b2) = 1. And for the other cases for the bm phases
we end up with one of the enhancements

U(1)i × SO(8)hid =⇒ SO(10). (110)

Other conditions for enhancement are

(z1|z2) = 0, (z2|α) = 0, (z2|b1) = (z2|b2) = 1 (111)

which leads to

SO(4)obs × SO(8)hid =⇒ SO(12), (112)

or
(z1|z2) = 1, (z2|b1) = (z2|b2) = 0, (113)

which leads to

SO(4)1/2 × SO(8)hid =⇒ SO(12), (114)
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2. when
∃! j, (ej |z2) = 1, (115)

we have an enhancement if

(z1|z2) = (α|z2) = 0 (116)

and  (z2|b1) = 0 if j = 1, 2
(z2|b2) = 0 if j = 3, 4
(z2|b1) = (z2|b2) if j = 5, 6

(117)

In any of these cases the enhancement is

SO(8)hid =⇒ SO(9). (118)

• The α sector gauge bosons (α = {η̄123, ψ̄123, φ̄12}) give rise to an enhance-
ment when

(ei|α) = (z2|α) = 0 , ∀ i = 1, ..., 6. (119)

In this case the enhancement is

SO(6)obs × U(1)′ × SU(2)1/2 =⇒ SU(6), (120)

where U(1)′ is a combination of the U(1)i.

• The α+ z1 sector gauge bosons (α+ z1 = {η̄123, ψ̄123, φ̄34}) give rise to an
enhancement when

(ei|α+ z1) = (z2|α+ z1) = 0 , ∀ i = 1, ..., 6. (121)

In this case the enhancement is

SO(6)obs × U(1)′ × SU(2)3/4 =⇒ SU(6), (122)

where U(1)′ is a combination of the U(1)i.

• The δ sector gauge bosons (δ = {ψ̄45, φ̄345678}) give rise to an enhancement
when

(ei|δ) = 0 , ∀ i = 1, ..., 6, (123)

(δ|b1) = (δ|b2), (124)

(δ|α) = 0 (125)

and
(δ|b1) + (δ|z1) + (δ|z2) + (δ|1) = 1. (126)

In this case the enhancement is

SU(2)L/R × SU(2)3/4 × SO(8)hid =⇒ SO(12). (127)
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• The δ + z1 sector gauge bosons (δ + z1 = {ψ̄45, φ̄125678}) give rise to an
enhancement when

(ei|δ + z1) = 0 , ∀ i = 1, ..., 6, (128)

(δ + z1|b1) = (δ + z1|b2), (129)

(δ + z1|α) = (δ + z1|z1) (130)

and

(δ + z1|b1) + (δ + z1|z1) + (δ + z1|z2) + (δ + z1|1) = 1. (131)

In this case the enhancement is

SU(2)L/R × SU(2)1/2 × SO(8)hid =⇒ SO(12). (132)

• The δ + z2 sector gauge bosons (δ + z2 = {ψ̄45, φ̄34}) give rise to different
enhancements in the following cases :

1. when
(ei|δ + z2) = 0 , ∀ i = 1, ..., 6. (133)

we have an enhancement if

(δ + z2|α) = 1, (δ + z2|z2) = 0. (134)

or{
(δ + z2|α) = 0, (δ + z2|b1) = (δ + z2|b2), (δ + z2|z2) = 1
(δ + z2|z1) + (δ + z2|b1) = 1 + (δ + z2|1)

(135)
In the case when (δ+ z2|α) = 1 and (δ+ z2|z2) = 0 we have both the
enhancements

SO(6)obs × SU(2)L/R × SU(2)3/4 =⇒ SO(10) (136)
SO(4)1 × SU(2)R/L × SU(2)4/3 =⇒ SO(8) (137)

when (δ+z2|b1) = (δ+z2|b2) and (δ+z2|b1 +z1) = (δ+z2|1) (notice
that the two groups do not overlap), or we have one enhancement

Ui × SU(2)L/R × SU(2)3/4 =⇒ SO(6) (138)

corresponding to the case (δ+z2|b1) = (δ+z2|b2) and (δ+z2|b1+z1) =
1 + (δ + z2|1) and the cases (δ + z2|b1) = 1 + (δ + z2|b2).
In the case when (δ + z2|α) = 0, (δ + z2|z2) = 1, (δ + z2|b1) =
(δ+z2|b2)and (δ+z2|b1+z1) = 1+(δ+z2|1), we have the enhancement

SU(2)L/R × SU(2)3/4 × SO(8)hid =⇒ SO(12). (139)
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2. when
∃! j, (ej |δ + z2) = 1 (140)

we have an enhancement if

(δ + z2|α) = (δ + z2|z2) = 0 (141)

and (δ + z2|z1) + (δ + z2|b1) + (δ + z2|1) = 0 if j = 1, 2
(δ + z2|z1) + (δ + z2|b2) + (δ + z2|1) = 0 if j = 3, 4
(δ + z2|b1) = (δ + z2|b2) if j = 5, 6

(142)

In any of these cases the enhancement is

SU(2)L/R × SU(2)3/4 =⇒ SO(5). (143)

• The α + x sector gauge bosons (α + x = {ψ̄45, φ̄12}) give rise to different
enhancements in the following cases :

1. when
(ei|α+ x) = 0 , ∀ i = 1, ..., 6. (144)

we have an enhancement if

(α+ x|z2) = 0, (α+ x|α) + (α+ x|z1) = 1. (145)

or{
(α+ x|z2) = 1, (α+ x|α) = (α+ x|z1)
(α+ x|b1) = (α+ x|b2), (α+ x|b1) + (α+ x|z1) = 1 + (α+ x|1)

