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Abstract

A modification of the generalised GSO coefficients in the string model presented by Faraggi et al
(1989) results in a string model with Standard-like properties including an observable gauge group
SU(3)C × SU(2)L × U(1)Y after symmetry breaking at the string level, an anomaly free massless
spectrum except for a single anomalous U(1)A, three generations (plus a partial fourth generation)
of chiral fermions, and Higgs doublets that may break the symmetry in a realistic way. The key
difference between the model presented and the 1989 model is the level at which the U(1)C ×U(1)L
symmetry breaks; in the modified model presented here the symmetry is required to break directly
at the string level.

1 Introduction

The Standard Model is a mathematically consistent theory of all known matter, plus the weak,
strong, and electromagnetic interactions. However, there are problems with the Standard Model
that give us reason to believe that our knowledge of particle theory is far from complete. A partic-
ular example is the incompatibility of the Standard Model with general relativity. Supersymmetric
string theories such as heterotic string theory may provide a solution to this problem, unifying
all known matter and interactions into one anomaly free theory in ten dimensions via the Green-
Schwarz Mechanism [1]. We stumble across another issue however, in that this unification occurs
at high energy scales. For this reason critics of string theory argue that at present, string theory is
untestable.

The free fermionic construction of heterotic string theory presented by Kawai, Lewellen, and Tye
[2] and Antoniadas, Bachas, and Kounnas [3] allows us to build and probe string models directly
in four dimensions and at low, experimentally observable energies such as those of the Standard
Model. A method to derive a Standard-Like Model in the free fermionic formulation was presented
by Faraggi, Nanopoulos and Yuan [4].

In this paper we begin with a brief discussion of the structure of the Standard Model, summarising
the properties one hopes to achieve with a standard-like string model. We then proceed to introduce
string theory, discussing the method to construct space states similar to those in particle physics
from the quantum string, and eventually discussing the ABK rules for building a string model in
the free fermionic formulation. Finally we modify the generalised GSO projection coefficients for
the model presented by Faraggi et al [4], derive the massless spectrum of this modified model and,
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through calculation of the anomalies, present a difference in energy at which the standard model
gauge group is acheived.

Due to anomalous trace U(1)’s in the observable sector, we have a requirement for the standard
model gauge group SU(3)C × SU(2)L × U(1)Y through a unique combination of the trace U(1)’s,
U(1)Y = 1

3U(1)C + 1
2U(1)L, with the remaining observable U(1) charges anomaly free except for a

single U(1)A after an orthogonal rotation. This differs from the model presented in Faraggi et al; in
the unmodified model the trace U(1)’s are anomaly free, and hence the symmetry may either break
directly to the standard model gauge group (as in the modified model presented here), or the trace
U(1)’s may break in an orthogonal combination U(1)Z′ = U(1)C − U(1)L. The model presented in
this paper is standard-like directly at the string level.

2 An Overview of The Structure of The Standard Model

We begin by discussing the structure of the Standard Model and the properties we ideally wish
to obtain with a standard-like string model. This chapter is just a brief overview of the particles
comprising the Standard Model, and as such does not contain information on particle interactions
or such like. Our primary reference for this material is P. Langacker’s book The Standard Model
and Beyond [6], however chapters from references [5, 7, 16] among others were also relevant.

The Standard Model is a Quantum Field Theory that includes all matter particles in the form
of spinor fermion fields ψ, plus three of the four fundamental interactions (strong, weak, and elec-
tromagnetism) in the form of vector boson fields; the weak fields W± and Z, the photon field A and
gluon fields G1,...,8, and finally the Higgs boson in the form of a scalar Higgs field φ. Each particle
also has an anti-particle, with equal mass but opposite charge.

The Standard Model is a gauge theory, with gauge group SU(3)C × SU(2)L × U(1)Y . Each group
consists of generators and basis vectors (group theory is discussed in more detail and these genera-
tors and basis vectors are derived explicitly in Appendix D). Physically, the generators correspond
to gauge bosons whilst the basis vectors correspond to the fermions on which these bosons act.
The SU(3)C gives rise to Quantum Chromodynamics and couples with the eight gluon fields. The
SU(2)L × U(1)Y gives rise to the electroweak interaction; the broken SU(2) coupling to the three
weak fields, and an unbroken U(1)Q coupling with the A field. It is an anomaly free theory.

2.1 Fermions

The Standard Model contains three generations of chiral fermions. The defining property of a
fermion is that it has half integer spin, and all Standard Model fermions are spin 1/2. The fermion
field is a four spinor, such as a Dirac or Majorana spinor. We may split the fermions into two
groups; there are six leptons and six quarks, two of each per generation. Quarks carry a colour
charge, and electric charge of either +2/3 or −1/3. Quarks are not found free, instead being found
either in groups of three or as a quark-antiquark pair, bonded by the strong interaction of Quan-
tum Chromodynamics. Leptons do not carry a colour charge and as such are found free in nature.
Leptons with electric charge −1 are the electron, muon, and tau, whilst leptons with charge 0 are
three neutrinos.

Furthermore, our fermions are chiral. For each field ψ, we can define left and right chiral pro-
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jections using the chiral representation, in which we write

ψ =

(
ψL
ψR

)
(1)

where our left and right projections are defined by

ψL = PLψ =
1− γ5

2
ψ, ψR = PRψ =

1 + γ5

2
ψ, (2)

where γ5 = iγ0γ1γ2γ3 is the fifth Dirac gamma matrix, and PL,R satify

PLPR = PRPL = 0, PL + PR = I. (3)

We obtain

PL =

(
I 0
0 0

)
, PR =

(
0 0
0 I

)
. (4)

Thus the two component representation of the four components of ψ is a Weyl spinor.

The SU(2)L coupling is chiral, as the gauge bosons W 1,2,3 act only on the flavour indices of L-
chiral fermions. This results in L-chiral quark and lepton doublets in each family, and R-chiral
singlets. For each family m = 1, 2, 3, we have the L-chiral fermions

Qm =

(
um
dm

)
, Lm =

(
em
νm

)
. (5)

We now note that the charges of an R-chiral fermion fR determine the charges of the corresponding
L-chiral antifermion, f cL. Hence we now list our L-chiral antifermions (denoted by the superscript
c), which are determined by R-chiral fermions. Our L-chiral antifermions are

ucm, dcm, ecm, νcm (6)

where u and d represent quarks with charge +2/3 and −1/3 respectively, e represents a lepton with
charge −1, and ν represents a neutral lepton, or neutrino. Finally it is worth noting that each quark
singlet or doublet is found with a colour charge of α = 1, 2, 3, also called red, green, or blue. Hence
there are three quark doublets and six quark singlets per family.

2.2 Gauge Bosons

The Standard Model gauge group is SU(3)C×SU(2)L×U(1)Y , where the individual gauge symme-
tries couple with gauge bosons that give rise to the strong and electroweak interactions. All bosons
have integer spin; the Standard Model gauge bosons have spin 1.

The non-chiral SU(3)C group has eight generators, so gives rise to eight gluons G1,...,8 which act
as mediators for the strong interaction between quarks. Here the subscript C refers to the colour
index of quarks. Since the SU(3)C is not spontaneously broken, gluons remain massless in the Higgs
mechanism (see chapter 2.3).

The SU(2)L ×U(1)Y group is the electroweak factor. This group is chiral, with the SU(2)L acting
only on L-chiral fermions (hence the subscript L), whilst the U(1)Y acts on both L- and R-chiral
fermions with different charges. The SU(2)L has three generators, so gives rise to three bosons
W 1,2,3, whilst the U(1)Y has only one generator so gives rise to a single field denoted the B field.
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In the Higgs mechanism, spontaneous symmetry breaking (SSB) breaks the SU(2)L × U(1)Y into
a single unbroken U(1)Q, resulting in the theory of electromagnetism. As a result of the Higgs
mechanism, we obtain the orthogonal linear combinations

A = cos θWB + sin θWW
3 (7)

Z = − sin θWB + cos θWW
3, (8)

both of which are neutral. Here θW is the Weinberg angle. The A field, which is the photon field,
remains massless, whilst the Z field obtains mass. We also define the two massive complex charged
gauge boson fields

W± =
1√
2

(W 1 ∓ iW 2) (9)

The photon acts as the mediator for the electromagnetic interaction, whilst the W± and Z bosons
act as mediators for the weak interaction.

2.3 The Higgs Boson

It can be shown that gauge theories do not allow elementary mass terms for gauge bosons. How-
ever, we saw above that the W± and Z bosons are massive. The solution to this problem lies
in another problem that arises from the Nambu-Goldstone theorem, which states that for every
generator of global symmetry that is spontaneously broken there exists a massless, scalar particle,
called a Nambu-Goldstone boson. In the Standard Model we observe no massless Nambu-Goldstone
bosons.

The two problems actually resolve each other in the case that the broken symmetry is a gauge
symmetry [8]. The degrees of freedom that are carried by the Goldstone boson exist not as a mass-
less spin 0 particle, but as the longitudinal spin component of a massive gauge boson. This is the
Higgs mechanism under which the gauge bosons acquire mass.

We introduce the Higgs field, the doublet φ =

(
φ+

φ0

)
, transforming as an SU(3)C singlet and

an SU(2)L doublet. If φ0 acquires a non-zero vacuum expectation value (v.e.v), or

〈0|φ|0〉 = v =
1√
2

(
0
ν

)
(10)

the SU(2)L × U(1)Y gauge symmetry breaks to an unbroken U(1)Q. Since the SU(2)C and U(1)Y
are broken, the appearence of Nambu-Goldstone bosons would be expected for these generators,
and hence through the Higgs mechanism the degrees of freedom manifest themselves as longitudinal
components of massive W± and Z bosons. These bosons aquire mass. Since the SU(3)C and U(1)Q
are unbroken, the corresponding gluons and photons remain massless. Expanding the field around
the non-zero v.e.v, and quantising in the unitary gauge, we obtain

φ =
1√
2

(
0

ν +H

)
(11)

where H is a Hermitian scalar field. This field represents the Higgs boson, which is a byproduct of
the Higgs mechanism and exists as a massive spin 0 boson.

4



2.4 Extensions of the Standard Model

Supersymmetry is a theoretical property that relates fermions and bosons [9]. For each boson, there
is one or more fermionic superpartner, and likewise for each fermion there is one or more bosonic
superpartner, with, in an unbroken supersymmetric theory, the same mass and internal quantum
numbers except, of course, spin, which differs by 1/2 since all fermions have half integer spin whilst
bosons have integer spin. Since no light sparticles (supersymmetric particles) have been observed,
the supersymmetry must be broken, resulting in sparticles being much heavier than their partners.
The Minimal Supersymmetric Standard Model (MSSM) is the supersymmetric version of the stan-
dard model with the minimal number of fields and the minimal number of couplings.

For a string theory involving fermions, we require the involvement of a supersymmetric version
of the bosonic string, the superstring. Hence when deriving a standard-like string model, we require
supersymmetry to be present in the model. A requirement we will place on our string model is that
we want N = 1 spacetime supersymmetry in four dimensions.

Another extension to the standard model we must introduce is a quantum particle to act as a
mediator to gravity, called the graviton. This is a theoretical spin 2 particle that can be compared
to the W and Z bosons of the weak interaction, the photons of electromagnetism, and the gluons
of the strong interaction; it is the mediator of the gravitational interaction.

Since one of the primary successes of string theory is as a quantum theory of gravity, another
constraint we place on our string model is that we require the presence of a spin 2 graviton.

3 From Particle Physics to String Theory

String Phenomenology is all about relating the results of string theory to particle physics. String
theory models elementary particles as vibrational modes on a string. We can use the analogy of
a guitar string vibrating in different modes to result different musical notes. In this analogy the
musical notes are particles, and the guitar string is the fundamental string of string theory. We will
now construct mathematically the relation between string theory and particle theory, beginning with
a discussion of particle theory and how particle states arise from the use of creation and annihilation
operators. We then introduce string theory and discuss how particle states arise from strings. In
particular we shall focus on closed strings (strings which have no end points, forming a loop), since
the heterotic string, which is the string theory used to construct the free fermionic formulation in
which our string model is built, is a closed string theory. Our primary reference for Chapter 3.1
is the book A Modern Introduction to Quantum Field Theory by Michael Maggiore [7], whilst the
primary reference for Chapters 3.2 - 3.5 is the book A First Course in String Theory by Barton
Zwiebach [5].

3.1 The Foundations of Particle Physics and QFT

Elementary particle physics is described by quantum field theory (QFT). In QFT, our dynamical
variables are described by operator valued fields. Much like non-relativistic quantum mechanics,
examples of key operators in QFT are the position and momentum operators, which act on a particle
state to measure the position and momentum of the particle respectively, and the annihilation and
creation operators, which act on an n-particle state to form an (n+ 1)-particle state.

5



A plane wave solution to the Klein-Gordon equation takes the form

φ(x) =

∫
d3~p

(2π)3
√

2E~p
(a~pe

−ip·x + a∗~pe
ip·x)

∣∣∣∣
p0=E~p

. (12)

Upon quantisation of this field, we exchange the dynamic variables ap and a∗p with operators ap
and a†p, where a superscript † represents the Hermitian conjugate. The operator a†p is the creation
operator, whilst ap is the annihilation operator. They have the commutation relations

[a~p, a
†
~p′ ] = (2π)3δ(3)(~p− ~p′) (13a)

[a~p, a~p′ ] = [a†~p, a
†
~p′ ] = 0 (13b)

The classical field (12) then becomes the quantum field

φ(x) =

∫
d3~p

(2π)3
√

2E~p
(a~pe

−ip·x + a†~pe
ip·x) (14)

Acting with a creation operator on a vacuum state |0〉 results in a one particle state, or√
2E~pa

†
~p|0〉 = |~p〉 (15)

where |~p〉 is a one particle state for a particle with momentum ~p, and
√

2E~p is a renormalization
constant. We can define an n-particle state as

|~p1, ~p2, . . . , ~pn〉 =
√

2E~p1
√

2E~p2 . . .
√

2E~pna
†
~p1
a†~p2 . . . a

†
~pn
|0〉. (16)

The annihilation operator has the property

a~p|0〉 = 0. (17)

We may also define the Hamiltionian operator H and momentum operator P i which measure the
energy and momentum of a system respectively. The form of the Hamiltonian is

H =

∫
d3~p

(2π)3
E~pa

†
~pa~p (18)

and the momentum operator is

P i =

∫
d3~p

(2π)3
pia†~pa~p. (19)

We will now verify that these operators measure the energy and momentum of a particle in the
state |~p′〉. We begin with the Hamiltonian.

