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Abstract

The recent formulation of quantum mechanics from an equivalence principle chal-
lenges the standard interpretation of the quantum world. The reasoning behind this
new formulation is investigated here, including its derivation of the Schrödinger equa-
tion. The example of the symmetric linear potential is taken, in order to verify that
the energy levels derived from the new formalism are the same as those from the
old, and to show the contrast between the classically predicted trajectories and the
quantum trajectories derived using the Schrödinger equation. A general result for
the energy levels of any possible potential is also shown.
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1 Introduction

Quantum mechanics is an unsatisfactory theory.
Not, that is, from the point of view of a practical physicist, working with the

predictions of the theory from day to day. Applied with some good sense on scales
from the subatomic to the cosmological, the theory makes statistical predictions
accurate to a high degree, and is the basis for such wide ranging subjects as chemistry
and condensed matter physics. A good record on anyone’s terms.

But not when one looks deeper.
A theoretician, happy with the accurate predictions, may be unsatisfied with the

domain of applicability, in particular its inherent incompatibility with another great
theory of the twentieth century, general relativity. No adequate theory of quantum
gravity has yet been established, and this can only be seen as a defect in the theory.

A mathematician, happy with the elegant form of Hilbert space, may be unsat-
isfied by the imprecise and seemingly arbitrary notions of measurement and wave-
function collapse. The jump of quantum measurement is not defined in the linear
equations of the theory, but in an additional postulate, which has to rely on some
good judgement in its application.

A philosopher, interested by the notions of uncertainty and determinism, may be
unsatisfied that there is no agreement on the real meaning of theory. The quantum
world is too murky.

These objections apply to both the relativistic theory and the non-relativistic
theory. The relativistic theory increases the scope to include fields, but does not
resolve these issues, and additionally introduces some problems of its own. Despite
its long history, no real consensus has been reached on the answers to the problems
in the non-relativistic theory, which will be the basis for this investigation.

There are two possible schemes to combat these problems with quantum theory.
The first is of a ‘wait and see’ variety, to not worry about the interpretational dif-
ficulties now, but to hope that they will be solved or the solution to them clarified
by the natural development of the theory. Schrodinger based his equation on plau-
sibility arguments, rather than worrying about the foundations of the theory, and in
this way the interpretational issues facing physics were changed completely. Dirac
was a believer in this method of progress, ‘expect[ing] developments in the theory
which would make [the] problems look quite different. It would be a waste of time to
worry overmuch about them now, especially since we get along very well in practice
without solving them.’[1]

The second scheme looks differently at the development of new theory, saying that
by examining the foundations of the present and either reforming or reinterpreting
them, the development of the theory may be facilitated. Only by truly understanding
quantum theory, that which Feynman denied anyone did by saying ‘I think I can safely
say that nobody today understands quantum physics’, may its successors be found.

A notable example of this second scheme is the de Broglie-Bohm theory. Orig-
inated in 1927 and then developed by Bohm in the 1950s, this theory does what
most students of quantum mechanics think impossible - introduce a theory of defi-
nite trajectories, in a perfectly valid manner, of which standard quantum mechanics
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is but the statistical result. The oddities of QM wave-particle duality is replaced by a
definite particle under the influence (ie obeying deterministic equations at all times)
of a guiding pilot-wave. The theory faces issues of its own, not least its ‘cheap[ness]’
according to Einstein and a myriad of other opponents. The pilot-wave theory was
intended by de Broglie and Bohm as a starting point, a proof that trajectories and
(non-local) hidden variables could be introduced into the theory without compromis-
ing its huge range of accurate predictions.

A recent development of the second scheme is Faraggi-Matone theory, based upon
an ‘equivalence principle’. Whilst having similarities in parts to de Broglie-Bohm
theory, it cannot be viewed as an extension of it, but rather a re-examination once
again of the foundations of general quantum theory.

The Schrödinger equation is usually seen as a postulate in itself, validated by its
predictions rather than its derivation. But the Faraggi-Matone EP theory starts by
deriving the time independent Schrodinger equation from the equivalence postulate
[2]:

For each pair W a and W b, there is a coordinate transformation such that
W a(q) → W̃ a(q̃) = W b(q̃).

This EP may initially look cryptic, but leads in a definite manner to the Schrodinger
equation when non-relativistic approximations are taken. The derivation of the SE
also sheds light on the significance of the terms contained therein: no use of the
link between the wave function and probability is made, indeed the solutions are
linked by a special transformation of co-ordinates to a system with vanishing energy.
This transformation must exist according to the EP, giving constraints on the energy
levels allowed (ie the SE with some special continuity conditions on the solutions),
thus giving energy quantisation.

The important point, to be stressed again, is that none of the usual postulates of
QM have been used, only the EP, and yet key predictions of standard QM have been
made.

Yet the formulation is more ambitious: the derivation of the SE fits neatly in with
classical Hamilton-Jacobi theory. The solutions to the SE and the transformations of
co-ordinates are related to the action - not the classical action, but a quantum action
involved in a quantum Hamilton-Jacobi equation which involves a quantum potential
in addition to the normal potential. It is this classically unexpected quantum po-
tential which leads to all quantum phenomena, but in contrast to de Broglie-Bohm,
cannot be viewed as a guiding pilot-wave. In this way, using HJ theory, definite tra-
jectories are introduced into quantum theory, meaning that a particle has a definite
position in space at all times.