(146)
In the case when (α + x|z2) = 0 and (α + x|α) + (α + x|z1) = 1 we
have both the enhancements

SO(6)obs × SU(2)L/R × SU(2)1/2 =⇒ SO(10) (147)
SO(4)2 × SU(2)R/L × SU(2)2/1 =⇒ SO(8) (148)

when (α+ x|b1) = (α+ x|b2) and (α+ x|b1 + z1) = (α+ x|1) (notice
that the two groups do not overlap), or we have one enhancement

Ui × SU(2)L/R × SU(2)1/2 =⇒ SO(6) (149)

corresponding to the case (α+x|b1) = (α+x|b2) and (α+x|b1 +z1) =
1 + (α+ x|1) and the cases (α+ x|b1) = 1 + (α+ x|b2).
In the case when (α+x|z2) = 1, (α+x|α) = (α+x|z1), (α+x|b1) =
(α+x|b2) and (α+x|b1+z1) = 1+(α+x|1), we have the enhancement

SU(2)L/R × SU(2)1/2 × SO(8)hid =⇒ SO(12). (150)
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2. when
∃! j, (ej |α+ x) = 1 (151)

we have an enhancement if

(α+ x|z2) = 0, (α+ x|α) = (α+ x|z1) (152)

and (α+ x|z1) + (α+ x|b1) + (α+ x|1) = 0 if j = 1, 2
(α+ x|z1) + (α+ x|b2) + (α+ x|1) = 0 if j = 3, 4
(α+ x|b1) = (α+ x|b2) if j = 5, 6

(153)

In any of these cases the enhancement is

SU(2)L/R × SU(2)1/2 =⇒ SO(5). (154)

4.3 Twisted matter spectrum and projectors

The massless matter content of these models can arise from two groups of sectors
called twisted and untwisted sectors. The twisted sectors are those which may
contain chiral matter and so the particles of the MSSM. The untwisted sectors
contain other states belonging to vectorial representations of gauge groups.

We will first focus on twisted matter spectrum. After studying the GSO projec-
tions we realize that each of these sectors can contain a family 8 states trans-
forming as some representation of a subgroup of the gauge group (88). The
conditions for a sector to provide such a family can be expressed in term of
projectors P (GSO phases) where P = 0 means the sector does not provide a
family and P = 1 means the sector provides a family. These expressions give
a convenient summary of GSO projections and enable us to count the number
of chiral families very easily for one specific choice of GSO phases. These ex-
pressions can be translated into matrix expressions and used to compute the
calculations of the number of families, which is actually the real purpose of this
work. The matrix expressions of the projectors can be found in the appendix.

For each family we can extract the charges of the different states under the
Cartan generators of the gauge group. The Cartan generators are associated
with complex world-sheet fermions in this case and we can define for a state
|s > in the bi sector its charge under the complexe fermion f by

Q(f) =
1
2
bi(f) + F (f, |s >) (155)

where F (f, |s >) take values 0, -1 or +1, as defined in (78)and applied to the
state |s >, but only taking the fermion f into consideration.
The charges of massless states under the different Cartan generators are always
±1/2 (or 0) in twisted sectors, because these states are actually degenerated
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vaccua.
Then we can deduce from these charges for each state its hypercharge and its
electromagnetic charge. This provides us a general picture of the chiral matter
existing in these models.

Here are the different representations one can find from different sectors with
the expressions of the associated projectors.

These representations can take the form (4,2,1), (4,1,2), (4̄,2,1), (4̄,1,2),
where 4 and 4̄ are (anti)spinorial representations of SO(6)obs and (2,1) and
(1,2) are respectively {doublet of SU(2)L, singlet of SU(2)R} and {singlet
of SU(2)L, doublet of SU(2)R}, using the decomposition SO(4) = SU(2)L ×
SU(2)R.
The sectors that provide these chiral representations are the following :

B(1)
pqrs = S + b1 + pe3 + qe4 + re5 + se6 (156)

= {ψµ, χ12, (1− p)y3ȳ3, pω3ω̄3, (1− q)y4ȳ4, qω4ω̄4,

(1− r)y5ȳ5, rω5ω̄5, (1− s)y6ȳ6, sω6ω̄6, η̄1, ψ̄1..5}
B(2)
pqrs = S + b2 + pe1 + qe2 + re5 + se6 (157)

B(3)
pqrs = S + b3 + pe1 + qe2 + re3 + se4 (158)

where p, q, r, s = 0, 1; b3 = b1 + b2 + x = 1 + S + b1 + b2 +
∑6
i=1 ei +

∑2
n=1 zn.

The explicit expressions for the 48 projectors are

P (1)
pqrs =

1
16

(
1− c

(
e1

B
(1)
pqrs

))
·
(

1− c
(

e2

B
(1)
pqrs

))
(159)

·
(

1− c
(

z1

B
(1)
pqrs

))
·
(

1− c
(

z2

B
(1)
pqrs

))
P (2)
pqrs =

1
16

(
1− c

(
e3

B
(2)
pqrs

))
·
(

1− c
(

e4

B
(2)
pqrs

))
(160)

·
(

1− c
(

z1

B
(2)
pqrs

))
·
(

1− c
(

z2

B
(2)
pqrs

))
P (3)
pqrs =

1
16

(
1− c

(
e5

B
(3)
pqrs

))
·
(

1− c
(

e6

B
(3)
pqrs

))
(161)

·
(

1− c
(

z1

B
(3)
pqrs

))
·
(

1− c
(

z2

B
(3)
pqrs

))
The remaining states have charges +1/2 or −1/2 under the Cartan gener-

ators associated with the complexe fermions ψ̄1,...,5 (1/2 = 1/2 + 0, −1/2 =
1/2− 1). These five charges Q1, Q2, Q3, Q4, Q5 are of interest because they are
charges under the observable gauge group, so they should be linked to hyper-
charge and electromagnetic charge.