H|~p′〉 =

∫
d3~p

(2π)3
E~p
√

2E~p′a
†
~pa~pa

†
~p′ |0〉

=

∫
d3~p

(2π)3
E~p
√

2E~p′a
†
~p[a~p, a

†
~p′ ]|0〉

=

∫
d3~p

(2π)3
E~p
√

2E~p′a
†
~p(2π)3δ(3)(~p− ~p′)|0〉

= E~p′ |~p′〉
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Similarly it is possible to show that

P i|~p′〉 =

∫
d3~p

(2π)3
pi
√

2E~p′a
†
~p[a~p, a

†
~p′ ]|0〉 = ~p′i|~p′〉.

Thus we have shown that H and P i measure energy and momentum of a particle respectively.

We can write equations (15), (18), and (19) in light-cone coordinates1 [5]. We write ~p in terms
of the transverse momenta ~pT = (p2, p3) and the light-cone momentum p+. The light-cone energy
p− is fixed and specified by these values. We obtain

a†p+,~pT |0〉 = |p+, ~pT 〉 (20a)

p+ =

∫
d~pT dp

+

(2π)3
p+a†p+,~pT ap+,~pT (20b)

p2,3 =

∫
d~pT dp

+

(2π)3
p2,3a†p+,~pT ap+,~pT (20c)

p− =

∫
d~pT dp

+

(2π)3

1

2p+
(pjpj +m2)a†p+,~pT ap+,~pT (20d)

where (20a) is the light-cone equivalent of (15) (where we have dropped the renormalization factor
for convinience), (20b) and (20c) are the light-cone equivalents of (19), and (20d) is the light-cone
equivalent of (18) where E~p is the energy determined from the mass shell condition p2 +m2 = 0.

It follows that we can show vibrational modes of a string are equivalent to elementary particles
if we can derive creation and annihilation operators with the properties of those above. Further-
more, in order to make any form of useful measurement on the particles resulting from acting with
the creation operator on a vacuum state, we also wish to find operators for observables such as
position, energy and momentum.

3.2 An Introduction to String Theory

We previously discussed how string theory models particles as vibrational modes on an elementary
string. As a result, when working in string theory we are no longer studying a zero dimensional
point particle which traces a one dimensional world-line through space-time, as we are in relativistic
particle theory, but a one dimensional string which traces a two dimensional world-sheet through
spacetime, as is demonstrated in Figure 1. We can discuss particle interacions in the same way. The
left hand side of Figure 2 demonstrates the world-line of a particle P1 decaying into particles P2

and P3, whilst the right hand side demonstrates the world-sheet of the same process in string theory.

We may describe the world-sheet in D-dimensional space-time as a function of each space-time
coordinate x0, . . . , xD. However, it is much more convenient to describe the world-sheet in a two di-
mensional parameter space, and then map the parameter space onto our D-dimensional space-time.
For this we require two parameters, which we call σ and τ . We then define our target space-time
by

~x(σ, τ) =
(
x0(σ, τ), x1(σ, τ), . . . , xD(σ, τ)

)
(21)

Now, we define the string coordinates Xµ(σ, τ) by this mapping of parameter space to target space.
We capitalise the mapping functions so that we can distinguish between our space-time coordinate

1The light-cone coordinates are explained in Appendix B.

7



x0

x2, x3, . . .

x1

x0

x2, x3, . . .

x1

Figure 1: Left: The world-line of a point particle. Right: The world-sheet of a closed string.

P1

P2

P3

P1

P2

P3

Figure 2: Left: Particle decay. Right: String decay.

8



x0

x2, . . . , xD

x1

σ

τ

Figure 3: Left: Open string world-sheet in D-dimensional spacetime. Right: The same world-sheet
in two dimensional parameter space. Dotted lines represent lines of constant σ and τ .

system and our string coordinates. Figure 3 demonstrates this mapping for an open string world-
sheet.2

3.3 Parameterisation of the World-Sheet

We now wish to fix the parameterisation of the world sheet. Setting τ as a linear combination of
string coordinates, we obtain

n ·X(τ, σ) = λ(n · p)τ. (22)

where pµ is the momentum of the string, and we have chosen n such that (n · p) is a constant. For
example, setting n = (1, 0, . . . , 0) and λ(n · p) = c, we obtain

X0(τ, σ) = cτ,

and hence in this gauge τ is the world-sheet time coordinate.

We chose to include the vector nµ on both sides of (22) as opposed to simply writing λ(n · p)
as one constant to demonstrate that the magnitude of nµ is irrelevant. All that is important is the
direction.

We now consider the constant λ. By comparing units in (22), we obtain λ = α′, where α′ is
the slope parameter defined by

α′ =
1

2πT0
(23)

where T0 is the string tension. Note here we are working in natural units, and only considering closed
strings, since the heterotic string is a closed string. Hence we have fixed our τ parameterisation as

n ·X(τ, σ) = α′(n · p)τ. (24)

2This is no different than for a closed string. In Figure 3 we choose an open-string world sheet as it is easier to visualise
the mapping.
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In order to set the parameterisation of σ, we introduce the following notation. We begin with the
derivatives

Ẋµ =
∂Xµ

∂τ
(25a)

Xµ′ =
∂Xµ

∂σ
. (25b)

We also define our momentum densities as derivatives of the Lagrangian density, L, with respect to
Ẋµ and Xµ′, which are

Pτµ =
∂L
∂Ẋµ

= − 1

2πα′
(Ẋ ·X ′)X ′µ − (X ′)2Ẋµ√

(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

(26a)

Pσµ =
∂L
∂Xµ′ = − 1

2πα′
(Ẋ ·X ′)Ẋµ − (Ẋ)2X ′µ√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2

. (26b)

These are calculated from the Nambu-Goto string action, which is derived and discussed in Ap-
pendix C.

Since Pτµ has two σ derivatives in the numerator and effectively only one in the denominator,
then under a reparameterisation Pτµ varies as

Pτµ(τ, σ) =
dσ̃

dσ
Pτµ(τ, σ̃). (27)

Dotting this equation with n, we can see that if n · Pτµ(τ, σ̃) depends on σ̃, we can adjust dσ̃
dσ so

that
dσ̃

dσ
n · Pτµ(τ, σ̃) = f(τ) (28)

Combining the above equations and integrating over the string, we obtain

f(τ) =
n · p
2π

(29)

and hence
n · Pτ (τ, σ) =

n · p
2π

. (30)

This is a world-sheet constant. Dotting the equation of motion ∂τ (n ·Pτ )+∂σ(n ·Pσ) = 0, and not-
ing that the first term on the left hand side is zero due to (30), we see that n ·Pσ is independent of σ.

Consider the world-sheet of the closed string as a collection of strings of constant τ . On one of
these strings, we arbitrarily choose a point σ0 to be σ = 0. The point σ = 0 on each of the other
strings is then defined by n · Pσ = 0. Finally, since n · Pσ is independent of σ, then

n · Pσ = 0 (31)

at any point on the world-sheet. Equations (24, 30, 31) define the parameterisation of the world-
sheet.
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3.4 The Wave Equation

Equations (31) and (26b) lead to

(Ẋ ·X ′)∂τ (n ·X)− (Ẋ)2∂σ(n ·X) = 0 (32)

Equation (24) leads to the second term being zero, and ∂τ (n ·X) = α′(n · p) = constant. Hence we
obtain the condition

Ẋ ·X ′ = 0. (33)

Substituting into (26a), we obtain

Pτµ =
1

2πα′
(X ′)2Ẋµ√
−(Ẋ)2(X ′)2

(34)

We then substitute this result into (30) to arrive at

n · p =
1

α′
(X ′)2∂τ (n ·X)√
−(Ẋ)2(X ′)2

(35)

We stated previously that ∂τ (n ·X) = α′(n · p), so we obtain

1 =
(X ′)2√
−(Ẋ)2(X ′)2

(36)

Rearranging, we obtain

Ẋ2 +X ′
2

= 0 (37)

We can state (33) and (37) as
(Ẋ ±X ′)2 = 0 (38)

Equation (37) also allows us to rewrite (26a) and (26b) as

Pτµ =
1

2πα′
Ẋµ (39a)

Pσµ = − 1

2πα′
X ′µ (39b)

The field equation ∂τPτµ + ∂σPσµ = 0 can then be states as

Ẍµ −Xµ′′ = 0 (40)

This is the wave equation. The general solution to the wave equation is

Xµ(τ, σ) = Xµ
L(τ + σ) +Xµ

R(τ − σ) (41)

where XL is a left moving wave (moving in the negative σ direction) and XR is a right moving wave
(moving in the positive σ direction). Due to the 2π periodicity of σ (σ ∼ σ + 2π), we can write

Xµ
L(τ + σ + 2π)−Xµ

L(τ + σ) = Xµ
R(τ − σ)−Xµ

R(τ − σ − 2π). (42)

This shows that the periodicity of Xµ
L(τ + σ) and Xµ

R(τ − σ) are dependent on each other. We also
note that

∂

∂(τ − σ)

(
Xµ
L(τ + σ + 2π)−Xµ

L(τ + σ)
)

=
∂

∂(τ + σ)

(
Xµ
R(τ − σ)−Xµ

R(τ − σ − 2π)
)

= 0 (43)
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Then Xµ
L
′
(τ + σ) = ∂

∂(τ+σ)X
µ
L(τ + σ) and Xµ

R
′
(τ − σ) = ∂

∂(τ−σ)X
µ
R(τ − σ) are functions with a

periodicity of 2π. We can expand in the form of mode expansions, integrate, and setting αµ0 = ᾱµ0 ,
obtain

Xµ(τ, σ) = xµ0 +
√

2α′αµ0 τ + i

√
α′

2

∑
n 6=0

e−inτ

n
(αµne

inσ + ᾱµne
−inσ) (44)

where the α modes are simply the coefficients of expansion; barred α modes arise from the expansion
of the left moving wave, whilst unbarred α modes arise from the expansion of the right moving
wave. Substituting our mode expansions into (39a) and integrating over the string, we obtain the
momentum

pµ =

√
2

α′
αµ0 (45)

3.5 Quantization of the String

We are now in a position to quantize the string. We shall work in the light cone gauge, and we
wish to specify operators that measure position, momentum and energy. Namely, we must specify
the Heisenberg operators Xi(τ, σ), x−0 (τ),Pτi(τ, σ) and p+(τ), as well as their time independent
Schrodinger equivalents. The remaining operators are set by the light cone gauge conditions. Fur-
thermore we shall construct the Hamiltonian, plus the relevant creation and annihilation operators
that allow us to set up a state space equivalent to the one defined in (16) for a quantum field theory.

Our first step is to set up the equal time canonical commutation relations. For the Schrodinger
operators, there is no time dependence, but there is a dependence on σ. Firstly we consider si-
multaneous measurements of position and momentum. According to the Heisenberg Uncertainty
Principle, these observables are not simultaneously measurable [10] and hence the operators Xi(σ)
and Pτi(σ) have a non-zero commutator. However, simultaneous measurements at different points
along the string do not affect each other, so the commutator is zero for measurements at two differ-
ent values of σ, giving rise to a delta function in the commutator. It is clear also that x−0 and p+

also do not commute. All other commutators are zero. Hence our CCRs are

[Xi(σ),Pτj(σ′)] = iηijδ(σ − σ′) (46a)

[Xi(σ), Xj(σ′)] = [Pτi(σ),Pτj(σ′)] = 0 (46b)

[x−0 , p
+] = −i (46c)

[x−0 , X
i(σ)] = [x−0 ,Pτi(σ)] = 0 (46d)

[p+, Xi(σ)] = [p+,Pτi(σ)] = 0 (46e)

Our equal time CCRs in the Heisenberg picture are identical.

To construct the Hamiltonian, we consider the gauge condition (24) for the light cone gauge. We
obtain

X+ = α′p+τ. (47)

We expect our light-cone energy, p−, to generate an X+ translation. Then ∂X+ → p−. Since we
expect our Hamiltonian to generate a τ translation,

H = ∂τ = ∂τX
+∂X+ = α′p+p− (48)

Now, we wish to find the explicit form of p−. To do this we consider (38) in the light cone gauge.
We write

(Ẋ ±X ′)2 = −2(Ẋ− ±X−′)(Ẋ+ ±X+′) + (Ẋi ±Xi′)2 = 0 (49)
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From our definition of X+ in (47), we obtain

Ẋ− ±X−′ =
1

2α′p+
(Ẋi ±Xi′)2 (50)

Using this result, we obtain

Ẋ− =
1

2
(Ẋ− +X−

′
) + (Ẋ− −X−′) =

1

2α′p+
(ẊiẊi +Xi′Xi′) (51)

Now, from (39a) we can obtain Pτ−.