The theory goes further, with a natural extension to a relativistic formulation,
and it also suggests possible links with fundamental interactions, including the origin
of gravity. These are grand ambitions for any theory, so the first aim of this paper is
to present an introduction to the theory, to present the careful reasoning behind it.
The problems of QM are often neglected, assume to have been solved elsewhere at a
prior time, relegating such notions of trajectories to past times.

However, this is not the case as has been seen with the de Broglie-Bohm theory,
as well as this approach. The EP theory establishes some new foundations for QM,
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and can still produce many of the essential predictions of standard QM. To verify
this agreement in predictions, a calculation is made using a non-standard potential
- a symmetric linear potential. The classical calculation, made in Appendix B using
classical HJ theory to demonstrate its applications, produces a parabolic trajectory,
as can be easily pictured by considering constant forces and accelerations. The
standard quantum calculation, not found in standard texts but shown in section 2,
shows the use of Airy functions and the imposition of boundary conditions producing
quantisation of energy levels, with the ground state not at zero energy. The quantum
calculation using EP theory, in section 4, uses a vastly different method, including
the utilisation of non-square integrable solution to the SE which are discarded in
the standard calculation. However, the imposition of boundary conditions on the
relevant quantities results once again in energy quantisation - to the same energy
levels as before.

It is then shown in section 4 that the boundary conditions in the EP formulation
on the function w = ψD

ψ , where ψD and ψ are linearly independent solutions to the
SE, are actually equivalent to the imposition of square-integrability in the standard
theory. So it has been verified that the new theory will predict the same energy levels
as the standard theory for all potentials, for example the oft utilised simple harmonic
oscillator.

The rest of the paper provides a background to this calculation. In order to
properly understand the importance of the new interpretation, mainstream QM is
examined in section 2. Then the SE, and conditions on solutions to it, are derived
directly from the EP in sections 3 and 4. Further interesting applications are ex-
amined in section 5. The two appendices give further background - the first with
some mathematics, specifically Wronskians and Schwarzian derivatives, and the sec-
ond with Classical HJ theory. This gives insight into the theoretical foundations of
classical theory, indicating the connections with the new use of HJ theory in QM.
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2 Standard Quantum Mechanics

‘There is no human knowledge which cannot lose its scientific character
when men forget the conditions under which it originated, the question
which it answered and the functions it was created to serve. A great part
of the mysticism and superstition of educated men consists of knowledge
which has broken loose from its historical moorings. (Benjamin Farrington
[3])’

Quantum Mechanics (QM) is one of the most successful scientific theories in his-
tory, illuminating some of the darkest recesses of physics. It is difficult to overestimate
its impact on modern science and the modern world. But despite its long history,
QM still faces problems of interpretation and implementation, with many scientists
practising this mysticism in interpreting it, while other valid scientific arguments are
rejected for allegedly being mystical. QM is unsatisfactory in that it is still a con-
troversial subject. There are many good references on the foundations of QM, from
the mathematical [4] to the philosophical [5], so the aim here is to develop a little
understanding in order to emphasise the contrast with the new EP formulation, and
as such the discussion will be limited to the non-relativistic theory without fields.

2.1 The postulates and probability

‘Physicists display an extraordinary confidence in the status of quantum
mechanics coupled with a general reluctance to discuss its implications
... one finds there is not one Copenhagen interpretation [but in its place]
a kind of umbrella under which a host of different, often contradictory
positions coreside.[6]’

An introductory course to QM often utilises a set of postulates as the basis of the
theory (similar to [7]):

1) The quantum state of a point particle in one dimension is represented
by a complex-valued wave function ψ(x) that can be normalised to one ie∫∞
−∞ |ψ(x)|2dx = 1.

2) Any physical quantity A that can be measured is represented by a linear
differential operator Â that acts on the wave functions and is self-adjoint.
3) The only possible result of measuring an observable is one of the eigen-
values of the operator that represents it.
4) Assuming no degeneracy and discrete eigenvalues, if the quantum state
is ψ(x), the probability that a measurement of A will yield a particular
eigenvalue an is |αn|2, where αn are the coefficients in the expansion

ψ(x) =
∞∑
n=1

αnun(x)

of the wave function as a linear combination of the normalised eigenfunc-
tions of Â(x).
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5) The state function evolves in time according to the time-dependent
Schrodinger equation, where the Hamiltonian operator is obtained from
the classical energy expression by replacing the momentum and position
by their corresponding operators.