30



The 8 states we may obtain from one praticular sector have the property that
the number of charges -1/2 among Q1, Q2, Q3 is either even either odd and the
number of charges -1/2 among Q4, Q5 is also either even either odd. The four
possibilies we get correspond to the four possible representations we mentioned
above and one can easily verify that each of these representations contains eight
states. Now we would like to match these states with particles of the standard
model.
Suitable definitions for hyperchage and electromagnetic charge here turn to be

Y =
1
3

(Q1 +Q2 +Q3) +
1
2

(Q4 +Q5) (162)

Qem = Y +
1
2

(Q4 −Q5) (163)

These definitions lead to the following results :

representation ψ̄1,2,3 ψ̄4,5 Y Qem
(+,+,+) (+,+) 1 1

(4̄,1,2) (+,+,+) (−,−) 0 0
(+,−,−) (+,+) 1/3 1/3
(+,−,−) (−,−) -2/3 -2/3
(−,−,−) (−,−) -1 -1

(4,1,2) (−,−,−) (+,+) 0 0
(+,+,−) (−,−) -1/3 -1/3
(+,+,−) (+,+) 2/3 2/3

(4̄,2,1) (+,+,+) (+,−) 1/2 1,0
(+,−,−) (+,−) -1/6 1/3,-2/3

(4,2,1) (−,−,−) (+,−) -1/2 -1,0
(+,+,−) (+,−) 1/6 -1/3,2/3

So we have found states corresponding to particles of the standard model but
they come only by eight whereas we need sixteen states to form a family, so
there remains a difficulty.

We can find states in other sectors, with degenerated vacuum under ψi and
φi oscillators so that they mix what we call the observable and hidden sectors.
A physical model should project out these states thanks to a suitable choice of
GSO phases.

The states corresponding to the representations (4,2,1), (4,1,2), (4̄,2,1),
(4̄,1,2) where 4 and 4̄ are (anti)spinorial representations of the observable
SO(6) and the others are representations of the hidden SU(2)1 × SU(2)2 =
SO(4)1, arise from the following sectors :
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B(4)
pqrs = S + b1 + b2 + α+ pe1 + qe2 + re3 + se4 (164)

= {ψµ, χ56, (1− p)y1ȳ1, pω1ω̄1, (1− q)y2ȳ2, qω2ω̄2,

(1− r)y3ȳ3, rω3ω̄3, (1− s)y4ȳ4, sω4ω̄4, η̄3, ψ̄123, φ̄12}
B(5)
pqrs = S + b1 + b3 + α+ pe1 + qe2 + re5 + se6 (165)

B(6)
pqrs = S + b2 + b3 + α+ pe3 + qe4 + re5 + se6 (166)

The 48 GSO projectors associated to these sectors are :

P (4)
pqrs =

1
16

(
1− c

(
e5

B
(4)
pqrs

))
·
(

1− c
(

e6

B
(4)
pqrs

))
·
(

1− c
(

z2

B
(4)
pqrs

))
(167)

·
(

1− c
(
α+ z1 + x

B
(4)
pqrs

))
P (5)
pqrs =

1
16

(
1− c

(
e3

B
(5)
pqrs

))
·
(

1− c
(

e4

B
(5)
pqrs

))
·
(

1− c
(

z2

B
(5)
pqrs

))
(168)

·
(

1− c
(
α+ z1 + x

B
(5)
pqrs

))
P (6)
pqrs =

1
16

(
1− c

(
e1

B
(6)
pqrs

))
·
(

1− c
(

e2

B
(6)
pqrs

))
·
(

1− c
(

z2

B
(6)
pqrs

))
(169)

·
(

1− c
(
α+ z1 + x

B
(6)
pqrs

))
Similar sectors are the B(4,5,6)

pqrs + z1 which correspond to the representations
(4,2,1), (4,1,2), (4̄,2,1), (4̄,1,2) of SO(6)obs × SO(4)2.
The corresponding GSO projectors are the same as the P

(4),(5),(6)
pqrs replacing

B
(4,5,6)
pqrs by B(4,5,6)

pqrs + z1 and α by α+ z1.

The charges of these states, as those of the following sectors we are going to
study, do no match the charges of the standard model, which indicates that
they should probably be removed of the spectrum of a physical model.