Pτ− =
1

2πα′
Ẋµ =

1

2πα′
1

2α′p+

(
(2πα′)2PτiPτi +Xi′Xi′

)
=

π

p+

(
PτiPτi +

Xi′Xi′

(2πα′)2

)
(52)

At last we can write our Hamiltonian in terms of our independent dynamic operators as

H(τ) = α′p+

∫ 2π

0

dσPτ− = α′π

∫ 2π

0

dσ

(
PτiPτi +

Xi′Xi′

(2πα′)2

)
(53)

Finally we said we would construct creation and annihilation operators in order to define a state
space such as the one in (20a). To do this, we take our α modes and make them operator valued,
quantising equation (44). We now wish to find expressions for the commutators of these operators.
Consider the derivatives of equation (44) with respect to τ and σ. These are

Ẋ(τ, σ) =

√
α′

2

∑
n 6=0

e−inτ (ᾱµne
−inσ + αµne

inσ) (54a)

X ′(τ, σ) =

√
α′

2

∑
n 6=0

e−inτ (ᾱµne
−inσ − αµneinσ) (54b)

Then we can write

Ẋµ(τ, σ) +Xµ′(τ, σ) =
√

2α′
∑
n 6=0

ᾱµne
−in(τ+σ) (55a)

Ẋµ(τ, σ)−Xµ′(τ, σ) =
√

2α′
∑
n 6=0

αµne
−in(τ−σ) (55b)

Calculating explicitly the commutator [Ẋi(τ, σ) +Xi′(τ, σ), Ẋj(τ, σ) +Xj ′(τ, σ′)], we obtain

[Ẋi(τ, σ) +Xi′(τ, σ), Ẋj(τ, σ) +Xj ′(τ, σ′)] = 2α′
∑
n 6=0

∑
m6=0

e−in(τ+σ)e−im(τ+σ′)[ᾱin, ᾱ
j
m] (56)

Similarly, we can obtain

[Ẋi(τ, σ)−Xi′(τ, σ), Ẋj(τ, σ)−Xj ′(τ, σ′)] = 2α′
∑
n 6=0

∑
m 6=0

e−in(τ−σ)e−im(τ−σ′)[αin, α
j
m]

(57)

[Ẋi(τ, σ) +Xi′(τ, σ), Ẋj(τ, σ)−Xj ′(τ, σ′)] = [Ẋi(τ, σ)−Xi′(τ, σ), Ẋj(τ, σ) +Xj ′(τ, σ′)] = 0
(58)
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Now, let us consider these commutators from a different point of view. Operators AiH(τ) in the
Heisenberg Picture, such as the time dependent operators Xµ(τ, σ) and its derivatives, follow the
Heisenberg equation of motion

iȦiH(τ) = [AiH(τ), H]. (59)

Taking Xµ(τ, σ) as our operator, using (53) as our Hamiltonian, and considering our CCRs, we
obtain

iẊi(τ, σ) = [Xi(τ, σ), H] = α′π

[
Xi(τ, σ),

∫ 2π

0

dσ

(
Pτj(τ, σ′)Pτj(τ, σ′) +

Xj ′(τ, σ′)Xj ′(τ, σ′)

(2πα′)2

)]
= α′π

[
Xi(τ, σ),

∫ 2π

0

dσPτj(τ, σ′)Pτj(τ, σ′)
]

+
1

4πα′

[
Xi(τ, σ),

Xj ′Xj ′

(2πα′)2

]
= α′π

∫ 2π

0

dσ[Xi(τ, σ),Pτj(τ, σ′)Pτj(τ, σ′)]

= 2πiα′
∫ 2π

0

dσPτj(τ, σ′)ηijδ(σ − σ′)

Integrating over the string, we obtain

Ẋi(τ, σ) = 2πα′Pτi(τ, σ) (60)

Then the commutator calculated in (56) can be written as (dropping the arguments for brevity):

[(Ẋi +Xi′)(τ, σ), (Ẋj +Xj ′)(τ, σ′)] = [Ẋi, Ẋj ] + [Ẋi, Xj ′] + [Xi′, Ẋj ] + [Xi′, Xj ′]

= (2πα)2[Pτi,Pτj ] + ∂σ′ [Ẋ
i, Xj ] + ∂σ[Xi, Ẋj ] + ∂σ∂σ′ [X

i, Xj ]

From our CCRs, the first and fourth term are zero.

[(Ẋi +Xi′)(τ, σ), (Ẋj +Xj ′)(τ, σ′)] = ∂σ′ [Ẋ
i, Xj ] + ∂σ[Xi, Ẋj ]

= 2πα′∂σ′ [Pτi, Xj ] + 2πα′∂σ[Xi,Pτj ]

= −2πα′iηji
d

dσ′
δ(σ′ − σ) + 2πα′iηij

d

dσ
δ(σ − σ′)

This leads to the result

[(Ẋi +Xi′)(τ, σ), (Ẋj +Xj ′)(τ, σ′)] = 4πα′iηij
d

dσ
δ(σ − σ′) (61)

Comparing (56) with (61), we have∑
n 6=0

∑
m6=0

e−in(τ+σ)e−im(τ ′σ)[ᾱin, ᾱ
j
m] = 2πiηij

d

dσ
δ(σ − σ′) (62)

Integrate both sides over σ and σ′,

1

(2π)2

∫ 2π

0

dσein
′σ

∫ 2π

0

dσ′eim
′σ′
∑
n 6=0

∑
m6=0

e−in(τ+σ)e−im(τ ′σ)[ᾱin, ᾱ
j
m]

=
1

(2π)2

∫ 2π

0

dσein
′σ

∫ 2π

0

dσ′eim
′σ′2πiηij

d

dσ
δ(σ − σ′) (63)
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which reduces to
[ᾱin, ᾱ

j
m] = nηijδm+n,0 (64a)

Through similar derivations, it is possible to show that

[αin, α
j
m] = nηijδm+n,0 (64b)

[αin, ᾱ
j
m] = 0 (64c)

We can then define our creation and annihilation operators as

ain =
αin√
n
, ai†n =

αi−n√
n

(65a)

āin =
ᾱin√
n
, āi†n =

ᾱi−n√
n

(65b)

where n ≥ 1. We have the non vanishing commutation relations for the annihilation and creation
operators

[āim, ā
j†
n ] = δm,nη

ij , [aim, a
j†
n ] = δm,nη

ij (66)

We have now briefly demonstrated how a theory of vibrating strings is related to the standard
model of particle physics. Choosing creation operators correctly and acting on the ground state, it
is possible to create a state space similar to those seen in particle physics.

4 The Heterotic String and The Free Fermionic Formulation,
The ABK Rules

4.1 The Heterotic String

Our string model was built in the free fermionic formulation of heterotic string theory. We now take
a look at what is meant by the heterotic string in order to see how the free fermionic formulation
may be constructed. We begin by tracing string theory back to its origins, and look at the bosonic
string. The bosonic string is a relativistic quantum open string theory that exists in D = 26 space-
time dimensions and accounts only for bosons. The construction of the bosonic string is covered
in detail in Part I of Zweibach’s book, and is done by considering first the motion of a classical
string, then taking into account relativistic effects, then finally using the quantization procedure
we outlined in chapter 3.5. All open string theories must also contain closed strings, and through
constructing the closed bosonic string arises the graviton states that perked interest in string theory
as a quantum theory of gravity.

What bosonic string theory is lacking, however, is the presence of fermionic states. We discussed in
chapter 2.4 how a theoretical phenomenon called supersymmetry relates the fermionic and bosonic
quantum states of a particle theory. Introducing supersymmetry to the bosonic string would allow
for both bosonic and fermionic states. This is done by introducing an anti-commuting3dynamic
variable ψµα(τ, σ) (α = 1, 2). This is the fermionic equivalent to the commuting (bosonic) dynamic
variable Xµ(τ, σ), and just as for each value of µ the variable Xµ(τ, σ) is a world sheet boson, then
for each value of µ the components ψµα(τ, σ) construct a world sheet fermion. The introduction of
this variable reduces the number of spacetime dimensions from twenty-six to D = 10.

3Since we know that a quantum state of identical fermions is antisymmetric under exchange of two of the fermions.
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The quantization procedure results in a Ramond (R) sector in which the fermions are periodic
over one time like loop, and Neveu-Schwarz (NS) sector in which the fermions are antiperiodic. We
can then construct a closed superstring by combining left and right moving copies of the open super-
string theory. These closed superstring theories are called type II superstring theories. Furthermore
combining these in different ways results in two versions of type II superstring theory called type
IIA and type IIB superstring theory.

Instead of combining left and right moving superstrings, the heterotic string combines a left moving
bosonic string with a right moving superstring. Since only ten of the twenty-six bosonic coordinates
of the left moving string are matched by bosonic coordinates from the right moving string, heterotic
string theory effectively exists in D = 10 spacetime dimensions.

4.2 The ABK Formulation

We arrive at an issue in that our heterotic string exists in ten dimensions, whilst in order to arrive
at a realistic theory we wish to have four flat spacetime dimensions and N = 1 supersymmetry. A
first approach to solving this issue was to compactify six of the ten dimensions of the superstring
on a compact, six dimensional Calabi-Yau manifold [11], or an orbifold [12]. A simpler formulation
was developed by Antoniadas, Bachas, Kounnas [3] and Kawai, Lewellen, Tye [2] in which the string
theory is built directly in four dimensions with fermionic internal degrees of freedom. In this for-
mulation, all extra quantum numbers of the string are carried by free fermions on the world sheet,
which provide a non-linear realisation of world sheet supersymmetry [13]. We summarise here the
free fermionic formulation as presented by Antoniadas et. al [3, 13, 14].

The fermionization of the internal degrees of freedom on an E8 × E8 heterotic string results in
44 left moving and 20 right moving real internal free world sheet fermions. We denote these real
fermions as follows.

Right Movers :{ψµ1 , ψ
µ
2 , χ

1...6, y1...6, ω1...6} (67)

Left Movers :{ȳ1...6, ω̄1...6, λ1...32} (68)

Furthermore, we shall complexify the fermions by pairing them as follows

φ =
1√
2

(fn + ifm) (69)

where φ is a complex fermion and fn,m are real fermions. The internal free fermions can then be
denoted

Right Movers :{ψµ, χ12, χ34, χ56, y1...6, ω1...6} (70)

Left Movers :{ȳ1...6, ω̄1...6, ψ̄1...5, η̄1,2,3, φ̄1...8} (71)

where {y1...6, ω1...6, ȳ1...6, ω̄1...6} remain real whilst all other fermions are complex. The remaining
real fermions will later be paired based on boundary conditions in the sectors of the model in this
free fermionic formulation. Antoniadas, Bachas and Kounnas formulated a set of rules required to
build a heterotic string model. To define a model, we must specify two things:

1. A set of basis vectors that specify boundary conditions for the internal free fermions.

2. Coefficients (one loop phases) for each intersection of basis vectors.

There are rules on both the basis vectors and the one loop phases, summarised in the following
sections.
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4.2.1 Rules on the Basis Vectors

The model is generated by a set of basis vectors ai, denoted

ai = {f j , . . . , fn}, (72)

where fermions f present in the vector have a periodic boundary condition, whilst those not present
have anti-periodic boundary conditions. Fermions written as 1

2f are twisted by a phase −i. For
example, for the sector S given in (78a), the fermions ψµ, χ12, χ34, and χ56 are periodic, and all
other fermions are antiperiodic. We write our boundary conditions as

a(f) =

{ 1 periodic
0 antiperiodic

1/2 twisted
(73)

for each fermion f . The additive group Ξ is given by

Ξ =
∑
i

miai, mi = 0, . . . , Ni − 1 (74)

where Niai = 0 mod 2. We also define Nij as the least common multiple of Ni and Nj . With these
definitions, we write the following rules

1. The basis vector ~1, in which all fermions are periodic, is present in the model, or equivalently
~1 ∈ Ξ 4.

2. There are an even number of real fermions.

3.
∑
imiai = 0 if and only if for all i, mi = 0 mod Ni.

4. Nijaiaj = 0 mod 4, or equivalently aiaj = 0 mod 2.

5. Niaiai = 0 mod 8, or equivalently aiai = 0 mod 4.

4.2.2 One Loop Phases

The rules on the one loop phases for the intersection of each sector ai are

1. c

(
ai
aj

)
= δaie

2iπn
Nj = δaje

πi
2 ai·aje

2iπm
Ni

2. −c
(
ai
ai

)
= e−

iπ
4 ai·aic

(
ai
1

)
3. c

(
ai
aj

)
= e

iπ
2 ai·ajc

(
aj
ai

)∗
4. c

(
ai

aj + ak

)
= δaic

(
ai
aj

)
c

(
ai
ak

)
These rules are particularly important for the GSO projections [15], which specify the surviving
states in the massless spectrum. The GSO projections are given by

eiπ(ai·FA)|s〉A = δAc

(
A
ai

)∗
|s〉A (75)

4Because of this constraint, we do not write ~1 in our set of basis vectors given in (78), as it is given that the vector is
present in the model for consistency.
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where A is the sector being analysed, ai are the eight basis vectors, and |s〉A is a state in the sector
A. We define δA for any sector A as

δA =

{
1 if A(ψµ) = 0
−1 if A(ψµ) = 1.

(76)

5 The String Model

The string model we use was constructed using the free fermionic formulated and presented by
Faraggi, Nanopoulos, and Yuan (1989) [4]. It is generated by eight basis vectors. Real fermions are
paired based on having the same boundary conditions in each sector to form a complex fermions as
follows:

fnfm =
1√
2

(fn + ifm). (77)

Finally a bar above a fermion represents a right mover, whilst an unbarred fermion is a left mover.
The basis vectors are

S = {ψµ, χ12, χ34, χ56} (78a)

b1 = {ψµ, χ12, y3y6, y4ȳ4, y5ȳ5, ȳ3ȳ6, ψ̄1,...,5, η̄1} (78b)

b2 = {ψµ, χ34, y1ω6, y2ȳ2, ω5ω̄5, ȳ1ω̄6, ψ̄1,...,5, η̄2} (78c)

b3 = {ψµ, χ56, ω1ω3, ω2ω̄2, ω4ω̄4, ω̄1ω̄3, ψ̄1,...,5, η̄3} (78d)

b4 = {ψµ, χ12, y3y6, ω4ω̄4, ω5ω̄5, ȳ3ȳ6, ψ̄1,...,5, η̄1} (78e)

α = {ψµ, χ56, ω1ω3, y2ȳ2, ω4ω̄4, ȳ1ω̄6, ȳ3ȳ6, ψ̄1,...,3, η̄1,2, φ̄1,...,4} (78f)

β = {ψµ, χ34, y1ω6, ω2ω̄2, ȳ3ȳ6, y5ȳ5, ȳ1ω̄6, ȳ3ȳ6,
1

2
(ψ̄1,...,5, η̄1,2,3, φ̄1,5,6,7), φ̄3,4} (78g)

plus the vector 1 in which all fermions are periodic. We make the following choices of generalised
GSO projection coefficients.

c

(
β
b2

)
= c

(
bi
bj

)
= c

(
α
bi

)
= c

(
1
bi

)
= c

(
b4
bi

)
= c

(
b4
1

)
= −1 i, j = 1 . . . 3, (79a)

c

(
S
bj

)
= c

(
S
1

)
= c

(
S
α

)
= c

(
S
β

)
= +1 (79b)

c

(
α
β

)
= c

(
α
α

)
= c

(
β
b1

)
= c

(
β
b3

)
= c

(
β
b4

)
= c

(
b4
b1

)
= +1. (79c)

All other projection coefficients are specified by the modular invariance constraints given in Section
4.2.2. Our model differs from that presented by Faraggi et al by the choice of GSO coefficient

c

(
b4
1

)
= −1. (80)

As we shall derive below, this model results in a SU(3)C × SU(2)L × U(1)Y × U(1)6 × SO(4) ×
SU(3)× U(1)4 gauge group and N = 1 space-time supersymmetry.
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6 Deriving the Massless Spectrum

6.1 Eliminating Sectors Contain No Massless States

We begin by calculating which sectors contain massless states. This is done using the matching
Virasoro condition

M2
L = −1

2
+
aL · aL

8
+NL = −1 +

aR · aR
8

+NR = M2
R (81)

where NL,R is given by

NL,R =
∑
f

(νL,R) (82)

where νL,R is the frequency of the left and right moving oscillators respectively. NL,R are non-
negative. It can be seen from (81) that for a state to be massless, we require

aL · aL
8

≤ 1

2
, and

aR · aR
8

≤ 1. (83)

Hence for each sector we calculate these value using the formulae

a · b =

(
1

2

∑
Real

+
∑

Complex

)
a(f)b(f) (84)

for each fermion f , and the summations are the sums over real and complex fermions respectively.
The sectors containing massless states are those listed in Appendix A, plus the Neveu-Schwarz sector
which is analysed in section 8.1. In addition, each sector A will have a sector S+A which generates
superpartners to the particles generated in A, and for any sector B + β containing massless states
there is a sector B + 3β = B − β also containing massless states.