These postulates can be extended from a wave function representation to a more
abstract vector space and to encompass more dimensions and particles, but the basic
wave function is illustrative here. Schrödinger initially interpreted the wave function
as representing the density of matter in some way, and it was only with Born that
the idea of a probability wave, giving the likelihood of finding a particle at a position,
came into use [8]. So the wave function is inherently tied to the notion of probability
and hence when its norm squared is integrated over all space or all possibilities, the
result must be unity. In calculations, this connection with probability is used to
discard divergent solutions, which would otherwise make it impossible to normalize
the wave function, thus resulting in the usual two independent solutions to a second
order ordinary differential equation being reduced to just the one (see section 7.1).
For example, in the standard series solution of the simple harmonic oscillator, the
series has to terminate to stop the full solution diverging as x increases, thus pro-
ducing the Hermite polynomials and equi-spaced energy levels. This reduction to a
single solution is not a result of the SE itself, but of the interpretation placed upon
it.

A pragmatic use of the postulates results in a very successful theory, pragmatic
being when there is a clear line between the microscopic quantum world and the
macroscopic experimental apparatus (a rather difficult line to draw for a cosmolo-
gist). A large array of key phenomena are accounted for in this manner, including
the quantisation of energy levels and quantum tunnelling into classically forbidden
regions, as long as the probabilities in the predictions are taken to refer to the relative
frequencies of measurements taken a sufficiently large number of times. The theory
is so successful that any new theory must agree with the predictions of the old to a
very high degree of precision, almost to the extent of it being inconceivable that the
new would be any different from the old. For example, the addition of a non-linear
term to the SE would have to be within such small upper limits, it would run into
problems of its own.

2.2 The symmetric linear potential

As an example of the use of quantum mechanics, the symmetric linear potential will
be taken. This is an unusual potential, not usually found in the literature but which
is illustrative of the steps taken in following through a calculation. The discarding of
solutions which are not normalizable, due to the incompatibility with the probability
interpretation of the wave function, is especially clear.

The Schrödinger equation for the potential as shown in Figure 1 is:

− h̄2

2m
d2ψ

dx2
+ α|x|ψ = Eψ (2.1)
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Figure 1: The symmetric linear potential

Figure 2: The Airy functions Ai(x) and Bi(x)

For x > 0, the substitution y = β(αx− E) where β3 = 2m
h̄2α2 , produces

d2ψ

dy2
− yψ = 0 (2.2)

This equation can be solved by a series solution:

ψ =
∞∑
n=0

any
n

producing the recursion relation

an+3

an
=

1
(n+ 2)(n+ 3)

The general solution of equation (2.2) is ψ = Af(y) +Bg(y), where f(y) = 1 + y3

6 +
y6

180 + · · · and g(y) = y + y4

12 + y7

504 + · · ·. These series converge for all y.
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The equation 2.2 can also be recognised as the Airy equation, with two linearly
independent solutions given by Ai(y) and Bi(y)[9], as shown in Figure 2. The general
solution in terms of these solutions is

ψx>0 = A1Ai [β(αx− E)] +B1Bi [β(αx− E)]

For x < 0, the equation is

− h̄2

2m
d2ψ

dx2
− αxψ = Eψ

The substitution y = β(−αx−E) leads to the same Airy equation, giving the general
solution for x < 0 as

ψx<0 = A2Ai [β(−αx− E)] +B2Bi [β(−αx− E)]

The boundary conditions of the problem must now be imposed:

1) At x = 0, V (x) is continuous and so ψ and ψ′ at least must also be
continuous.

2) The solution must satisfy
∫+∞
−∞ |ψ|2dx = 1, ie any divergent solutions

for x→ ±∞ must be discarded.

The Bi functions are divergent as x → ∞, so condition 2) results in B1 = B2 = 0.
Condition 1) implies the two equations:

A1Ai(−βE) = A2Ai(−βE) (2.3)
A1Ai

′(−βE) = −A2Ai
′(−βE) (2.4)

with the prime denoting differentiation with respect to x. Therefore,

If A1 6= −A2 ⇒ Ai′(−βE) = 0

If A1 = −A2 ⇒ Ai(−βE) = 0

For the first case, as the zeros of Ai and Ai′ do not coincide, A1 = A2. If Ai(z) = 0
for z = −γi and Ai′(z) = 0 for z = −δi, then:

E =
γi
β

or E =
δi
β

The first few wave functions are plotted in figure 3. As the first zero of either Ai(z)
or Ai′(z) is below zero, the ground state energy is greater than zero. Successive
solutions in increasing energy can be seen to be alternative even and odd, with all
solutions of definite parity as the potential is symmetric.
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Figure 3: Wave functions for the lowest energy states for the symmetric linear potential

2.3 Further analysis

Application of the pragmatic theory has yielded a quantized energy spectrum for
the symmetric linear potential, as it does for other potentials like the potential well
and simple harmonic oscillator. But further analysis of the theory is necessary, as
the postulates stated above are not necessarily the only ones which would make an
accurate prediction for the energy levels of the symmetric linear potential (indeed, the
EP calculation made later is direct evidence of that). Furthermore, this interpretation
gives very little clue to the meaning, sense or world view of the theory.

The analysis depends on the judgement of whether or not the wave function is
complete - whether it and its statistical predictions are the most complete description
of the system possible. Einstein answered this question in the negative, seeing the
statistical nature of QM as a result of the incompleteness of the wave function, whilst
at the same time accepting the statistical predictions as valid.