Then we have sectors corresponding to the representations ((2,1), (2,1)), ((2,1), (1,2)),
((1,2), (1,2)) and ((1,2), (2,1)) for the group SU(2)4 = SO(4)obs × SO(4)1 :

B(7)
pqrs = B(4)

pqrs + x = S + b3 + α+ pe1 + qe2 + re3 + se4 (170)

= {ψµ, χ56, (1− p)y1ȳ1, pω1ω̄1, (1− q)y2ȳ2, qω2ω̄2,

(1− r)y3ȳ3, rω3ω̄3, (1− s)y4ȳ4, sω4ω̄4, η̄12, ψ̄45, φ̄12}
B(8)
pqrs = B(5)

pqrs + x = S + b2 + α+ pe1 + qe2 + re5 + se6 (171)

B(9)
pqrs = B(6)

pqrs + x = S + b1 + α+ pe3 + qe4 + re5 + se6 (172)
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The 48 GSO projectors associated to these sectors are :

P (7)
pqrs =

1
8

(
1− c

(
e5

B
(7)
pqrs

))
·
(

1− c
(

e6

B
(7)
pqrs

))
·
(

1− c
(

z2

B
(7)
pqrs

))
(173)

P (8)
pqrs =

1
8

(
1− c

(
e3

B
(8)
pqrs

))
·
(

1− c
(

e4

B
(8)
pqrs

))
·
(

1− c
(

z2

B
(8)
pqrs

))
(174)

P (9)
pqrs =

1
8

(
1− c

(
e1

B
(9)
pqrs

))
·
(

1− c
(

e2

B
(9)
pqrs

))
·
(

1− c
(

z2

B
(9)
pqrs

))
(175)

Here as well we have the similar B(7,8,9)
pqrs + z1 sectors corresponding to sim-

ilar representations but for SU(2)4 = SO(4)obs × SO(4)2, with corresponding
GGSO projectors identical to the P (7),(8),(9)

pqrs replacing B(7,8,9)
pqrs by B(7,8,9)

pqrs + z1.

The remaining sectors provide states belonging to representations of the
hidden sector.
We have a set of 48 sectors giving representations like ((2,1), (2,1)) of SU(2)4 =
SO(4)1 × SO(4)2 :

B(10)
pqrs = B(1)

pqrs + x+ z1 = S + b2 + b3 + pe3 + qe4 + re5 + se6 + z1(176)

= {ψµ, χ12, (1− p)y3ȳ3, pω3ω̄3, (1− q)y4ȳ4, qω4ω̄4,

(1− r)y5ȳ5, rω5ω̄5, (1− s)y6ȳ6, sω6ω̄6, η̄23, φ̄1..4}
B(11)
pqrs = B(2)

pqrs + x+ z1 = S + b1 + b3 + pe1 + qe2 + re5 + se6 + z1(177)

B(12)
pqrs = B(3)

pqrs + x+ z1 = S + b1 + b2 + pe1 + qe2 + re3 + se4 + z1(178)

The associated GGSO projectors are :

P (10)
pqrs =

1
8

(
1− c

(
e1

B
(10)
pqrs

))
·
(

1− c
(

e2

B
(10)
pqrs

))
·
(

1− c
(

z2

B
(10)
pqrs

))
(179)

P (11)
pqrs =

1
8

(
1− c

(
e3

B
(11)
pqrs

))
·
(

1− c
(

e4

B
(11)
pqrs

))
·
(

1− c
(

z2

B
(11)
pqrs

))
(180)

P (12)
pqrs =

1
8

(
1− c

(
e5

B
(12)
pqrs

))
·
(

1− c
(

e6

B
(12)
pqrs

))
·
(

1− c
(

z2

B
(12)
pqrs

))
(181)

(182)

Finally we have 48 sectors corresponding to spinorial 8 and antispinorial 8̄
representations of SO(8) in the hidden sector :
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B(13)
pqrs = B(1)

pqrs + x+ z2 = S + b2 + b3 + pe3 + qe4 + re5 + se6 + z2(183)

= {ψµ, χ12, (1− p)y3ȳ3, pω3ω̄3, (1− q)y4ȳ4, qω4ω̄4,

(1− r)y5ȳ5, rω5ω̄5, (1− s)y6ȳ6, sω6ω̄6, η̄23, φ̄5..8}
B(14)
pqrs = B(2)

pqrs + x+ z2 = S + b1 + b3 + pe1 + qe2 + re5 + se6 + z2(184)

B(15)
pqrs = B(3)

pqrs + x+ z2 = S + b1 + b2 + pe1 + qe2 + re3 + se4 + z2(185)

And the GSO projectors are :

P (13)
pqrs =

1
16

(
1− c

(
e1

B
(13)
pqrs

))
·
(

1− c
(

e2

B
(13)
pqrs

))
·
(

1− c
(

z1

B
(13)
pqrs

))
(186)

·
(

1− c
(
α+ x

B
(13)
pqrs

))
P (14)
pqrs =

1
16

(
1− c

(
e3

B
(14)
pqrs

))
·
(

1− c
(

e4

B
(14)
pqrs

))
·
(

1− c
(

z1

B
(14)
pqrs

))
(187)

·
(

1− c
(
α+ x

B
(14)
pqrs

))
P (15)
pqrs =

1
16

(
1− c

(
e5

B
(15)
pqrs

))
·
(

1− c
(

e6

B
(15)
pqrs

))
·
(

1− c
(

z1

B
(15)
pqrs

))
(188)

·
(

1− c
(
α+ x

B
(15)
pqrs

))
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4.4 Vectorial representations

We can now look at the vectorial representations coming from untwisted sectors.
These representations all arise from the 144 sectors :

B(1)
pqrs + x = S + b1 + x+ pe3 + qe4 + re5 + se6 (189)

= {ψµ, χ12, (1− p)y3ȳ3, pω3ω̄3, (1− q)y4ȳ4, qω4ω̄4,

(1− r)y5ȳ5, rω5ω̄5, (1− s)y6ȳ6, sω6ω̄6, η̄23}
B(2)
pqrs + x = S + b2 + x+ pe1 + qe2 + re5 + se6 (190)

B(3)
pqrs + x = S + b3 + x+ pe1 + qe2 + re3 + se4 (191)

We have the following states and the associated projectors :

• {ψ̄123}|R >
(i)
pqrs, i = 1, 2, 3, where |R >

(i)
pqrs is the degenerated Ramond

vacuum of the B(i)
pqrs sector.