The number of left and right moving oscillators applied to the ground state is calculated using
(82) and the equations

νf =
1 + a(f)

2
, νf∗ =

1− a(f)

2
. (85)

6.2 GSO Projections

Once we have found sectors containing massless states, we must apply the GSO projections in order
to derive the massless states that are part of the spectrum of the model. The GSO projections are
given by equation (75), where FA are the boundary conditions of the fermions in the sector A, and
ai ·FA is the dot product as defined in (84), essentially summing over each fermion present in both
the sector A and the basis vector ai. The states that satisfy (75) for each of the eight basis vectors
are present in the massless spectrum of the model.

7 An example sector

Here we proceed to analyse a sector to give an example of the method used to analyse the spectrum.
I have chosen the sector b3 + α + β, since this is a sector that, as we will see below, requires the
application of an oscillator in order for the sector to be massless, so we are getting a full example
of the method.
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The internal fermions present in the sector b3 + α+ β are

b3 + α+ β : {ψµ, χ34, y1ω6, y22̄, y55̄, ω̄13, φ̄2,
1

2
[ψ̄1,2,3, φ̄5,6,7],−1

2
[ψ̄4,5, η̄1,2,3, φ̄1]}.

Our first step is to analyse the number of oscillators that are required to act on the degenerate
states in order for the sector to be massless. We begin by analysing the left moving part.

aL · aL = a2(ψµ) + a2(χ34) + a2(y1ω6) +
1

2
a2(y2) +

1

2
a2(y5)

= 1 + 1 + 1 + 1/2 + 1/2 = 4

For the right moving part,

aR · aR = a2(ω̄13) +
1

2
a2(ȳ2) +

1

2
a2(ȳ5) + a2(ψ̄1,2,3) + a2(ψ̄4,5) + a2(η̄1,2,3) + a2(φ̄1) + a2(φ̄2) + a2(φ̄5,6,7)

= 1 + 1/2 + 1/2 + 3/4 + 2/4 + 3/4 + 1/4 + 1 + 3/4 = 6

Using (81) we can now caclulate the number of left and right moving oscillators required for the
sector to be massless. Setting M2

L = M2
R = 0, we obtain

NL = 0, NR =
1

4
.

There are no left moving oscillators. We must now calculate the number of right moving oscillators.
Combining (82) and (85), we obtain the result that we can apply one right moving oscillator with
boundary condition a(f) = −1/2, since

νf =
1 + a(f)

2
=

1

4
,

or one complex conjugate oscillator with boundary condition a(f) = 1/2, since

νf∗ =
1− a(f)

2
=

1

4
.

Hence the oscillators that may be applied are ψ̄1,2,3, ψ̄4,5∗, η̄1,2,3∗, φ̄1∗, φ̄5,6,7.

The next step is to calculate the GSO projections. For each vector ai = 1, S, b1, b2, b3, b4, α, β
we calculate the projection using the rules given above. We know from (75) that we must calculate

δ(b3+α+β)c

(
b3 + α+ β

ai

)∗
.

To do this we use the rules on the one loop phases above.

GSO = δ(b3+α+β)c

(
b3 + α+ β

ai

)∗
= −

[
exp

(
iπ

2
(ai · (b3 + α+ β))

)
δaic

(
ai
b3

)
c

(
ai
α

)
c

(
ai
β

)]∗
For example, for the sector 1,

GSO = −
[
exp

(
9iπ

2

)
δ1c

(
1
b3

)
c

(
1
α

)
c

(
1
β

)]∗
= −

[
i · −1 · −1 · −1 · i

]∗
= −1
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We now consider those states that are degenerate. Each internal fermion that is periodic can occupy
one of two states, |+〉 or |−〉, which are

|+〉 = eiπ1·a(f) = +1, |−〉 = eiπ1·a(f) = −1. (86)

We introduce the notation

(
i
j

)
where i is the total number of states and j is the number of |−〉

states. For example (
3
2

)
= |+〉|−〉|−〉, |−〉|+〉|−〉, or |−〉|−〉|+〉.

Ramond Sector Projection

Let us label our oscillators λ̄i. Our GSO projection is

eiπ(1·a(λ̄i))eiπ(1·Fb3+α+β)|s〉 = eiπ(1·a(λ̄i))|±〉ψµ |±〉χ34 |±〉y1ω6 |±〉y2ȳ2 |±〉y5ȳ5 |±〉ω̄1ω̄3 |±〉φ̄2

= −|s〉.

For all oscillators,
eiπ(1·a(λ̄i)) = −1,

hence we require our degenerate states to have an even number of negative states. The states that
survive the sector 1 projection are

{ψ̄1,2,3, ψ̄4,5∗, η̄1,2,3∗, φ̄1∗, φ̄5,6,7}
[(

7
0

)
+

(
7
2

)
+

(
7
4

)
+

(
7
6

)]
ψµ,χ34,y1ω6,y2ȳ2,y5ȳ5,ω̄1ω̄3,φ̄2

S Projection

Our GSO projection for the S sector is

eiπ(S·a(λ̄i))eiπ(S·Fb3+α+β)|s〉 = |±〉ψµ |±〉χ34 = +|s〉.

since for all oscillators
eiπ(S·a(λ̄i)) = +1.

Hence we know that the ψµ and χ34 must either both be in the |+〉 or both in the |−〉 states. The
states that survive this projection are

{ψ̄1,2,3, ψ̄4,5∗, η̄1,2,3∗, φ̄1∗, φ̄5,6,7}
[(

2
0

)
+

(
2
2

)]
ψµ,χ34

[(
5
0

)
+

(
5
2

)
+

(
5
4

)]
y1ω6,y2ȳ2,y5ȳ5,ω̄1ω̄3,φ̄2

The

[(
2
0

)
+

(
2
2

)]
correspond to CPT conjugate states. For brevity we shall consider only the(

2
0

)
state. We can reconstruct the conjugate states after all projections. Our surviving states are

{ψ̄1,2,3∗, ψ̄4,5, η̄1,2,3, φ̄1, φ̄5,6,7∗}|+〉ψµ |+〉χ34

[(
5
0

)
+

(
5
2

)
+

(
5
4

)]
y1ω6,y2ȳ2,y5ȳ5,ω̄1ω̄3,φ̄2

b4 Projection
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For convenience, we do the b4 projection next, since the order of projections does not matter.
The GSO projection for this sector is

eiπ(b4·a(λ̄i))eiπ(b4·Fb3+α+β)|s〉 = eiπ(b4·a(λ̄i)|+〉ψµ = −|s〉.

Hence the only states that survive are the ones with oscillators that satisfy

eiπ(b4·a(λ̄i)) = −1,

or, equivalently those that are periodic in the sector b4. These are ψ̄1,2,3, ψ̄4,5∗ and η̄1∗. The
surviving states are

{ψ̄1,2,3, ψ̄4,5∗, η̄1∗}|+〉ψµ |+〉χ34

[(
5
0

)
+

(
5
2

)
+

(
5
4

)]
y1ω6,y2ȳ2,y5ȳ5,ω̄1ω̄3,φ̄2

b2 Projection

We do the b2 projection next. Our GSO projection for this sector is

eiπ(b2·a(λ̄i))eiπ(b2·Fb3+α+β)|s〉 = eiπ(b2·a(λ̄i)|+〉ψµ |+〉χ34 |±〉y1ω6 |±〉y2ȳ2 = +|s〉.

The oscillators ψ̄1,2,3, ψ̄4,5∗ satisfy

eiπ(b2·a(ψ̄1,2,3,ψ̄4,5∗)) = −1,

whereas the oscillator η̄1∗ satisfies

eiπ(b2·a(η̄1∗)) = +1.

Hence applying these oscillators result in different states. The states that survive this projection
are

{ψ̄1,2,3, ψ̄4,5∗}|+〉ψµ |+〉χ34

(
2
1

)
y1ω6,y2ȳ2

[(
3
1

)
+

(
3
3

)]
y5ȳ5,ω̄1ω̄3,φ̄2

η̄1∗|+〉ψµ |+〉χ34

[(
2
0

)
+

(
2
2

)]
y1ω6,y2ȳ2

[(
3
1

)
+

(
3
3

)]
y5ȳ5,ω̄1ω̄3,φ̄2

b1 Projection

Our GSO projection for this sector is

eiπ(b1·a(λ̄i))eiπ(b1·Fb3+α+β)|s〉 = eiπ(b1·a(λ̄i)|+〉ψµ |±〉y5ȳ5 = −|s〉.

The states that survive this projection are

{ψ̄1,2,3, ψ̄4,5∗}|+〉ψµ |+〉χ34 |+〉y5ȳ5
(

2
1

)
y1ω6,y2ȳ2

(
2
1

)
ω̄1ω̄3,φ̄2

η̄1∗|+〉ψµ |+〉χ34 |+〉y5ȳ5
[(

2
0

)
+

(
2
2

)]
y1ω6,y2ȳ2

[(
2
0

)
+

(
2
2

)]
ω̄1ω̄3,φ̄2
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b3 Projection

Our GSO projection for this sector is

eiπ(b3·a(λ̄i))eiπ(b3·Fb3+α+β)|s〉 = eiπ(b3·a(λ̄i)|+〉ψµ |±〉ω̄1ω̄3 = +|s〉.

The states that survive this projection are

{ψ̄1,2,3, ψ̄4,5∗}|+〉ψµ |+〉χ34 |+〉y5ȳ5 |−〉ω̄1ω̄3 |+〉φ̄2

(
2
1

)
y1ω6,y2ȳ2

η̄1∗|+〉ψµ |+〉χ34 |+〉y5ȳ5 |+〉ω̄1ω̄3 |+〉φ̄2

[(
2
0

)
+

(
2
2

)]
y1ω6,y2ȳ2

α Projection

Our GSO projection for this sector is

eiπ(α·a(λ̄i))eiπ(α·Fb3+α+β)|s〉 = eiπ(α·a(λ̄i)|+〉ψµ |±〉y2ȳ2 |+〉φ̄2 = +|s〉.

The states that survive this projection are

ψ̄1,2,3|+〉ψµ |+〉χ34 |+〉y1ω6 |−〉y2ȳ2 |+〉y5ȳ5 |−〉ω̄1ω̄3 |+〉φ̄2

ψ̄4,5∗|+〉ψµ |+〉χ34 |−〉y1ω6 |+〉y2ȳ2 |+〉y5ȳ5 |−〉ω̄1ω̄3 |+〉φ̄2

η̄1∗|+〉ψµ |+〉χ34 |−〉y1ω6 |−〉y2ȳ2 |+〉y5ȳ5 |+〉ω̄1ω̄3 |+〉φ̄2

β Projection

The GSO projection for the β sector is

eiπ(β·a(λ̄i))eiπ(β·Fb3+α+β)|s〉 = eiπ(β·a(λ̄i)|+〉ψµ |+〉χ34 |±〉y1ω6 |+〉y5ȳ5 = i|s〉.

All states in the above sector satisfy this condition.

8 The Massless Spectrum

8.1 The Neveu-Schwarz Sector

The Neveu-Schwarz sector, with all fermions antiperiodic (i.e. the sector 0), requires one left moving
fermionic oscillator and either two right moving fermionic oscillators or one right moving bosonic
oscillator, since NL = 1/2 and NR = 1, and νf,f∗ = 1/2 for a fermionic oscillator, and 1 for a
bosonic oscillator. The tachyonic state that may be achieved through applying one right moving
fermionic oscillator is eliminated by the GSO projections. We apply our GSO projections for each
vector ai, where any state is projected unless the condition

eiπai·F0 |0〉0 = −|0〉0 (87)

is satisfied.
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1. We obtain spin 2 fields (graviton) with

ψµ∂X̄ν |0〉0

where ∂X̄ν is the bosonic creation operator with frequency νf = 1.

2. We obtain gauge bosons of the observable Standard Model gauge group

SU(3)C × SU(2)L × U(1)C × U(1)L

with
ψµψ̄aψ̄b∗|0〉0 a, b = 1, 2, 3; 4, 5.

These are generated as follows:

• ψµψ̄1,2,3ψ̄1,2,3∗|0〉0 generates SU(3)C , and the trace of this generates U(1)C .

• ψµψ̄4,5ψ̄4,5∗|0〉0 generates SU(2)L, and the trace of this generates U(1)L.

The U(1)C × U(1)L symmetry breaks to the weak hypercharge U(1)Y as the combination

U(1)Y =
1

3
U(1)C +

1

2
U(1)L (88)

We show later that this symmetry breaking necessarily occurs at the string level in order for
the model to be anomaly free.

3. Three extra observable U(1)’s arising from

ψµη̄aη̄a∗|0〉0 a = 1, 2, 3.

denoted U(1)1,2,3 for a = 1, 2, 3 respectively.