‘I am, in fact, firmly convinced that the essentially statistical character of
contemporary quantum theory is solely to be ascribed to the fact that this
(theory) operates with an incomplete description of physical systems.’[5]

If the wave function is judged as incomplete, one or more hidden variables may fill
the gap to provide a complete description.

The Copenhagen interpretation is an example of the much more common com-
pleteness school. There are a large number of variations on the Copenhagen view, but
a central issue in all is that the whole entity must be considered, the apparatus and
the observed quantum system. There is little sense in referring to the quantum sys-
tem on its own without specifying the equipment being used to make measurements
on it, thus making the simultaneous reference to complementary attributes such as
position and momentum meaningless as both cannot be simultaneously measured.
The need for classical language to describe the world is reflected in the apparatus
being regarded as in a classical realm, so that unequivocal statements can be made
about readings and results, although this does leave a hazy distinction as to where
the apparatus / system divide actually lies.

An example of an alternative interpretation, this time of the incompleteness
school, is the de Broglie-Bohm approach. The statistical predictions of QM are
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left unchanged, but the assertion that this disallows definite trajectories is rejected.
Indeed, Bohm used this approach as a counter example to prove that the many theo-
rems that hidden variables were disallowed by QM were flawed. A good introduction
to the formalism used can be found by Holland [10], and Bell also argues the case
[5]. The only hidden variable introduced is the position, so different initial positions
give different final positions. All measurements really come down to measurements of
position, for example in the Stern-Gerlach experiment the spin of a particle is ‘mea-
sured’ by its deflection in a magnetic field. The central idea is that of the pilot-wave:
the particle follows a definite path in space, being guided by a quantum potential /
pilot-wave. It is the nature of this quantum potential which gives rise to the unusual
quantum behaviour, as the classical prejudice that a particle in field-free space must
move in a straight line must be left behind. But even though a particle may have a
definite position and momentum, these cannot be measured directly as the imposi-
tion of apparatus changes the quantum potential. This results in one of the theory’s
greatest weaknesses, its inability to be experimentally verified as the stand out fea-
ture of trajectories cannot be measured. Many a physicist reject its ideas by the oft
referenced Occam’s razor: ‘Entia non sunt multiplicanda praeter necessitatem’[8].

Many a comparison is made between the multitude of interpretations of QM and
the very fixed interpretation of relativity. The theories of relativity are loosely based
on single principles, the principle of relativity or Einstein’s equivalence principle.
Compared to these, the axioms of QM seem like an ad hoc collection of rules to make
a theory work, even though extremely well at that. This in itself is evidence that
QM is still a work in progress, and if QM could be based or derived from a single
principle then the problems of interpretation and implementation would all fall into
place. The Faraggi-Matone theory of QM from an equivalence principle does this and
the derivation of the Schrodinger equation sheds a different light on the problems of
interpretation.
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3 The Equivalence Postulate

3.1 From CM, through GR, to an EP

The HJ equation in classical mechanics (CM) is derived by considering a change
of variables, a canonical transformation of coordinates and momenta, to a system
with a vanishing Hamiltonian (see section 8). This vanishing Hamiltonian implies
constant coordinates and momenta in this new frame, but other physical comments
are difficult to relate to due to the mixing of coordinates and momenta inherent in
the transformation of form:

Q = Q(q, p, t) and P = P (q, p, t)

In [11], it is suggested to look at the transformation in a different manner, to ask if a
similar transformation exists if p (and t) are treated as dependent variables on q. It
should first be noted that the action S is itself not the transformation of variables,
only the ‘generator’ of it. The explicit form of the transformation

Q = Q(q)

cannot be found, even if the solution to the equations of motion have been found, as
the question itself is nonsensical in this framework: the Q is a point / constant, so
the mapping to a continuous q cannot be produced.

So when p is treated as a dependent variable, p = ∂S0
∂q , the transformation to the

free frame cannot be found. In [11], this is noted to be the result of the privilidged
nature of the rest frame in CM, as a coordinate transformation can link all frames
except the rest frame. But what if we search for a formulation which does not
exhibit this privilidged rest frame? From this question arises the formulation of an
equivalence principle, similar to that Einstein used as the basis for general relativity,
a new EP that insists that transformations between all frames of differing W (q) =
V (q)− E must exist.

Einstein’s first statement of his Equivalence Principle (EP) was in his 1911 paper

‘We arrive at a very satisfactory interpretation of this law of experience,
if we assume that the systems K and K’ are physically equivalent, that
is, if we assume that we may as well regard the system K as being in
a space free from gravitational fields, if we then regard K as uniformly
accelerated.’[12]

This, taken in a stronger form, means that ‘in any and every local Lorentz frame,
anywhere and anytime in the universe, all the laws of physics must take on their
familiar . . . forms’[12]. Whilst General Relativity (GR) may not be deduced directly
from this statement, it does seem to be the only metric theory that embodies this
EP completely. From this follows the geometric interpretation of gravity and the
curved spacetime phenomenon. Nearly a century later, the EP is either worshiped as
a great foundation of physics or eschewed as merely a statement that proved useful
in the original formulation of GR. However, a re-examination of the EP, formulated
in a different fashion but still following the original sentiment, can prove fruitful.
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If two separate and distinct physical systems are governed by the same physical
laws, then a potential function should be able to be transformed from one to the
other by a simple coordinate transformation. This suggests the following strong
formulation of an equivalence principle:

For each pair W a and W b, there is a coordinate transformation such that
W a(q) → W̃ a(q̃) = W b(q̃)[2].

where W (q) = V (q)− E, V (q) being the potential function and E the energy.
An immediate result of this principle is that a coordinate transformation can be

found connecting any system with one of vanishing energy, the W (q) = 0 system.
This, as discussed before, will be explicitly shown to be incompatible with the classical
stationary Hamilton-Jacobi equation (CSHJE). But first a note should be made of the
contrast between this EP and that of Einstein. In GR, a coordinate transformation
can balance a gravitational field at a point, making the geometry locally flat ie at
a point and the infinitesimal area around it. But this new EP applies globally, not
just applying to curvature at a point, but to all potentials in all space.[13] In GR,
this is impossible as the space metric is independent of the coordinate system used.
But the new formulation has a different approach.

3.2 Applying the EP

The EP relies only on the existence of a potential function, a value for the energy of
the system, and a coordinate transformation between systems. There are two aspects
to the derivation of the Quantum Stationary Hamilton-Jacobi equation (QSHJE): the
first is the connection with classical theory, and modifications of equations contained
therein; the other is the properties of W (q) itself, which must hold for the EP to
be satisfied. These two aspects, though not entirely independent, lead to two inter-
dependent routes to the QSHJE.

3.2.1 Modifying the CSHJE

Classical mechanics has a large sphere of applicability, so it seems natural to start
from classical equations of motion and add extra terms to account for quantum
behaviour. The most notable example of this is in de Broglie-Bohm theory when the
quantum motion can be expressed in terms of Newton’s 2nd law with an extra term
or in an HJ framework also with an extra term [10].

Use of the reduced action S0 is made in classical mechanics, where S0 satisfies
the CSHJE (see section 8):

1
2m

(
dS0

dq

)2

+W (q) = 0

where W (q) = V (q)− E.
The transformations considered here will be ‘v-transformations’, which are locally

invertible coordinate transformations defined by:

q → q̃ = v(q) AND S̃0(q̃) = S0(q(q̃))
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It is this last statement about the transformation of S0(q) that fixes the transfor-
mational properties of W (q) and leads directly to the derivation of the Quantum
Stationary Hamilton Jacobi Equation and the Schrodinger Equation.

But first is the question of whether the CSHJE is compatible with the EP. The
CSHJE must hold for all choices of generalised coordinates q. Therefore, under a

coordinate transformation, W (q) must transform in the same manner as
(
dS0
dq

)2
, ie

homogeneously as a quadratic differential.

⇒ W̃ (q̃) = f(q̃)W (q)

where f(q̃) =
(
dq
dq̃

)2

However, no homogeneous transformation can connect W̃ = 0 to W 6= 0. There-
fore, the EP is incompatible with the CSHJE as it stands.

A solution to this conundrum is to add an extra term to the CSHJE:

1
2m

(
dS0

dq

)2

+W (q) +Q(q) = 0 (3.1)

where Q(q) is a ‘quantum potential’. There are conditions on this equation - it
must reduce to the classical equation in a suitable limit, it must be consistent under
v-transformations, and it must satisfy the EP. The identity 7.11 in section 7.2.3:(

dS0

dq

)2

=
β2

2

(
{e

2i
β
S0 , q} − {S0, q}

)
where {S0, q} is the Schwarzian Derivative of S0 with respect to q and β is a dimen-
sional constant), produces

W (q) +Q(q) =
β2

4m

[(
−{e

2i
β
S0 , q}+ {S0, q}

)]
A natural solution to this would be to identifyW (q) with the expression− β2

4m{e
2i
β
S0 , q}

and Q(q) with β2

4m{S0, q}. This satisfies all the properties necessary, and can be shown
to be unique [11]. This gives the QSHJE

W (q) = − β2

4m
{e

2iS0
β , q} (3.2)

or equivalently:
1

2m

(
dS0

dq

)2

+ V (q)− E +
β2

4m
{S0, q} = 0 (3.3)

3.2.2 Properties of the potential

By analysing the transformation properties of W (q), the expression for W(q) can be
derived without any reference to the Hamilton-Jacobi framework. The physics of the
EP may be obscured by deriving the expression with reference to the reduced action.
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The EP implies that a transformation of coordinates can be made to a free system
with vanishing energy ie to W (q) = 0. As shown above, this cannot be done by only
homogeneous terms in the transformation.

q → q̃(q) and W → W̃ (q̃)

ie Equivalence Principle ⇒ W̃ (q̃) = f(q̃)W (q) + (q; q̃)

where (q; q̃) is the inhomogeneous term. An example would be for q = q0, the
coordinate system corresponding to the system with vanishing energy, W (q0) = 0.
This gives

W̃ (q̃) = 0 + (q0; q̃)

⇒W (q) = (q0; q)

Therefore, the EP implies that the allowed expression for W (q) is exactly the inho-
mogeneous term in the transformation.