These states transform as a vectorial representation of SO(6).
The associated GGSO projectors are :

P (i)(ψ̄123)
pqrs =

1
32

(
1− c

(
e2i−1

B
(i)
pqrs + x

))
·
(

1− c
(

e2i

B
(i)
pqrs + x

))
(192)

·
(

1− c
(

z1

B
(i)
pqrs + x

))
·
(

1− c
(

z2

B
(i)
pqrs + x

))
·
(

1− c
(

α+ x

B
(i)
pqrs + x

))

• {ψ̄45}|R >
(i)
pqrs, i = 1, 2, 3, where |R >

(i)
pqrs is the degenerated Ramond

vacuum of the B(i)
pqrs sector.

These states transform as a vectorial representation of SO(4).
The associated GGSO projectors are :

P (i)(ψ̄45)
pqrs =

1
32

(
1− c

(
e2i−1

B
(i)
pqrs + x

))
·
(

1− c
(

e2i

B
(i)
pqrs + x

))
(193)

·
(

1− c
(

z1

B
(i)
pqrs + x

))
·
(

1− c
(

z2

B
(i)
pqrs + x

))
·
(

1 + c

(
α+ x

B
(i)
pqrs + x

))

• {φ̄12}|R >
(i)
pqrs, i = 1, 2, 3.

These states transform as a vectorial representation of SO(4).
The associated GGSO projectors are :

P (i)(φ̄12)
pqrs =

1
32

(
1− c

(
e2i−1

B
(i)
pqrs + x

))
·
(

1− c
(

e2i

B
(i)
pqrs + x

))
(194)

·
(

1 + c

(
z1

B
(i)
pqrs + x

))
·
(

1− c
(

z2

B
(i)
pqrs + x

))
·
(

1 + c

(
α+ x

B
(i)
pqrs + x

))
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• {φ̄34}|R >
(i)
pqrs, i = 1, 2, 3.

These states transform as a vectorial representation of SO(4).
The associated GGSO projectors are :

P (i)(φ̄34)
pqrs =

1
32

(
1− c

(
e2i−1

B
(i)
pqrs + x

))
·
(

1− c
(

e2i

B
(i)
pqrs + x

))
(195)

·
(

1 + c

(
z1

B
(i)
pqrs + x

))
·
(

1− c
(

z2

B
(i)
pqrs + x

))
·
(

1− c
(

α+ x

B
(i)
pqrs + x

))

• {φ̄5..8}|R >
(i)
pqrs, i = 1, 2, 3.

These states transform as a vectorial representation of SO(8).
The associated GGSO projectors are :

P (i)(φ̄5..8)
pqrs =

1
32

(
1− c

(
e2i−1

B
(i)
pqrs + x

))
·
(

1− c
(

e2i

B
(i)
pqrs + x

))
(196)

·
(

1− c
(

z1

B
(i)
pqrs + x

))
·
(

1 + c

(
z2

B
(i)
pqrs + x

))
·
(

1− c
(

α+ x

B
(i)
pqrs + x

))
• the remaining states in those sectors do not provide vectorial representa-

tions.

If we look at the expressions of projectors for twisted matter spectrum and
compare with projectors of vectorial representations, we can find a lot of simi-
larities. Actually we can find a matching or isomorphism between the different
models which reverse the number of vectorial representations of one type with
the number of spinorial (or chiral) representations of some Bi sectors. This kind
of duality in the space of possible models has been studied for free fermionic
models with only the first 12 vectors vi in the basis in paper [11], where it is
called Spinor-Vector duality. In our case the duality is more complicated and
more mysterious. It might be matter for future work. The details of this ”‘du-
ality”’ are given in the appendix.
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5 Conclusions

We have now developped some usefull tools to translate ABK rules into more
direct expressions for SO(6)× SO(4) models. We know what are their possible
gauge groups and their possible matter contents. We found a vast amount of
different models providing chiral families. Each family contains only eight states
so, in future work, we might find some rule to regroup them in pairs, in order
to obtain the families of the MSSM. We might as well try to search for rules to
select models (i.e. GSO phases) which provide the right number of families.
A better understanding could be given by the statistical analysis of these models
on computer. The expectations we might have as for the results of the com-
putation of these calculations are not straightforward. One interesting feature
will be given by looking at the percentage of models giving rise to spectrums
whith specific number of chiral families. This could reveal properties common
to a majority of models. We can hope that the features we will understand from
this analysis will give us a hint as for the contraints we have to impose to select
models.