4. Three extra observable U(1)’s arising from

ψµζ̄aζ̄a∗|0〉0 a = 1, 2, 3

denoted U(1)4,5,6 for a = 1, 2, 3 respectively. Here ζ̄1 = (1/
√

2)(ȳ3+iȳ6), ζ̄2 = (1/
√

2)(ȳ1+iω̄6)
and ζ̄3 = (1/

√
2)(ω̄1 + iω̄3).

5. We obtain gauge bosons of the hidden gauge group

SO(4)H × SU(3)H × U(1)4

with
{ψµφ̄aφ̄b + ψµφ̄cφ̄d∗}|0〉0 a, b = 3, 4 c, d = 1; 2; 5, 6, 7; 8.

These are generated as follows:

• ψµφ̄3,4φ̄3,4|0〉0 generates SO(4)H .

• ψµφ̄1φ̄1∗|0〉0 generates U(1)7.

• ψµφ̄2φ̄2∗|0〉0 generates U(1)8.

• ψµφ̄5,6,7φ̄5,6,7∗|0〉0 generates SU(3)H , and the trace of this generates U(1)H .

• ψµφ̄8φ̄8∗|0〉0 generates U(1)9.

6. Scalars, including singlets which are neutral under U(1) symmetries,

• χ12ȳ2ω̄2|0〉0
• χ34ȳ4ω̄4|0〉0
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SU(3)C U(1)C SU(2)L U(1)L

Quark Doublet Q =

(
u
d

)
3 1/2 2 0

Lepton Doublet L =

(
e
ν

)
1 −3/2 2 0

Anti-Quarks
uc

dc
3̄
3̄

−1/2
−1/2

1
1

−1
1

Positron ec 1 3/2 1 1
Anti-Neutrino νc 1 3/2 1 −1

Table 1: Properties of Chiral Fermions found in Sectors b1...4

• χ56ȳ5ω̄5|0〉0
7. Singlets, for each of which we denote the charges under the observable gauge group as

[(SU(3)C , U(1)C);SU(2)L, U(1)L)]U(1)1...6 .

These are

φ12 + φ̄12 ={χ56η̄1η̄2 + χ56η̄1∗η̄2∗}|0〉0 : [(1, 0); (1, 0)]110000 + [(1, 0); (1, 0)]−1−10000

φ13 + φ̄13 ={χ12η̄1∗η̄3 + χ12η̄1η̄3∗}|0〉0 : [(1, 0); (1, 0)]−101000 + [(1, 0); (1, 0)]10−1000

φ23 + φ̄23 ={χ12η̄2η̄3 + χ12η̄2∗η̄3∗}|0〉0 : [(1, 0); (1, 0)]011000 + [(1, 0); (1, 0)]0−1−1000

φ4 + φ̄4 ={χ34ζ̄1ω̄2 + χ34ζ̄1∗ω̄2}|0〉0 : [(1, 0); (1, 0)]000100 + [(1, 0); (1, 0)]000−100

φ′4 + φ̄′4 ={χ56ζ̄1ȳ2 + χ56ζ̄1∗ȳ2}|0〉0 : [(1, 0); (1, 0)]000100 + [(1, 0); (1, 0)]0000−100

φ56 + φ̄56 ={χ12ζ̄2ζ̄3 + χ12ζ̄2∗ζ̄3∗}|0〉0 : [(1, 0); (1, 0)]000011 + [(1, 0); (1, 0)]0000−1−1

φ′56 + φ̄′56 ={χ12ζ̄2∗ζ̄3 + χ12ζ̄2ζ̄3∗}|0〉0 : [(1, 0); (1, 0)]0000−11 + [(1, 0); (1, 0)]00001−1

8. We also obtain states that are doublets under SU(2)L but singlets under SU(3)C . As such,
these states are potentially Higgs doublets should they acquire a non-zero v.e.v.

h̄1 + h1 ={χ12ψ̄4,5η̄1 + χ12ψ̄4,5∗η̄1∗}|0〉0 : [(1, 0); (2, 1)]100000 + [(1, 0); (2,−1)]−100000

h̄2 + h2 ={χ34ψ̄4,5η̄2∗ + χ34ψ̄4,5∗η̄2}|0〉0 : [(1, 0); (2, 1)]0−10000 + [(1, 0); (2,−1)]010000

h̄3 + h3 ={χ56ψ̄4,5η̄3 + χ56ψ̄4,5∗η̄3∗}|0〉0 : [(1, 0); (2, 1)]001000 + [(1, 0); (2,−1)]00−1000

8.2 Sectors bi, i = 1 . . . 4

From the sectors bi (i = 1 . . . 4), we obtain three generations of left moving chiral fermions, with the
charges shown in Table 1. Our particles are SU(2) doublets, whilst antiparticles are SU(2) singlets.
These are the only chiral states that transform under the observable gauge group only. A full list
of states and their quantum numbers is given in Appendix A.1.
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1. From sector b1, we obtain

(Q)−1/2,0,0,1/2,0,0 + (L)−1/2,0,0,1/2,0,0 + (uc)−1/2,0,0,−1/2,0,0+

(dc)−1/2,0,0,−1/2,0,0 + (ec)−1/2,0,0,−1/2,0,0 + (νc)−1/2,0,0,−1/2,0,0

2. From sector b2,

(Q)0,−1/2,0,0,1/2,0 + (L)0,−1/2,0,0,1/2,0 + (uc)−0,1/2,0,0,−1/2,0+

(dc)0,−1/2,0,0,−1/2,0 + (ec)0,−1/2,0,0,−1/2,0 + (νc)0,−1/2,0,0,−1/2,0

3. From sector b3,

(Q)0,0,−1/2,0,0,1/2 + (L)0,0,−1/2,0,0,1/2 + (uc)0,0,−1/2,0,0,−1/2+

(dc)0,0,−1/2,0,0,−1/2 + (ec)0,0,−1/2,0,0,−1/2 + (νc)0,0,−1/2,0,0,−1/2

4. From sector b4,

(L)−1/2,0,0,1/2,0,0 + (dc)−1/2,0,0,−1/2,0,0 + (νc)−1/2,0,0,−1/2,0,0

+[(3̄,−1/2), (2, 0)]1/2,0,0,−1/2,0,0+[(3, 1/2), (1, 1)]1/2,0,0,1/2,0,0+[(1,−3/2), (1,−1)]1/2,0,0,1/2,0,0

This shows similarities to the first generation obtained in sector b1. The lepton doublet,
anti-down and anti-neutrino have the same charges under the six extra U(1)’s as their first
generation equivalents. We also have states that show similarities to the quark doublet, anti-up
and positron, but have negative charges under the observable U(1)’s in comparison to those
obtained in sector b1. The full spectrum for bi is given in the tables in the appendix.5 We
have obtained a partial fourth generation.

8.3 Remaining Sectors

The remaining sectors are split into one of two groups. These are sectors that give states which
are vector representations of the hidden gauge group, and sectors that give states which are chiral
representations of the hidden gauge group.

Appendix A.2 contains all sectors that give vector representations of the hidden gauge group. These
arise from the sectors I, bi+2β and I+ bj +2β, where I = 1+ b1 + b2 + b3, i = 1 . . . 4 and j = 1 . . . 5
(where b5 is the sector α). All states in the massless sector 1 + b1 + b2 +α+ β are projected by the
choice of GSO projection coefficient

c

(
b4
1

)
= −1,

whilst those in the sector 1+ b1 + b2 +α−β survive. All other sectors either have no massless states
or have all states projected by the GSO projections.

We have now fully derived the massless spectrum. In the following chapters we analyse the spectrum,
ensuring it is anomaly free and seeing how the standard model gauge group SU(3)C×SU(2)L×U(1)Y
is obtained.

5Note in the appendix we have labelled the final three states as Q̃4, ũc
4 and ẽc4 respectively. The tildes above the labels

of the states represent that although they are non-physical particles, they show similarities to the quark double, up quark
and electron but with negative charges under the trace U(1)’s.
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8.4 U(1) anomalies

We calculate the traces of each of the twelve U(1) symmetries. They are

Tr[U(1)C ] = −6 Tr[U(1)L] = 4 Tr[U(1)1] = −20 Tr[U(1)2] = −22
Tr[U(1)3] = 26 Tr[U(1)4] = −12 Tr[U(1)5] = 6 Tr[U(1)6] = 6
Tr[U(1)H ] = 12 Tr[U(1)7] = −2 Tr[U(1)8] = 12 Tr[U(1)9] = 0.

(89)

Of the twelve, U(1)9 is anomaly free, and we can combine U(1)C and U(1)L as given in (88) to
show that the weak hypercharge U(1)Y is also anomaly free. The orthogonal combination of the
trace U(1)’s, that is

U(1)Z′ = U(1)C − U(1)L (90)

is not anomaly free, with Tr[U(1)Z′ ] = −10. Hence the U(1)C × U(1)L symmetry must break
immediately to U(1)Y , and this symmetry breaking must occur at the string level. Of the remaining
nine symmetries, we may rotate eight and only eight in such a way that the orthogonal combinations
are anomaly free. These combinations are not unique. The remaining anomalous combination is
uniquely given by

U(1)A = k
∑
j

(Tr[U(1)j ])U(1)j .

Selecting k = 1/2,

U(1)A = −10U(1)1−11U(1)2+13U(1)3−6U(1)4+3U(1)5+3U(1)6+6U(1)H−U(1)7+6U(1)8 (91)

We have reduced our eleven anomalous U(1)’s down to a single anomalous U(1)A, and our gauge
group down to the standard model gauge group SU(3)C × SU(2)L × U(1)Y .

9 Results and Conclusions

We have derived fully the massless spectrum of a string model in the four dimensional free fermionic
ABK formulation. The observable gauge group of the model is SU(3)C×SU(2)L×U(1)C×U(1)L×
U(1)6. Calculation of anomalies resulted in an anomaly free weak hypercharge U(1)Y , represented
by the combination

U(1)Y =
1

3
U(1)C +

1

2
U(1)Y

with Tr[U(1)Y ] = 0, while the orthogonal combination

U(1)Z′ = U(1)C − U(1)L

is anomalous with Tr[U(1)Z′ ] = −10.

The Dine-Seiberg-Witten (DSW) mechanism [18] can be used to cancel the anomalies. Any anoma-
lous U(1)Ai gives rise to a Fayet-Iliopoulos term

Tr[U(1)A] = A 6= 0 (92)
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We define the D and F terms as

DA = A+
∑
j

QA,j |〈φA,j〉|2

Di =
∑
j

Qi,j |〈φi,j〉|2

Fi =
∑
i

∣∣∣∣∂W∂φi
∣∣∣∣2 (93)

where DA is the D term arising from the anomalous U(1) and Di are D terms arising from anomaly
free U(1)’s. W is the superpotential of the model. Requiring D and F flatness, we have the
constraint

〈D〉 = 〈F 〉 = 0. (94)

Equations (93) satisfy this constraint when the fields φ obtain vevs. Since all low energy effective
field theories are free of gauge anomalies, then U(1)Z′ must be broken. Our model breaks symmetry
directly at the string level as

SO(10)→ SU(3)C × SU(2)L × U(1)C × U(1)L → SU(3)C × SU(2)L × U(1)Y .

We also calculated that the remaining U(1)’s were anomaly free except for a single anomalous U(1)A.

This requirement of symmetry breaking to the standard model gauge group at the string level
is a result of the modification of the GSO projections. The original 1989 model with

c

(
b4
1

)
= +1

resulted in both trace U(1)’s being anomaly free. Hence the DSW Mechanism allows for the
U(1)C × U(1)L symmetry to break to either U(1)Y or U(1)Z′ , since both are anomaly free and
hence have the property of D flatness. Then we may have symmetry breaking to the standard
model gauge group at either the string level or an intermediate level.

The requirement for the standard model gauge group means the spectrum includes the gauge bosons
of the standard model. The model has N = 1 spacetime supersymmetry, and includes three genera-
tions of chiral fermions, plus a fourth partial generation showing similarities under the extra U(1)’s
to the first generation. The spectrum also includes Higgs doublets that may produce realistic gauge
symmetry breaking, and hence allows for the acquisition of mass of particles via the Higgs mecha-
nism. Finally the spectrum includes a spin 2 graviton state, and is free of tachyons. The massless
spectrum is representitive of the standard model as described in Chapter 2.

The modification of GSO projection coefficients results in a difference in the level at which the
U(1)C ×U(1)L symmetry breaks to U(1)Y . In the Faraggi et al model, both of the trace U(1)’s are
anomaly free, and hence there is no requirement for the gauge group SU(3)C × SU(2)L × U(1)C ×
U(1)L to break to the standard model gauge group at the string level. This symmetry may instead
be broken at an intermediate level. In the modified model, SU(3)C ×SU(2)L×U(1)C ×U(1)L has
a non-zero trace anomaly, and so we require that this symmetry is broken at the string level.
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A Massless States and Their Quantum Numbers

The following tables contain massless states and their quantum numbers for each massless sector
excluding the Neveu-Schwarz sector, which is analysed in 8.1.