The homogeneous transformation properties of W (q) are given by the function
f(q̃). In the previous section, W (q) was found to transform as a quadratic differential
due to the invariance of S0. But the expressions in the HJ equation are argued from

their own principles:
(
dS0
dq

)2
appears because the expression for T , the kinetic energy,

in classical mechanics is p2

2m or T = T (v2). In Landau and Lifshitz[14], an argument
is made for the classical Lagrangian L to be L = L(v2) for an inertial frame with
homogeneous and isotropic space and time. With the same classical considerations
of homogeneity and isotropy, the transformation for W (q) (the homoegeneous part)
must be as a quadratic differential:

f(q̃) =
(
dq

dq̃

)2

So the transformational properties of W (q) and S0(q) result from the same physical
arguments. This is a very non-relativistic reasoning, so perhaps a relativistic deriva-
tion would depart here, with a different transformation for W (q), and then another
consideration for non-inertial, non-homoegeneous and non-isotropic space.

But for the present, this gives an expression for the transformation of W (q):

W b(qb) =
(
dqa

dqb

)2

W a(qa) + (qa; qb) (3.4)

A similar expression can be made for W a(qa) in terms of W b(qb):

W a(qa) =

(
dqb

dqa

)2

W b(qb) + (qb; qa) (3.5)

Substituting 3.4 in 3.5, and that
(
dqa

dqb

)2 ( dqb

dqa

)2
= 1, gives

(qb; qa) = −
(
dqb

dqa

)2

(qa; qb)
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This can be seen to be identical to the property of the Schwarzian derivative (from
equation 7.9):

{y, x} = −
(
dy

dx

)2

{x, y}

Using

W b(qb) =
(
dqc

dqb

)2

W c(qc) + (qc; qb)

in 3.5, and substituting 3.4 in the resulting expression, gives the cocycle condition:

(qa; qc) =

(
dqb

dqc

)2 [
(qa; qb)− (qc; qb)

]
(3.6)

This is identical to the chain rule property of the Schwarzian derivative (from equation
7.10):

{x, z} =
(
dy

dz

)2

[{x, y} − {z, y}]

It can also be shown that (q̃; q) is invariant under a Mobius transformation of q̃:
The inhomogeneous term of the transformation shares many properties of the

Schwarzian derivative, the most important of which is its invariance under Möbius
transformations. It can be shown [13] that the cocycle condition in equation 3.6
uniquely determines the Schwarzian derivative, up to a multiplicative factor, a global
constant and a coboundary term. Therefore, as before in equation 3.2

W (q) = − β2

4m
{q0, q} (3.7)

where q0 is the trivialising coordinate corresponding to the system with W=0.

3.3 Deriving the Schrödinger Equation

Deriving the Schrödinger Equation from equation 3.7 is a simple matter of using the
properties of the Schwarzian derivative. As shown in section 7.2.4, the SD is inti-
mately connected to 2nd order differential equations and ratios of their independent
solutions. These properties imply the equation

y′′ − 2m
β2

W (q)y = 0 (3.8)

⇒ − h̄2

2m
y′′ + V (q)y = Ey (3.9)

where q0(q) = y1(q)
y2(q) , y1(q) and y2(q) being two linearly independent solutions of

equation 3.8 and β has been identified as h̄. As the Schwarzian derivative is invariant
up to a Möbius transformation, the general form of q0 (ie y(q)) is

q0(q) =
Ay1(q) +By2(q)
Cy1(q) +Dy2(q)
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From the identification w = ψD

ψ , a solution to the SE can be expressed as

y(q) =
1√
S′0

(
Ae−

i
h̄
S0 +Be

i
h̄
S0

)

This is in contrast to the de Broglie / Bohm approach, where the wave function was
identified as [10]:

y(q) = Re
i
h̄
S0

This has important implications, as when ψ is proportional to a real function (as for
bound states), the result is not that S0=const, which would violate the EP.

3.4 Relativistic extension

In [11], the basic relativistic version of the Schrödinger equation, the Klein-Gordon
equation, is derived by changing from the non-relativistic expressionW (q) = V (q)−E
to the relativistic version:

Wrel(q) =
1

2mc2
[
m2c4 − (V − E)2

]
However, it should also be possible to derive the relativistic equation via the original
method. If one insists that (W (q))2 transforms as a quadratic differential with an
inhomogeneous term, then the same derivation will result in:

{q0, q} = α
(
(V − E)2 + γ

)
(3.10)

Considering the transformational properties of W (q) = V (q) − E may tell us more
than just changing the expression for W (q). Equation 3.10 is related, in a similar
manner to before, to the second order differential equation:

d2y

dq2
+
α

2

(
(V − E)2 + γ

)
y = 0

which is compatible with the Klein-Gordon equation:

−c2h̄2d
2φ

dq2
+ (m2c4 − E2 + 2EV − V 2)φ = 0

Further relativistic considerations are made in [13], where higher dimensional
Euclidean and Minkowskian spaces are shown to have a cocyle condition, with the
relativistic quantum Hamilton-Jacobi equation applying in these more general situ-
ations.
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4 Conditions on solutions to the SE and appli-

cations of the formalism

The derivation of the Schrödinger equation (SE) from a first principle is an achieve-
ment in itself, but it is certainly not the end of the story. As shown in section 2,
the key results of Quantum Mechanics (QM) do not blindly follow from the SE, and
other postulates are needed to impose conditions on the solutions. These postulates
are usually founded on a pragmatic probabilistic interpretation—thus discarding any
troubling infinities or divergent solutions.