Obviously the analysis of SO(6) × SO(4) models does not provide a classi-
fication of all 4D-heterotic free fermionic models. So future work will be to
perform the same classification for other gauge groups, like SU(5)×U(1) which
is a subgroup of SO(10) and a good candidate for grand unification.
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6 Appendix

6.1 Matrix formalism

The projectors can be written as system of equations (one per plane)

∆(I)
8 U

(I)
8 = Y

(I)
8 , I = 1, ..., 15, (+4′, 5′, ..., 9′) (197)

∆(J)
v U (J)

osc = Y (J)
osc , J = 1, 2, 3, osc = ψ̄123, ψ̄45, φ̄12, φ̄34, φ̄5..8. (198)

where the unknowns are the fixed point labels

U
(I)
8 =


pI8
qI8
rI8
sI8

 , U (J)
osc =


pJosc
qJosc
rJosc
sJosc

 (199)

and

∆(1)
8 =


(e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )
(z1 |e3 ) (z1 |e4 ) (z1 |e5 ) (z1 |e6 )
(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )



∆(2)
8 =


(e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )
(z1 |e1 ) (z1 |e2 ) (z1 |e5 ) (z1 |e6 )
(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )

 (200)

∆(3)
8 =


(e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )
(z1 |e1 ) (z1 |e2 ) (z1 |e3 ) (z1 |e4 )
(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )



Y
(1)
8 =


(e1 |b1 )
(e2 |b1 )
(z1 |b1 )
(z2 |b1 )

 , Y
(2)
8 =


(e3 |b2 )
(e4 |b2 )
(z1 |b2 )
(z2 |b2 )

 , Y
(3)
8 =


(e5 |b3 )
(e6 |b3 )
(z1 |b3 )
(z2 |b3 )

 (201)
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∆(4)
8 =


(e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )

(α+ z1 + x |e1 ) (α+ z1 + x |e2 ) (α+ z1 + x |e3 ) (α+ z1 + x |e4 )
(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )



∆(5)
8 =


(e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )

(α+ z1 + x |e1 ) (α+ z1 + x |e2 ) (α+ z1 + x |e5 ) (α+ z1 + x |e6 )
(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )

(202)

∆(6)
8 =


(e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )

(α+ z1 + x |e3 ) (α+ z1 + x |e4 ) (α+ z1 + x |e5 ) (α+ z1 + x |e6 )
(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )



Y
(4)
8 =


(e5 |b1 + b2 + α )
(e6 |b1 + b2 + α )

(α+ z1 + x |b1 + b2 + α )
(z2 |b1 + b2 + α )

 , Y
(5)
8 =


(e3 |b1 + b3 + α )
(e4 |b1 + b3 + α )

(α+ z1 + x |b1 + b3 + α )
(z2 |b1 + b3 + α )

 ,(203)

Y
(6)
8 =


(e1 |b2 + b3 + α )
(e2 |b2 + b3 + α )

(α+ z1 + x |b2 + b3 + α )
(z2 |b2 + b3 + α )



∆(4′)
8 =


(e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )

(α+ x |e1 ) (α+ x |e2 ) (α+ x |e3 ) (α+ x |e4 )
(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )



∆(5′)
8 =


(e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )

(α+ x |e1 ) (α+ x |e2 ) (α+ x |e5 ) (α+ x |e6 )
(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )

 (204)

∆(6′)
8 =


(e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )

(α+ x |e3 ) (α+ x |e4 ) (α+ x |e5 ) (α+ x |e6 )
(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )


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Y
(4′)
8 =


(e5 |b1 + b2 + α+ z1 )
(e6 |b1 + b2 + α+ z1 )

(α+ x |b1 + b2 + α+ z1 )
(z2 |b1 + b2 + α+ z1 )

 , Y
(5′)
8 =


(e3 |b1 + b3 + α+ z1 )
(e4 |b1 + b3 + α+ z1 )

(α+ x |b1 + b3 + α+ z1 )
(z2 |b1 + b3 + α+ z1 )

 ,(205)

Y
(6′)
8 =


(e1 |b2 + b3 + α+ z1 )
(e2 |b2 + b3 + α+ z1 )

(α+ x |b2 + b3 + α+ z1 )
(z2 |b2 + b3 + α+ z1 )



∆(7)
8 =

 (e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )
(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )


∆(8)

8 =

 (e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )
(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )

 (206)

∆(9)
8 =

 (e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )
(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )



Y
(7)
8 =

 (e5 |b3 + α )
(e6 |b3 + α )
(z2 |b3 + α )

 , Y
(8)
8 =

 (e3 |b2 + α )
(e4 |b2 + α )
(z2 |b2 + α )

 , Y
(9)
8 =

 (e1 |b1 + α )
(e2 |b1 + α )
(z2 |b1 + α )

(207)

∆(7′)
8 =

 (e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )
(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )

 = ∆(7)
8

∆(8′)
8 =

 (e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )
(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )

 = ∆(8)
8 (208)

∆(9′)
8 =

 (e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )
(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )

 = ∆(9)
8

Y
(7′)
8 =

 (e5 |b3 + α+ z1 )
(e6 |b3 + α+ z1 )
(z2 |b3 + α+ z1 )

 , Y
(8′)
8 =

 (e3 |b2 + α+ z1 )
(e4 |b2 + α+ z1 )
(z2 |b2 + α+ z1 )

 , (209)

Y
(9′)
8 =

 (e1 |b1 + α+ z1 )
(e2 |b1 + α+ z1 )
(z2 |b1 + α+ z1 )


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∆(10)
8 =

 (e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )
(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )

 = ∆(9)
8

∆(11)
8 =

 (e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )
(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )

 = ∆(8)
8 (210)

∆(12)
8 =

 (e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )
(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )

 = ∆(7)
8

Y
(10)
8 =

 (e1 |b2 + b3 + z1 )
(e2 |b2 + b3 + z1 )
(z2 |b2 + b3 + z1 )

 , Y
(11)
8 =

 (e3 |b1 + b3 + z1 )
(e4 |b1 + b3 + z1 )
(z2 |b1 + b3 + z1 )

 , (211)

Y
(12)
8 =

 (e5 |b1 + b2 + z1 )
(e6 |b1 + b2 + z1 )
(z2 |b1 + b2 + z1 )