A.1 Sectors that Transform Under the Observable Gauge Group Only

Sector F
SU(3)C
×SU(2)L

QC QL Q1 Q2 Q3 Q4 Q5 Q6
SO(4)H
×SU(3)H

QH Q7 Q8 Q9

b1 Q1 (3, 2) 1
2

0 - 1
2

0 0 1
2

0 0 (1,1) 0 0 0 0

L1 (1, 2) - 3
2

0 - 1
2

0 0 1
2

0 0 (1,1) 0 0 0 0

uc1 (3̄, 1) - 1
2

-1 - 1
2

0 0 - 1
2

0 0 (1,1) 0 0 0 0

dc1 (3̄, 1) - 1
2

1 - 1
2

0 0 - 1
2

0 0 (1,1) 0 0 0 0

ec1 (1, 1) 3
2

1 - 1
2

0 0 - 1
2

0 0 (1,1) 0 0 0 0

νc1 (1, 1) 3
2

-1 - 1
2

0 0 - 1
2

0 0 (1,1) 0 0 0 0

b2 Q2 (3, 2) 1
2

0 0 - 1
2

0 0 1
2

0 (1,1) 0 0 0 0

L2 (1, 2) - 3
2

0 0 - 1
2

0 0 - 1
2

0 (1,1) 0 0 0 0

uc2 (3̄, 1) - 1
2

-1 0 - 1
2

0 0 1
2

0 (1,1) 0 0 0 0

dc2 (3̄, 1) - 1
2

1 0 - 1
2

0 0 - 1
2

0 (1,1) 0 0 0 0

ec2 (1, 1) 3
2

1 0 - 1
2

0 0 1
2

0 (1,1) 0 0 0 0

νc2 (1, 1) 3
2

-1 0 - 1
2

0 0 - 1
2

0 (1,1) 0 0 0 0

b3 Q3 (3, 2) 1
2

0 0 0 1
2

0 0 1
2

(1,1) 0 0 0 0

L3 (1, 2) - 3
2

0 0 0 1
2

0 0 - 1
2

(1,1) 0 0 0 0

uc3 (3̄, 1) - 1
2

-1 0 0 1
2

0 0 1
2

(1,1) 0 0 0 0

dc3 (3̄, 1) - 1
2

1 0 0 1
2

0 0 - 1
2

(1,1) 0 0 0 0

ec3 (1, 1) 3
2

1 0 0 1
2

0 0 1
2

(1,1) 0 0 0 0

νc3 (1, 1) 3
2

-1 0 0 1
2

0 0 - 1
2

(1,1) 0 0 0 0

b4 Q̃4 (3̄, 2) - 1
2

0 1
2

0 0 - 1
2

0 0 (1,1) 0 0 0 0

L4 (1, 2) - 3
2

0 - 1
2

0 0 1
2

0 0 (1,1) 0 0 0 0

ũc4 (3, 1) 1
2

1 1
2

0 0 1
2

0 0 (1,1) 0 0 0 0

dc4 (3̄, 1) - 1
2

1 - 1
2

0 0 - 1
2

0 0 (1,1) 0 0 0 0

ẽc4 (1, 1) - 3
2

-1 1
2

0 0 1
2

0 0 (1,1) 0 0 0 0

νc4 (1, 1) 3
2

-1 - 1
2

0 0 - 1
2

0 0 (1,1) 0 0 0 0

A.2 Sectors that Give Vector Representations of the Hidden Gauge Group

Sector F
SU(3)C
×SU(2)L

QC QL Q1 Q2 Q3 Q4 Q5 Q6
SO(4)H
×SU(3)H

QH Q7 Q8 Q9

I V1 (1,1) 0 0 0 0 0 0 0 0 (1,3) 1
2

- 1
2

- 1
2

- 1
2

V2 (1,1) 0 0 0 0 0 0 0 0 (1,3) 1
2

- 1
2

- 1
2

- 1
2

V3 (1,1) 0 0 0 0 0 0 0 0 (1, 3̄) - 1
2

1
2

1
2

1
2

V4 (1,1) 0 0 0 0 0 0 0 0 (1, 3̄) - 1
2

1
2

1
2

1
2

V5 (1,1) 0 0 0 0 0 0 0 0 (2,1) 3
2

1
2

- 1
2

1
2

V6 (1,1) 0 0 0 0 0 0 0 0 (2,1) - 3
2

- 1
2

1
2

- 1
2

b1 + 2β V7 (1,1) 0 0 0 - 1
2

1
2

1
2

0 0 (1,1) 3
2

1
2

0 0

V8 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (1,1) - 3
2

- 1
2

0 0

V9 (1,1) 0 0 0 - 1
2

1
2

1
2

0 0 (1,3̄) - 1
2

1
2

0 0

V10 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (1,3) 1
2

- 1
2

0 0

b2 + 2β V11 (1,1) 0 0 - 1
2

0 1
2

0 1
2

0 (1,1) 3
2

1
2

0 0

V12 (1,1) 0 0 - 1
2

0 1
2

0 - 1
2

0 (1,1) - 3
2

- 1
2

0 0

V13 (1,1) 0 0 - 1
2

0 1
2

0 - 1
2

0 (1,3̄) - 1
2

1
2

0 0

V14 (1,1) 0 0 - 1
2

0 1
2

0 1
2

0 (1,3) 1
2

- 1
2

0 0
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Sector F
SU(3)C
×SU(2)L

QC QL Q1 Q2 Q3 Q4 Q5 Q6
SO(4)H
×SU(3)H

QH Q7 Q8 Q9

b3 + 2β V15 (1,1) 0 0 - 1
2

- 1
2

0 0 0 1
2

(1,1) 3
2

1
2

0 0

V16 (1,1) 0 0 - 1
2

- 1
2

0 0 0 - 1
2

(1,1) - 3
2

- 1
2

0 0

V17 (1,1) 0 0 - 1
2

- 1
2

0 0 0 - 1
2

(1,3̄) - 1
2

1
2

0 0

V18 (1,1) 0 0 - 1
2

- 1
2

0 0 0 1
2

(1,3) 1
2

1
2

0 0

b4 + 2β V19 (1,1) 0 0 0 - 1
2

1
2

1
2

0 0 (1,1) 3
2

1
2

0 0

V20 (1,1) 0 0 0 1
2

- 1
2

1
2

0 0 (1,1) 3
2

- 1
2

0 0

V21 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (1,3) 1
2

1
2

0 0

V22 (1,1) 0 0 0 1
2

- 1
2

- 1
2

0 0 (1,3) 1
2

- 1
2

0 0

I + b1 + 2β V23 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (1,1) 0 0 1
2

1
2

V24 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (1,1) 0 0 1
2

1
2

V25 (1,1) 0 0 0 - 1
2

1
2

1
2

0 0 (1,1) 0 0 - 1
2

- 1
2

V26 (1,1) 0 0 0 - 1
2

1
2

1
2

0 0 (1,1) 0 0 - 1
2

- 1
2

V27 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (2,1) 0 0 - 1
2

1
2

V28 (1,1) 0 0 0 - 1
2

1
2

1
2

0 0 (2,1) 0 0 1
2

- 1
2

I + b2 + 2β V29 (1,1) 0 0 - 1
2

0 1
2

0 - 1
2

0 (1,1) 0 0 1
2

1
2

V30 (1,1) 0 0 - 1
2

0 1
2

0 - 1
2

0 (1,1) 0 0 1
2

1
2

V31 (1,1) 0 0 - 1
2

0 1
2

0 1
2

0 (1,1) 0 0 - 1
2

- 1
2

V32 (1,1) 0 0 - 1
2

0 1
2

0 1
2

0 (1,1) 0 0 - 1
2

- 1
2

V33 (1,1) 0 0 - 1
2

0 1
2

0 - 1
2

0 (2,1) 0 0 1
2

- 1
2

V34 (1,1) 0 0 - 1
2

0 1
2

0 1
2

0 (2,1) 0 0 - 1
2

1
2

I + b3 + 2β V35 (1,1) 0 0 - 1
2

- 1
2

0 0 0 1
2

(1,1) 0 0 1
2

1
2

V36 (1,1) 0 0 - 1
2

- 1
2

0 0 0 1
2

(1,1) 0 0 1
2

1
2

V37 (1,1) 0 0 - 1
2

- 1
2

0 0 0 - 1
2

(1,1) 0 0 - 1
2

- 1
2

V38 (1,1) 0 0 - 1
2

- 1
2

0 0 0 - 1
2

(1,1) 0 0 - 1
2

- 1
2

V39 (1,1) 0 0 - 1
2

- 1
2

0 0 0 1
2

(2,1) 0 0 1
2

- 1
2

V40 (1,1) 0 0 - 1
2

- 1
2

0 0 0 - 1
2

(2,1) 0 0 - 1
2

1
2

I + b4 + 2β V41 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (1,1) 0 0 1
2

1
2

V42 (1,1) 0 0 0 - 1
2

1
2

- 1
2

0 0 (1,1) 0 0 1
2

1
2

V43 (1,1) 0 0 0 1
2

- 1
2

- 1
2

0 0 (1,1) 0 0 1
2

1
2

V44 (1,1) 0 0 0 1
2

- 1
2

- 1
2

0 0 (1,1) 0 0 1
2

1
2

V45 (1,1) 0 0 0 - 1
2

1
2

1
2

0 0 (2,1) 0 0 1
2

- 1
2

V46 (1,1) 0 0 0 1
2

- 1
2

1
2

0 0 (2,1) 0 0 1
2

- 1
2

I + α+ 2β V47 (1,1) 0 1 0 0 1
2

1
2

1
2

0 (1,1) 0 - 1
2

0 1
2

V48 (1,1) 0 1 0 0 - 1
2

1
2

1
2

0 (1,1) 0 1
2

0 - 1
2

V49 (1,1) 0 -1 0 0 1
2

1
2

- 1
2

0 (1,1) 0 - 1
2

0 1
2

V50 (1,1) 0 -1 0 0 - 1
2

1
2

- 1
2

0 (1,1) 0 1
2

0 - 1
2

V51 (1,2) 0 0 0 0 - 1
2

- 1
2

1
2

0 (1,1) 0 - 1
2

0 1
2

V52 (1,2) 0 0 0 0 1
2

- 1
2

- 1
2

0 (1,1) 0 1
2

0 - 1
2

1 + b1 + α V53 (1,1) 0 1 0 1
2

0 1
2

0 1
2

(1,1) 0 1
2

0 - 1
2

+2β V54 (1,1) 0 -1 0 - 1
2

0 1
2

0 - 1
2

(1,1) 0 - 1
2

0 1
2

V55 (1,1) 0 1 0 - 1
2

0 1
2

0 1
2

(1,1) 0 - 1
2

0 1
2

V56 (1,1) 0 -1 0 1
2

0 1
2

0 - 1
2

(1,1) 0 1
2

0 - 1
2

V57 (1,2) 0 0 0 - 1
2

0 - 1
2

0 - 1
2

(1,1) 0 1
2

0 - 1
2

V58 (1,2) 0 0 0 1
2

0 - 1
2

0 1
2

(1,1) 0 - 1
2

0 1
2
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A.3 Sectors that Give Chiral Representations of the Hidden Gauge Group