Thus far, however, no use of the probabilistic interpretation has been used, as this
formulation is supplanting the previous mathematically precise but physically hazy
axioms. The Equivalence Principle on its own can be shown to imply all conditions
necessary to derive a quantised energy spectrum, and other quantum phenomena.

4.1 Continuity conditions

The EP implies the existence of the Quantum Stationary Hamilton Jacobi Equation
3.2 and the Schrödinger equation 3.9. Further, the EP implies that the only permissi-
ble w’s are those that allow the derived equations to exist, where w(q) = q0(q) = ψD

ψ

with ψ and ψD being independent solutions to the SE. The main conditions come
from the existence of the Schwarzian Derivative in:

{w, q} =
−4m
h̄2 W (q)

The definition of the SD is

{w, z} =
(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

which is undefined if w′ = 0, so w 6= const. The obvious conditions on w are [11]:

w 6=const, w ∈ C2(R), and ∂2
qw differentiable on R

But there is a further condition on the continuity of the function w. As explained
further in [11], the SD exhibits symmetry under inversion, so the QSHJE can also be
derived in the form:

{w, q−1} = −4m
h̄2 q

4W (q)

So the continuity of the function w at 0 then maps to continuity at ±∞. This means
that the function must be continuous on the extended real line, including the points
at ∞. This translates as the condition:

w(−∞) = w(+∞) for w(−∞) 6= ±∞ (4.1)
OR = −w(+∞) for w(−∞) = ±∞ (4.2)
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4.2 Example of implementing the continuity conditions

The continuity conditions in equation 4.1 and 4.2 seem very different from the con-
ditions imposed by the probability interpretation. It would seem unlikely that pre-
dictions of energy levels made by the new formalism would coincide with those of
the old, so an explicit calculation is necessary to see whether the predictions are
compatible.

4.2.1 The linear potential

The linear potential was solved using the standard quantum mechanical formalism in
section 2.2 The square integrability was used at an early stage to discard any solutions
involving Bi(y), which considerably simplified the problem. When using the new
formalism, however, this simplification is not allowed - the continuity conditions at
infinity have to be applied instead.

The beginning of the calculation is similar to that in section 2.2. Using a suitable
substitution , the Schrödinger equation

− h̄2

2m
d2ψ

dx2
+ α|x|ψ = Eψ

is reduced to the Airy equation, d2ψ
dy2

− yψ = 0, giving rise to a general solution in
terms of Airy functions:

ψx>0 = A1Ai [β(αx− E)] +B1Bi [β(αx− E)]

ψx<0 = A2Ai [β(−αx− E)] +B2Bi [β(−αx− E)]

Due to the invariance of the Schwarzian derivative with respect to Möbius trans-
formations, any linear combination of solutions can be taken. As the potential is
symmetric, a simplifying route is to take one solution as an even function of x, and
the dual solution to be odd, guaranteeing that ψ and ψD are linearly independent.

ψx>0 = AAi [β(αx− E)] +BBi [β(αx− E)]

ψx<0 = AAi [β(−αx− E)] +BBi [β(−αx− E)]

ψDx>0 = CAi [β(αx− E)] +DBi [β(αx− E)]

ψDx<0 = − (CAi [β(−αx− E)] +DBi [β(−αx− E)])

Continuity conditions at x = 0 for ψ, dψ
dx , ψD and dψD

dx give

AAi(−βE) +BBi(−βE) = AAi(−βE) +BBi(−βE) (4.3)
αβAAi′(−βE) + αβBBi′(−βE) = −αβAAi′(−βE)− αβBBi′(−βE) (4.4)

CAi(−βE) +DBi(−βE) = −CAi(−βE)−DBi(−βE) (4.5)
αβCAi′(−βE) + αβDBi′(−βE) = αβCAi′(−βE) + αβDBi′(−βE) (4.6)

Equations 4.4 and 4.5 imply

AAi′(−βE) +BBi′(−βE) = 0

20



CAi(−βE) +DBi(−βE) = 0

The other condition to impose is of continuity on the extended real line of w = ψD

ψ .

wx>0 =
CAi [β(αx− E)] +DBi [β(αx− E)]
AAi [β(αx− E)] +BBi [β(αx− E)]

wx<0 =
− (CAi [β(αx− E)] +DBi [β(αx− E)])
AAi [β(αx− E)] +BBi [β(αx− E)]

As x increases, Ai(x) approaches zero, and Bi(x) increases. Therefore

limx→∞w =
D

B

limx→−∞w = −D
B

Therefore, for

w(−∞) = w(+∞) for w(−∞) 6= ±∞
OR −w(+∞) for w(−∞) = ±∞

to hold, either D
B = 0 and so D = 0 or D

B = ±∞ giving B = 0.