∆(13)
8 =


(e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )
(z1 |e3 ) (z1 |e4 ) (z1 |e5 ) (z1 |e6 )

(α+ x |e3 ) (α+ x |e4 ) (α+ x |e5 ) (α+ x |e6 )



∆(14)
8 =


(e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )
(z1 |e1 ) (z1 |e2 ) (z1 |e5 ) (z1 |e6 )

(α+ x |e1 ) (α+ x |e2 ) (α+ x |e5 ) (α+ x |e6 )

 (212)

∆(15)
8 =


(e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )
(z1 |e1 ) (z1 |e1 ) (z1 |e3 ) (z1 |e4 )

(α+ x |e1 ) (α+ x |e2 ) (α+ x |e3 ) (α+ x |e4 )



Y
(13)
8 =


(e1 |b2 + b3 + z2 )
(e2 |b2 + b3 + z2 )
(z1 |b2 + b3 + z2 )

(α+ x |b2 + b3 + z2 )

 , Y
(14)
8 =


(e3 |b1 + b3 + z2 )
(e4 |b1 + b3 + z2 )
(z1 |b1 + b3 + z2 )

(α+ x |b1 + b3 + z2 )

 ,(213)

Y
(15)
8 =


(e5 |b1 + b2 + z2 )
(e6 |b1 + b2 + z2 )
(z1 |b1 + b2 + z2 )

(α+ x |b1 + b2 + z2 )


and for vectorials :
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∆(1)
v =


(e1 |e3 ) (e1 |e4 ) (e1 |e5 ) (e1 |e6 )
(e2 |e3 ) (e2 |e4 ) (e2 |e5 ) (e2 |e6 )
(z1 |e3 ) (z1 |e4 ) (z1 |e5 ) (z1 |e6 )
(z2 |e3 ) (z2 |e4 ) (z2 |e5 ) (z2 |e6 )

(α+ x |e3 ) (α+ x |e4 ) (α+ x |e5 ) (α+ x |e6 )



∆(2)
v =


(e3 |e1 ) (e3 |e2 ) (e3 |e5 ) (e3 |e6 )
(e4 |e1 ) (e4 |e2 ) (e4 |e5 ) (e4 |e6 )
(z1 |e1 ) (z1 |e2 ) (z1 |e5 ) (z1 |e6 )
(z2 |e1 ) (z2 |e2 ) (z2 |e5 ) (z2 |e6 )

(α+ x |e1 ) (α+ x |e2 ) (α+ x |e5 ) (α+ x |e6 )

 (214)

∆(3)
v =


(e5 |e1 ) (e5 |e2 ) (e5 |e3 ) (e5 |e4 )
(e6 |e1 ) (e6 |e2 ) (e6 |e3 ) (e6 |e4 )
(z1 |e1 ) (z1 |e2 ) (z1 |e3 ) (z1 |e4 )
(z2 |e1 ) (z2 |e2 ) (z2 |e3 ) (z2 |e4 )

(α+ x |e1 ) (α+ x |e2 ) (α+ x |e3 ) (α+ x |e4 )



Y
(1)

ψ̄123 =


(e1 |b1 + x )
(e2 |b1 + x )
(z1 |b1 + x )
(z2 |b1 + x )

(α+ x |b1 + x )

 , Y
(2)

ψ̄123 =


(e3 |b2 + x )
(e4 |b2 + x )
(z1 |b2 + x )
(z2 |b2 + x )

(α+ x |b2 + x )

 , Y
(3)

ψ̄123 =


(e5 |b3 + x )
(e6 |b3 + x )
(z1 |b3 + x )
(z2 |b3 + x )

(α+ x |b3 + x )

(215)

Y
(1)

ψ̄45 =


(e1 |b1 + x )
(e2 |b1 + x )
(z1 |b1 + x )
(z2 |b1 + x )

1 + (α+ x |b1 + x )

 , Y
(2)

ψ̄45 =


(e3 |b2 + x )
(e4 |b2 + x )
(z1 |b2 + x )
(z2 |b2 + x )

1 + (α+ x |b2 + x )

 , (216)

Y
(3)

ψ̄45 =


(e5 |b3 + x )
(e6 |b3 + x )
(z1 |b3 + x )
(z2 |b3 + x )

1 + (α+ x |b3 + x )



Y
(1)

φ̄12 =


(e1 |b1 + x )
(e2 |b1 + x )

1 + (z1 |b1 + x )
(z2 |b1 + x )

1 + (α+ x |b1 + x )

 , Y
(2)

φ̄12 =


(e3 |b2 + x )
(e4 |b2 + x )

1 + (z1 |b2 + x )
(z2 |b2 + x )

1 + (α+ x |b2 + x )

 , (217)

Y
(3)

φ̄12 =


(e5 |b3 + x )
(e6 |b3 + x )

1 + (z1 |b3 + x )
(z2 |b3 + x )

1 + (α+ x |b3 + x )


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Y
(1)

φ̄34 =


(e1 |b1 + x )
(e2 |b1 + x )

1 + (z1 |b1 + x )
(z2 |b1 + x )

(α+ x |b1 + x )

 , Y
(2)

φ̄34 =


(e3 |b2 + x )
(e4 |b2 + x )

1 + (z1 |b2 + x )
(z2 |b2 + x )

(α+ x |b2 + x )

 , Y
(3)

φ̄34 =


(e5 |b3 + x )
(e6 |b3 + x )

1 + (z1 |b3 + x )
(z2 |b3 + x )