Sector F
SU(3)C
×SU(2)L

QC QL Q1 Q2 Q3 Q4 Q5 Q6
SO(4)H
×SU(3)H

QH Q7 Q8 Q9

±β H1 (1,1) 3
4

1
2

1
4

1
4

1
4

- 1
2

1
2

0 (2,1) 3
4

1
4

0 0

H2 (1,1) - 3
4

- 1
2

- 1
4

- 1
4

- 1
4

- 1
2

- 1
2

0 (2,1) - 3
4

- 1
4

0 0

I ± β H3 (1,1) 3
4

1
2

1
4

1
4

1
4

- 1
2

- 1
2

0 (1,1) - 3
4

- 1
4

- 1
2

1
2

H4 (1,1) - 3
4

- 1
2

- 1
4

- 1
4

- 1
4

- 1
2

- 1
2

0 (1,1) 3
4

1
4

- 1
2

1
2

H5 (1,1) 3
4

1
2

1
4

1
4

1
4

- 1
2

1
2

0 (1,1) - 3
4

- 1
4

1
2

- 1
2

H6 (1,1) - 3
4

- 1
2

- 1
4

- 1
4

- 1
4

- 1
2

1
2

0 (1,1) 3
4

1
4

1
2

- 1
2

b3 + α± β H7 (1,1) 3
4

- 1
2

3
4

- 1
4

- 1
4

0 0 1
2

(1,1) 3
4

- 1
4

1
2

0

H8 (1,1) - 3
4

1
2

1
4

1
4

- 3
4

0 0 - 1
2

(1,1) − 3
4

1
4

- 1
2

0

H9 (1,1) - 3
4

1
2

1
4

- 3
4

1
4

0 0 1
2

(1,1) − 3
4

1
4

- 1
2

0

H10 (1,1) - 3
4

1
2

1
4

1
4

1
4

0 0 1
2

(1,1) − 3
4

- 3
4

1
2

0

H11 (3,1) - 1
4

- 1
2

- 1
4

- 1
4

- 1
4

0 0 - 1
2

(1,1) 3
4

- 1
4

1
2

0

H12 (1,2) 3
4

1
2

- 1
4

- 1
4

- 1
4

0 0 - 1
2

(1,1) 3
4

- 1
4

1
2

0

H13 (1,1) - 3
4

1
2

1
4

1
4

1
4

0 0 1
2

(1,3̄) 1
4

1
4

1
2

0

b1 + b2 + b3 H14 (1,1) 3
4

- 1
2

1
4

1
4

- 1
4

- 1
2

- 1
2

1
2

(1,1) 3
4

- 1
4

1
2

0

+α± β H15 (1,1) - 3
4

1
2

- 1
4

- 1
4

1
4

1
2

- 1
2

1
2

(1,1) - 3
4

1
4

- 1
2

0

H16 (1,1) 3
4

- 1
2

1
4

1
4

- 1
4

1
2

1
2

1
2

(1,1) 3
4

- 1
4

1
2

0

H17 (1,1) - 3
4

1
2

- 1
4

- 1
4

1
4

- 1
2

1
2

1
2

(1,1) - 3
4

1
4

- 1
2

0

b1 + b2 + b4 H18 (1,1) - 3
4

1
2

1
4

- 1
4

3
4

0 1
2

0 (1,1) - 3
4

1
4

- 1
2

0

+α± β H19 (1,1) - 3
4

1
2

1
4

3
4

- 1
4

0 - 1
2

0 (1,1) - 3
4

1
4

- 1
2

0

H20 (1,1) - 3
4

1
2

1
4

- 1
4

- 1
4

0 1
2

0 (1,1) - 3
4

- 3
4

1
2

0

H21 (1,1) - 3
4

1
2

1
4

- 1
4

- 1
4

0 1
2

0 (1,3̄) 1
4

1
4

1
2

0

H22 (3,1) - 1
4

- 1
2

- 1
4

1
4

1
4

0 - 1
2

0 (1,1) 3
4

- 1
4

1
2

0

H23 (1,2̄) 3
4

1
2

- 1
4

1
4

1
4

0 - 1
2

0 (1,1) 3
4

- 1
4

1
2

0

H24 (1,1) 3
4

- 1
2

3
4

1
4

1
4

0 1
2

0 (1,1) 3
4

- 1
4

1
2

0

b2 + b3 + b4 H25 (1,1) 3
4

- 1
2

1
4

1
4

- 1
4

- 1
2

1
2

- 1
2

(1,1) 3
4

- 1
4

1
2

0

+α± β H26 (1,1) - 3
4

1
2

- 1
4

- 1
4

1
4

1
2

1
2

- 1
2

(1,1) - 3
4

1
4

- 1
2

0

H27 (1,1) 3
4

- 1
2

1
4

1
4

- 1
4

1
2

1
2

1
2

(1,1) 3
4

- 1
4

1
2

0

H28 (1,1) - 3
4

1
2

- 1
4

- 1
4

1
4

- 1
2

1
2

1
2

(1,1) - 3
4

1
4

- 1
2

0

1 + I + b4 H29 (1,1) 3
4

1
2

1
4

- 1
4

- 1
4

- 1
2

0 1
2

(2,1) 3
4

1
4

0 0

±β H30 (1,1) - 3
4

- 1
2

- 1
4

1
4

1
4

- 1
2

0 - 1
2

(2,1) - 3
4

- 1
4

0 0

1 + b4 ± β H31 (1,1) 3
4

1
2

1
4

- 1
4

- 1
4

- 1
2

0 1
2

(1,1) - 3
4

- 1
4

1
2

- 1
2

H32 (1,1) 3
4

1
2

1
4

- 1
4

- 1
4

- 1
2

0 - 1
2

(1,1) - 3
4

- 1
4

- 1
2

1
2

H33 (1,1) - 3
4

- 1
2

- 1
4

1
4

1
4

- 1
2

0 - 1
2

(1,1) 3
4

1
4

- 1
2

1
2

H34 (1,1) - 3
4

- 1
2

- 1
4

1
4

1
4

- 1
2

0 1
2

(1,1) 3
4

1
4

1
2

- 1
2

1 + b1 + b2 H35 (1,1) - 3
4

1
2

1
4

1
4

1
4

0 0 1
2

(2,1) 3
4

- 1
4

0 1
2

+α− β H36 (1,1) - 3
4

1
2

1
4

1
4

1
4

0 0 1
2

(1,1) 3
4

- 1
4

0 - 1
2

H37 (1,1) - 3
4

1
2

1
4

1
4

1
4

0 0 1
2

(1,1) 3
4

- 1
4

0 - 1
2

1 + b3 + b4 H38 (1,1) 3
4

- 1
2

- 1
4

1
4

1
4

0 1
2

0 (2,1) - 3
4

1
4

0 1
2

+α± β H39 (1,1) 3
4

- 1
2

- 1
4

1
4

1
4

0 1
2

0 (1,1) - 3
4

1
4

0 - 1
2

H40 (1,1) 3
4

- 1
2

- 1
4

1
4

1
4

0 1
2

0 (1,1) - 3
4

1
4

0 - 1
2

B Light-Cone Coordinates

Light-cone coordinates are a special set of coordinates used to quantize the string simply and directly.
In the light-cone coordinate system, we replace x0 and x1 with coordinates defined as the world-line
of a beam of light in the positive and negative x1 directions. For a beam of light travelling along
the +x1 direction, we have x1 = ct = x0; this defines the x+ axis. Similarly, the x− axis is defined
as the worldline x1 = −ct = −x0. We can summarise these definitions as

x± =
1√
2

(x0 ± x1) (95)
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and where x2 and x3 are unmodified from their usual definitions of a Lorentz four vector. The
complete set of light-cone coordinates are (x+, x−, x2, x3). We can take either x+ or x− to be a
light-cone time coordinate, so we choose x+. Therefore (x−, x2, x3) are the light-cone space coordi-
nates.

In Minkowski spacetime coordinates, we can define the Lorentz invariant spacetime interval

ds2 = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 = −ηµνdxµdxν

From (95) we can see that
2dx+dx− = (dx0)2 − (dx1)2,

which leads to
ds2 = 2dx+dx− − (dx2)2 − (dx3)2 = −η̂µνdxµdxν (96)

where η̂µν is the light-cone metric, where the indices run over (+,−, 2, 3).

Under our new coordinate system, we must also calculate the components of the light-cone mo-
mentum vector. It can be seen from (95) that we can write

p± =
1√
2

(p0 ± p1). (97)

The light-cone energy is p−.

C The Nambu-Goto String Action

The Nambu-Goto string action is a simple invariant action, which is the action of a relativistic
string. Consider an infinitesimal parallelogram on the world-sheet demonstrated in Figure 3, with
sides duµ and dvµ, which is the area element of the infinitesimal rectangle with sides dσ and dτ .
Hence,

duµ =
∂Xµ

∂τ
dτ = Ẋµdτ, dvµ =

∂Xµ

∂σ
dσ = Xµ′dσ. (98)

Then the area of this parallelogram is

dA = |duµ||dvµ|| sin θ| =
√
|du|2|dv|2 − |du|2|dv|2 cos2 θ (99)

Now, we come across the problem that the terms under the square root are negative. It does not,
however, affect Lorentz invariance for us to change the sign under the square root, so we may write

dA =
√

(du · dv)2 − (du · du)(dv · dv), (100)

where we have changed the sign under the square root and written in terms of the dot product.
Substituting (98) into (100) and integrating, we obtain our area

A =

∫
dτdσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 (101)

Then our string action is

S = − 1

2πα′

∫ τf

τi

dτ

∫ σ1

0

dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 (102)

32



where we have introduced the constant at the beginning so that the units are the units of action.
This is the Nambu-Goto string action. Furthermore, from our definition of string action,

S =

∫ τf

τi

dτ

∫ σ1

0

dσL, (103)

we obtain the Lagrangian density

L = − 1

2πα′

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2. (104)

It is with this result we obtain the equations (26a, 26b).

D Group Theory in Particle Physics

We discussed in chapter 2 the standard model gauge group SU(3)C × SU(2)L ×U(1)Y , and a brief
description of the physical meaning of these groups within particle physics, particularly with the
interaction for which they are responsible. In this appendix I expand upon these descriptions, giving
first a background on group theory and the symmetries Lie Groups give rise to, and then discussing
in detail the key groups of the standard model. For this appendix our key references are [16, 6, 7]
among others.

D.1 A brief overview of Lie Groups

We begin with a definition of a group. A group (G, ∗) is a set G of elements gi ∈ G that act with
an operator ∗ with the following properties:

1. Closure: gi ∗ gj = gk ∈ G.

2. Associativity: (gi ∗ gj) ∗ gk = gi ∗ (gj ∗ gk).

3. Identity Element: There exists an identity element gI ∈ G such that gI ∗ gi = gi ∗ gI = gi
for all elements gi.

4. Inverse Element: For each gi there exists an inverse element g−1
i ∈ G that satisfies g−1

i ∗gi =
gi ∗ g−1

i = gI .

For example, the group (Z,+) is a group. We check that it satisfies the constraints.

1. Closure: Any integer added to another is an integer, so closure is a property of (Z,+).

2. Associativity: (a+ b) + c = a+ (b+ c) for a, b, c ∈ Z, so associativity is a property of (Z,+).

3. Identity Element: 0 + a = a + 0 = a, for a ∈ Z. The number 0 is also an integer, so the
identity element of the group (Z,+) is gI = 0.

4. Inverse Element: a−a = 0, so since gI = 0, for an element gi = a the inverse is g−1
i = −a ∈

Z.

However (R,×) is not a group. Let us consider the constraints for (R,×).

1. Closure: Any real number multiplied by another real number is real, so closure is a property
of (R,×).

2. Associativity: (a× b)× c = a× (b× c) for a, b, c ∈ R, so associativity is a property of (R,×).

3. Identity Element: 1 × a = a × 1 = a for a ∈ R. Since 1 ∈ R, then the identity element of
the group (R,×) is 1.
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So far, we have had no issues with (R,×) as a group. However, when we consider the inverse
element, we come across an issue.

4. Inverse Element: a × 1
a = 1

a × a = 1, with a, 1
a ∈ R, and since gI = 1, this satisfies the

inverse element, if 1
a exists for all a ∈ R. However, 1

a does not exist for a = 0, so there is no
inverse element for (R,×), so it is not a group.

It is clear however that if we define R = R \ {0}, then (R,×) is a group. Groups are important in
physics since they give rise to symmetries. For example, in the group (Z,+) described above, the
use of our operator + between two elements will change the element. However there is a conserved
property, and that is the fact that the new element will still be an integer. Essentially it is a state-
ment that adding any two integers results in another integer, so the property of the elements being
integers is preserved, even if the actual value of the integers has changed after the operation. It is
these symmetries that are of interest in particle theory.

The most general Lie Group (and the one for which all of the standard model gauge groups are a
subset) is the General Linear group in n dimensions, including the complex plane. This is denoted
GL(n,C). This group consists of any invertible n×n matrix. Consider a vector in Cn. Acting upon
it with any n × n invertible matrix may result in translation, reflection, rotation, or a change in
magnitude, but it will always result in another vector in Cn. The preserved property of GL(n,C)
is the space the vector occupies. A subgroup is GL(n,R), which only acts upon the real dimensions
Rn. This group conserves the real space a vector occupies.

Consider a solid in Cn. A matrix A from the group GL(n,C) transforms the solid in some way. If
we set detA = +1, we know that whilst the solid may be rotated or translated, it must occupy the
same volume as before the transformation. Then the Special Linear group, SL(n,C), which is the
subgroup of GL(n,C) with the matrices of GL(n,C) that have detA = +1, preserves volume and
space in which the solid exists. Similarly SL(n,R) is the subgroup ofGL(n,R) for which detA = +1.

Another set of subgroups of the general linear group are the orthogonal group O(n) and the unitary
group U(n). Consider a vector ~r in Rn. Its magnitude is given by ~r2 = ~rT~r. Then if we act upon
this vector with a matrix A ∈ GL(n,R), we obtain

~r2 → ~rTATA~r. (105)

In the case that ATA = I, where I is the identity matrix, the magnitude of the vector remains
unchanged. In this case, the matrices correspond to a rotation. Similarly we could show that this
matrix would only rotate a solid in n dimensions. Since

(detA)2 = det(ATA) = det I = 1, (106)

we know that detA = ±1, so the volume of the solid also remains unchanged. The subgroup of
GL(n,R) with ATA = I and (therefore) detA = ±1 is denoted O(n) since these are the orthogonal
matrices of GL(n,R). This group conserves the space occupied, volume, and radius. O(n) corre-
sponds to rotations in Rn.

Similarly we can construct a subgroup of GL(n,C) that corresponds to rotations in Cn. The only
difference is that in the complex plane, ~r2 = ~r†~r, where ~r† = (~r∗)T is the Hermitian conjugate (and
~r∗ is the complex conjugate). Then the subgroup that conserves radius are those with A†A = I.
This subgroup is denoted U(n) since these are unitary matrices. Once again the matrices of U(n)
have detA = ±1.
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GL(n,C)

Cn → Rn
GL(n,R)

A†A = I U(n)

detA = +1 SL(n,C)

ATA = I
O(n)

detA = +1 SL(n,R)

SO(n)

SU(n)

Figure 4: Decomposition of the general linear group in Cn. G1 → G2 represents G1 ⊃ G2, and hence
G1 → G3 ← G2 represents that G3 is a subset of both G1 and G2, or G3 ⊂ G1 ∩G2.

The final decomposition we shall make are the subgroups SU(n) and SO(n), which contain the
matrices of U(n) and O(n) respectively with detA = +1. Similarly we could write SU(n) =
U(n) ∩ SL(n,C) and SO(n) = O(n) ∩ SL(n,C). These groups preserve handedness on top of ev-
erything that is preserved by the unitary and orthogonal groups.

Figure 4 is a graphic representation of these Lie groups and how they relate to their sub- and
super- groups. Whilst our discussion shall primarily be limited to the gauge groups of the standard
model, it is worth mentioning the orthogonal Lie Groups as they also play important roles in particle
theory. For example the group SO(m,n) is the special orthogonal matrix in m+n dimensions, with
the metric xi = xi for i = 1, . . . ,m and xi = −xi for i = m+ 1, . . . , n. Then SO(1, 3) is the Lorentz
group of special relativity.

D.2 The Unitary Group U(1) and the Electromagnetic Interaction

A unitary group of degree n may be written U(n). Limiting our discussion to degree n = 1, we can
see clearly that U(1) is the set of numbers in the complex plane with magnitude 1. The proof of this
is as follows. Euler’s formula allows us to write any complex number as z = reiα, where r = |z| and
α = arg z (hence α is real). The complex conjugate is z∗ = re−iα. Multiplying a complex number
and it’s conjugate gives the square of the magnitude, or zz∗ = r2 = |z|2. If we now introduce a
matrix of degree 1, U , and impose a unitary condition UU† = 1, then it is clear that U = eiα, the
set of complex numbers with r = |z| = 1. We can define the group U(1) by

U(1) = {z ∈ C : |z| = 1}. (107)

Note here that since U = eiα (α 6= α(x)), we have a global U(1) symmetry.

In particle physics the U(1) group represents the local gauge symmetry in the electromagnetic
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interaction. Classically, electromagnetism is described by Maxwell’s equations [17],

∇ · ~E = ρ (108a)

∇ · ~B = 0 (108b)

∇× ~E +
∂ ~B

∂t
= 0 (108c)

∇× ~B − ∂ ~E

∂t
= ~J (108d)

Using equation (108b) and the vector calculus identity ∇ · (∇× ~a) = 0, where ~a is any vector, we
can write

~B = ∇× ~A (109)

where ~A is a vector potential. Substituting this into (108c), we obtain

∇×
(
~E +

∂ ~A

∂t

)
= 0, (110)

from which we can deduce that the terms in the brackets are the gradient of a scalar potential V ,
or

~E +
∂ ~A

∂t
= −∇V. (111)

Then we can write the electric field as

~E = −∇V − ∂ ~A

∂t
. (112)

Equations (109,112) describe our electric and magnetic field in terms of scalar and vector potentials,

and these, by definition, satisfy (108b, 108c). If we introduce the notation Aµ = (V, ~A) and Jµ =

(ρ, ~J), we can define the Electromagnetic field strength tensor Fµν as

Fµν = ∂µAν − ∂νAµ. (113)

Substituting in values of µ and ν, and noting that Fµν is antisymmetric under exchange of indices,
it is possible to construct the field strength tensor explicity.

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (114)

By substituting in values of µ and ν, it is simple to show that

∂µF
µν = Jν (115)

satisfies the remaining Maxwell equations (108a , 108d).

The U(1) symmetry arises in electromagnetism when we consider gauge invariance of the Lagrangian.
The free field Lagrangian density of the electromagnetic interaction is

LQ = −1

4
FµνF

µν . (116)
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If the Lagrangian is invariant under a transformation

Aµ → A′
µ

+ ∂µΛ(t, ~x), (117)

then it is clear that the electromagnetic interaction has a local gauge U(1) symmetry6. Proof that
the Lagrangian remains invariant under this transformation involves showing that the field strength
tensor is invariant under the transformation, then it is clear from (116) that the Lagrangian remains
invariant.

F ′
µν

= ∂µA′
ν − ∂νA′µ

= ∂µ(Aν + ∂νΛ(t, ~x))− ∂ν(Aµ + ∂µΛ(t, ~x))

= Fµν + ∂µ∂νΛ(t, ~x)− ∂ν∂µΛ(t, ~x)

= Fµν . (118)

From this, it is clear that LQ(A′
µ
) = LQ(Aµ). Hence electromagnetism gives rise to a local U(1)

gauge symmetry, that we label U(1)Q. This U(1)Q is incorportated into the standard model gauge
group, since electroweak symmetry breaks to electromagnetic symmetry as SU(2)L × U(1)Y →
U(1)Q.

D.3 The Special Unitary Group SU(2) and Spin

The groups SU(n) are the special unitary groups of degree n, or SU(n) ⊂ U(n) with detU = 1.
We will construct first the group SU(2), then consequently construct SU(3).

D.3.1 The Fundamental Representation of SU(2)

The fundamental representation of SU(2) is the group of 2× 2 unitary matrices with determinant
1. Let us first write these matrices explicitly, as

U =

(
u11 u12

u21 u22

)
, uij ∈ C, i, j = 1, 2

Imposing the unitary condition, we obtain U† = U−1. The inverse of a 2× 2 matrix is given by

U−1 =
1

|detU |

(
u22 −u12

−u21 u11

)
and the hermitian conjugate of a matrix with complex components is

U† =

(
u∗11 u∗21

u∗12 u∗22

)
Equating the above matrices, and imposing detU = 1, we obtain the relations

u∗11 = u22, u∗12 = −u21

Then we can write our matrix U as

U =

(
u11 −u∗21

u21 u∗11

)
6The symmetry is local (as opposed to global) since Λ = Λ(~x). The symmetry is a U(1) symmetry since there is only

one function Λ(t, ~x).
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Finally, to ensure detU = 1, we impose detU = u11u
∗
11 + u21u

∗
21 = |u11|2 + |u21|2 = 1. We can now

write SU(2) as the set

SU(2) =

{(
A −B∗
B A∗

)
: |A|2 + |B|2 = 1

}
(119)

This set contains the matrices βI and iαjσj for j = 1, 2, 3 (α, β ∈ R), where I is the identity matrix
and σj are the three Pauli Spin Matrices, given by

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(120)

Writing the matrices of SU(2) as U = eβI+i~α·~σ = eA, we can calculate the determinant as

detU = det(I +A+
A2

2
+ . . .).

We have expanded eA in a Taylor expansion. We now diagonalise the matrix A through multiplaction
with a matrix P , that commutes with A, and it’s inverse,

detU = det(I + PAP−1 +
1

2
(PAP−1PAP−1) + . . .)

= det(I +AD +
A2
D

2
+ . . .)

where AD is the diagonalised matrix. We now write this in exponential form considering the matrix
is diagonalised as

detU = det

(
eγ1 0
0 eγ2

)
= eγ1+γ2 = etrA.

Since we stated earlier that for SU(2), we can write generally U = eβI+i~α·~σ, then we have now
obtained the result that for the matrices to be special unitary matrices (i.e. detU = 1), we require
tr = βI + i~α · ~σ = 0. Since the trace of each of the Pauli spin matrices is zero, and the trace of I is
non-zero, we require β = 0. The most general form of the SU(2) matrices is

U = ei~α·~σ, αi ∈ R (121)

with the generators σj given in (120). It is also common to include a factor of 1/2 so that the
generators follow the algebra of SU(2), which is

[τi, τj ] = iεijkτj (122)

where εijk is the alternating tensor and τi = 1
2σi.

D.3.2 Spin ±1/2
We have constructed our 2 representation of SU(2). We must now construct the space on which
it acts. To do this we use the eigenvectors of this representation, using the diagonal generator to
form the basis. Let us denote these eigenvectors |j,m〉, where j is the maximum eigenvalue of τ3
and m is the eigenvalue of that particular eigenvector. For our 2 representation we can write these
eigenvectors as

|j,m1〉 =

(
1
0

)
, |j,m2〉 =

(
0
1

)
. (123)
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Then we can work out the values of j, m1, and m2 by acting upon them with τ3.

τ3|j,m1〉 =
1

2

(
1 0
0 −1

)(
1
0

)
=

1

2
|j,m1〉 → m1 =

1

2

τ3|j,m2〉 =
1

2

(
1 0
0 −1

)(
0
1

)
= −1

2
|j,m2〉 → m2 = −1

2
(124)

and hence j = 1/2 since j is simply the maximum eigenvalue. We may rewrite (123) as

|1
2
,

1

2
〉 =

(
1
0

)
, |1

2
,−1

2
〉 =

(
0
1

)
. (125)

These states represent spin ±1/2 particles, namely the fermions of the standard model. Finally we
wish to construct raising and lowering operators to relate these states. We make an assumption that
these operators are related to the remaining two generators τ1 and τ2. The solution is a combination
of the two,

τ± =
1√
2

(τ1 ± iτ2) (126)

so we obtain

τ+ =
1√
2

(
0 1
0 0

)
, τ− =

1√
2

(
0 0
1 0

)
. (127)

It is a simple calculation to show that

τ+|1
2
,

1

2
〉 = 0 τ−|1

2
,

1

2
〉 =

1√
2
|1
2
,−1

2
〉

τ+|1
2
,−1

2
〉 =

1√
2
|1
2
,

1

2
〉 τ−|1

2
,−1

2
〉 = 0 (128)

It is clear that τ+ is the raising operator, as it raises the spin of a state by one until the maximum
spin, at which point it annihilates the state, and τ− is a lowering operator, as it lowers the spin
of a state by one until the minimum spin, at which point it also annihilates the state. The 2
representation of SU(2) corresponds to fermions with spin ±1/2.

D.3.3 Spin ±1 and 0

SU(2) also represents spin 1 and 0 bosons. However for this we require the 3 representation of
SU(2). This is the adjoint representation. It is generated by the matrices

T1 =
1√
2

0 1 0
1 0 1
0 1 0

 , T2 =
1√
2

0 −i 0
i 0 −i
0 i 0

 , T3 =

1 0 0
0 0 0
0 0 −1

 . (129)

Note we still have only one diagonal matrix, and so we follow the same procedure as before. We
firstly define our states as

|j,m1〉 =

1
0
0

 , |j,m2〉 =

0
1
0

 , |j,m3〉 =

0
0
1

 . (130)
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As before, we act on these states with the diagonal matrix T3.

T3|j,m1〉 =

1 0 0
0 0 0
0 0 −1

1
0
0

 =

1
0
0

→ m1 = 1 (131)

T3|j,m2〉 =

1 0 0
0 0 0
0 0 −1

0
1
0

 = 0→ m2 = 0 (132)

T3|j,m3〉 =

1 0 0
0 0 0
0 0 −1

0
0
1

 = −

0
0
1

→ m3 = −1 (133)

so we rewrite (130) as

|1, 1〉 =

1
0
0

 , |1, 0〉 =

0
1
0

 , |1,−1〉 =

0
0
1

 . (134)

Our raising and lowering operators are constructed in the same way as before.

T± =
1√
2

(T1 ± iT2). (135)

Calculating the form of T± explicitly allows us to verify the following results.

T+|1, 1〉 = 0 T+|1, 0〉 = |1, 1〉 T+|1,−1〉 = |1, 0〉
T−|1, 1〉 = |1, 0〉 T−|1, 0〉 = |1,−1〉 T−|1,−1〉 = 0 (136)

We have shown it is possible to represent spin −1, 0, 1 bosonic states by the adjoint representation
of SU(2).

D.3.4 A Generalisation of SU(2) for higher values of Spin

We now wish to consider SU(2) for any value of j. Since j is the maximum eigenvalue of the
diagonal SU(2) generator T3, this is the higest spin in a given representation, so writing our d× d
matrix representations of SU(2) (for d ≥ 2) for an arbitrary value of j is desirable. For example,
we would require j = 2 to include the graviton, or j = 3/2 for some baryons.

For any representation of SU(2), we require three generators. We shall denote these T1,2,3, where
T3 is the one diagonal generator. These matrices follow the SU(2) algebra (122). A useful tool for
each representation given above was the raising and lowering operators, defined by (135). Let us
use equations (122, 135) to obtain the following commutation relations.

[T+, T−] = T+T− − T−T+

=
1

2

(
(T1 + iT2)(T2 − iT 2)− (T1 − iT2)(T1 + iT2)

)
= −i[T1, T2] = −i · iε123T

3

= T 3 (137)
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[T3, T
±] = T3T

± − T±T3

=
1√
2

(
T3(T1 ± iT2)− (T1 ± iT2)T3

)
=

1√
2

([T3, T1]± i[T3, T2])

=
1√
2

(iε312T2 ± i · iε321T1)

= ± 1√
2

(T1 ± iT2) = ±T± (138)

We are now in a position to understand the meaning of these operators. We know that by definition,
T3|j,m〉 = m|j,m〉. What effect do the raising and lowering operators have? We know from
experience of our 2 and 3 representations that they raise and lower the value of m by one. Let us
now verify that this is true for all values of j. We cannot directly evaluate T±|j,m〉, but we can
evaluate it using the commutation relations derived above.

T3T
±|j,m〉 = (T±T3 ± T±)|j,m〉 = (m± 1)T±|j,m〉 (139)

Essentially we have shown here that if we define a state |a〉 = T±|j,m〉, and evaluate the spin of this
state, we obtain T3|a〉 = (m ± 1)|a〉. Then the state T±|j,m〉 is proportional to a state |j,m ± 1〉,
or equivalently

T−|j,m〉 = Nm|j,m− 1〉 (140)

where Nj is simply a constant of proportionality. We can calculate the value of Nj by

|Nj |2 = 〈j, j − 1|NjNj |j, j − 1〉 = 〈j, j|T+T−|j, j〉
= 〈j, j|[T+, T−]|j, j〉
= 〈j, j|T 3|j, j〉 = j (141)

We have assumed here the states are normalised. Then Nj =
√
j. More generally7 we can write

Nm =
1√
2

√
(j +m)(j −m+ 1) (142)

We can now calculate the minimum spin state for a given maximum spin j. We see from (140) and
from the definition of a lowering operator as annihilating the minimum spin state that the minimum
is at Nm = 0. From (142) we see that Nm = 0 at either m = −j or m = j + 1. Since m ≤ j, we
know m = −j is the minimum.

Equation (142) shows that the possible values of spin in a given representation are between j and
−j, and combining this with (139) shows that the different spin states are {−j,−j+ 1, . . . , j−1, j}.
This results in a d = 2j + 1 representation of SU(2), represented by d × d matrices. The basis
vectors |j,m〉 are therefore column vectors of order d, which can be written as:

|j, j〉 =


1
0
0
...
0

 , |j, j − 1〉 =


0
1
0
...
0

 , |j, j − 2〉 =


0
0
1
...
0

 , . . . |j,−j〉 =


0
0
0
...
1

 (143)

The structures for j = 1/2 and j = 1 are described in detail above.

7This can be calculated using the same technique as in (141) for each value of m = j − k and calculating the series.
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D.4 The Special Unitary Group SU(3) and Colour

We shall now construct the generators of SU(3) using a similar logic to the one we used to construct
SU(2). Using this method, we can construct the generators of SU(n) for any n, however since the
standard model gauge group only involves SU(2) and SU(3), we shall limit ourselves to these cases.

The fundamental representation of SU(2) was the set of 2 × 2 special unitary matrices. Hence
the fundamental representation of SU(3) is the set of 3 × 3 special unitary matrices; that is the
group of matrices U with detU = 1 and UU† = I. There are eight generators of SU(3), since a
general hermitian matrix H has 9 degrees of freedom, which is reduced to eight when we impose
the constraint trH = 0, as the component u33 = −(u11 + u22).

To construct our first three generators, we take advantage of the knowledge that SU(3) ⊃ SU(2)×
U(1). We know that the generators of SU(2) are included in the generators of SU(3), so the first
three generators of SU(3) take the form  SU(2)


We write the first three generators of SU(3)

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0

 . (144)

We can also extend the symmetric matrices λ1,2 to four more symmetric matrices by0 a 0
b 0 0
0 0 0

→
0 0 a

0 0 0
b 0 0

 and

0 0 0
0 0 a
0 b 0


Our remaining symmetric generators of SU(3) are

λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0

 (145)

In total we required eight generators of SU(3), so finally we must add another traceless generator.
This is

λ8 =

1 0 0
0 1 0
0 0 −2

 (146)

λj (j = 1 . . . 8) are the Gell-Man matrices, and are the generators of SU(3). For normalisation we
may once again write a factor of 1/2 before the matrices λ1...7 and a factor 1/2

√
3 before the matrix

λ8. The most general form of SU(3) is

U = e~α·
~λ, αi ∈ R. (147)
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The algebra of SU(3) is

[λi, λj ] = i
∑
k

fijkλk (148a)

{λi, λj} =
1

3
δij +

∑
k

dijkλk (148b)

where fijk and dijk are structure constants that can be computed through use of the commutators
and anticommutators respectively. Note here we have used the renormalisation process described
above.

D.4.1 Colour

The primary role of the SU(3)C group of the standard model is to give quarks colour charge. Note
that any state that is not a singlet of SU(3)C in Appendix A corresponds to a quark. Quarks come
in one of three colours, and a hadron is formed by three quarks of different colour.

The fundamental representation of SU(3) is given in (144-146). These are 3 × 3 matrices, so the
basis vectors shall be column vectors consisting of three elements. Each basis vector corresponds to
a different quark colour charge, so each quark state is an SU(3) triplet. No other standard model
particles have a colour charge, so all other particles are SU(3) singlets.
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