(α+ x |b3 + x )

(218)

Y
(1)

φ̄5..8 =


(e1 |b1 + x )
(e2 |b1 + x )
(z1 |b1 + x )

1 + (z2 |b1 + x )
(α+ x |b1 + x )

 , Y
(2)

φ̄5..8 =


(e3 |b2 + x )
(e4 |b2 + x )
(z1 |b2 + x )

1 + (z2 |b2 + x )
(α+ x |b2 + x )

 , Y
(3)

φ̄5..8 =


(e5 |b3 + x )
(e6 |b3 + x )
(z1 |b3 + x )

1 + (z2 |b3 + x )
(α+ x |b3 + x )

(219)

6.2 Duality ?

Looking at the expessions of the projectors for ”‘spinorials”’ representations
and vectorials representations, we can see that they are very similar. Imposing
specific phases to discriminate the different representations of a B(i)

pqrs sector we
can find the kind a duality between spinors and vectors as in paper ([11]).
If we take S(i)(rep)gg to be the number of representations rep of the gauge
group gg arising from the sectors B(i)

pqrsin one model (one set of GGSO phases)
and V

(i)(osc)
gg to be the number of vectorial representations of the gauge group

gg arising from the osc|R >
(i)
pqrs states in the sectors B(i)

pqrs + x, then we have
the following dualities :

S(i)(4,2,1)SO(6)obs×SO(4)obs + S(i)(4̄,2,1)SO(6)obs×SO(4)obs ←→ V
(i)(ψ̄123)
SO(6)obs

S(i)(4,1,2)SO(6)obs×SO(4)obs + S(i)(4̄,1,2)SO(6)obs×SO(4)obs ←→ V
(i)(ψ̄45)
SO(4)obs

for i = 1, 2, 3. More explicitly, these dualities come from the formulas :

S(i)(4,2,1)... + S(i)(4̄,2,1)... =
∑
pqrs

1
2

(
1− c

(
α+ x

B
(i)
pqrs

))
· P (i)

pqrs

V
(i)(ψ̄123)
SO(6)obs

=
∑
pqrs

P (i)(ψ̄123)
pqrs

S(i)(4,1,2)... + S(i)(4̄,1,2)... =
∑
pqrs

1
2

(
1 + c

(
α+ x

B
(i)
pqrs

))
· P (i)

pqrs

V
(i)(ψ̄45)
SO(4)obs

=
∑
pqrs

P (i)(ψ̄45)
pqrs

(220)

Then we have similarly :
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S(i)(4,2,1)SO(6)obs×SO(4)1 + S(i)(4̄,2,1)SO(6)obs×SO(4)1 ←→ V
(i)(ψ̄123)
SO(6)obs

S(i)(4,1,2)SO(6)obs×SO(4)1 + S(i)(4̄,1,2)SO(6)obs×SO(4)1 ←→ V
(i)(φ̄12)
SO(4)1

for i = 4, 5, 6.

S(i)(4,2,1)SO(6)obs×SO(4)2 + S(i)(4̄,2,1)SO(6)obs×SO(4)2 ←→ V
(i)(ψ̄123)
SO(6)obs

S(i)(4,1,2)SO(6)obs×SO(4)2 + S(i)(4̄,1,2)SO(6)obs×SO(4)2 ←→ V
(i)(φ̄34)
SO(4)2

for i = 4′, 5′, 6′, with B
(4′,5′,6′)
pqrs = B

(4,5,6)
pqrs + z1.

S(i)((2,1), (2,1))SO(4)obs×SO(4)1 ←→ V
(i)(ψ̄123)
SO(6)obs

S(i)((1,2), (2,1))SO(4)obs×SO(4)1 ←→ V
(i)(ψ̄45)
SO(4)obs

S(i)((2,1), (1,2))SO(4)obs×SO(4)1 ←→ V
(i)(φ̄12)
SO(4)1

S(i)((1,2), (1,2))SO(4)obs×SO(4)1 ←→ V
(i)(φ̄34)
SO(4)2

for i = 7, 8, 9.

S(i)((2,1), (2,1))SO(4)obs×SO(4)2 ←→ V
(i)(ψ̄123)
SO(6)obs

S(i)((1,2), (2,1))SO(4)obs×SO(4)2 ←→ V
(i)(ψ̄45)
SO(4)obs

S(i)((2,1), (1,2))SO(4)obs×SO(4)2 ←→ V
(i)(φ̄34)
SO(4)2

S(i)((1,2), (1,2))SO(4)obs×SO(4)2 ←→ V
(i)(φ̄12)
SO(4)1

for i = 7′, 8′, 9′, with B
(7′,8′,9′)
pqrs = B

(7,8,9)
pqrs + z1.

S(i)((2,1), (2,1))SO(4)1×SO(4)2 ←→ V
(i)(ψ̄123)
SO(6)obs

S(i)((1,2), (2,1))SO(4)1×SO(4)2 ←→ V
(i)(φ̄12)
SO(4)1

S(i)((2,1), (1,2))SO(4)1×SO(4)2 ←→ V
(i)(φ̄34)
SO(4)2

S(i)((1,2), (1,2))SO(4)1×SO(4)2 ←→ V
(i)(ψ̄45)
SO(4)obs

for i = 10, 11, 12.

S(i)(8)SO(8)hid ←→ V
(i)(φ̄5..8)
SO(8)hid

S(i)(8̄)SO(8)hid ←→ V
(i)(ψ̄123)
SO(6)obs

for i = 13, 14, 15.
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