D = 0 ⇒ Ai(−βE) = 0

B = 0 ⇒ Ai′(−βE) = 0

These are the same conditions as equations 2.3 and 2.4 in section 2. This shows
that in this case the condition of w being continuous on the extended real line gives
the same result as imposing the square integrability of the solution to the Schrödinger
equation.

4.3 Proving the two formalisms give the same result

The symmetric linear potential example has produced the same energy levels for the
new formalism as for the old. It has also been explicitly shown in [11] that this same
correspondence applies in the case of the potential well and the SHO, but it is not
necessary to show this result for each possible potential. A general result can be
proven.

There are two stages to the general proof - to show that if a normalisable solution
exists to the SE, then the EP is satisfied, and then to show that if none exists, then
the EP is not satisfied. In this way, the imposition of the continuity on the extended
real line that follows directly from the EP is shown to be equivalent to imposing the
existence of a normalisable solution.
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4.3.1 Normalisable solutions satisfy the EP

Take an energy value that has a solution to the Schrodinger equation which is nor-
malisable, and call this solution y1 and the other solution y2. The results in section
7.1 tell us some properties of this second solution, given that the first must approach
0 at ±∞, specifically that the solution y2 must diverge at ±∞. A general solution
for this energy value is:

ψ = Ay1 +By2

with the dual solution being
ψD = Cy1 +Dy2

giving

w =
Cy1 +Dy2

Ay1 +By2

As x→ ±∞, the normalisable solution approaches zero and so becomes negligible in
comparison with the diverging solution.

⇒ lim
x→±∞

=
D

B

This obviously satisfies the continuity conditions:

w(−∞) = w(+∞) for w(−∞) 6= ±∞ (4.7)

as long as B 6= 0. If B = 0 then

lim
x→±∞

w =
Dy2

Ay1

Using equation 7.3,
y2

y1
=
∫ x

0

du

y2
1(u)

As y1(u) approaches 0 as u→ ±∞, this integral obviously diverges for x→ ±∞, but
as the denominator is always positive, the x→ +∞ will give a positive answer, and
the x→ −∞ will give a negative answer, thus satisfying the continuity condition

w(−∞) = −w(+∞) for w(−∞) = ±∞ (4.8)

So, if there is a normalisable solution, then it satisfies the EP.

4.3.2 A non-normalisable solution does not satisfy the EP

As shown in section 7.1, if one solution to the Schrodinger equation approaches zero
in a x→ +∞ limit, then the other must diverge. The same applies for the x→ −∞
limit, but the approaching zero solutions for these two limits may not belong to the
same overall solution. If they do, then a normalisable solution is the result, but if
they don’t then one solution will approach 0 at the negative limit but diverge at the
positive, and the other will diverge at the negative and approach zero at the positive
- and no normalisable solution exists.
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Take y1 as diverging at +∞, vanishing at −∞ and y2 vanishing at +∞, diverging
at −∞. The ratio

w =
y2

y1

has limits
limx→ +∞ = 0

limx→ −∞ = ±∞

This cannot be continuous on the extended real line, and so the EP is not satisfied.
This is a wonderful result, meaning that the new formalism will produce the

same results as the old. The Hilbert space structure relies on using the normalisable
solutions to the SE and other eigenvalue equations, but this rederives the applicability
of these solutions.
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5 Further consequences of the EP

The standard result of the quantisation of energy levels hold for the new formulation.
But there is more to add - in the derivation of the QSHJE and the SE, references to
classical HJ theory were made and similarities noted. This connection can be used to
explain some old phenomena as well as introduce some dramatically different ideas
to QM.

5.1 Tunnelling

A key quantum phenomenon is that of tunnelling, when a particle is able to penetrate
a potential barrier which would be classically forbidden. In standard QM, this is
explained by the exponential decay of the wave function outside a potential well for
a particle ‘confined’ to that well. This gives a non-zero probability of finding the
particle outside the well. But this explanation has to be re-examined with the new
formulation.

From the modified HJ equation 3.3, the origin of tunnelling is obvious.

1
2m

(
dS0

dq

)2

+W (q) +
β2

4m
{S0, q} = 0

Classically, Q(q) = 0 so when W (q) > 0 then(
dS0

dq

)2

< 0

giving a complex momentum p = dS0
dq which is not allowed. But if Q(q) < 0, then

even in classically forbidden regions where the potential barrier is greater than the
energy of the particle, it may still be that(

dS0

dq

)2

> 0 (5.1)

and the particle can reach that point. As Q(q) depends on S0, there is no fixed
limiting value to it, so equation 5.1 can hold for any q, resulting in no forbidden
regions.

5.2 Conjugate variables

The previous section utilised the identification in HJ theory that p = ∂S0
∂q , where

p is the conjugate momentum. A basic example is that of a free particle, with the
Schrodinger equation

d2ψ

dx2
= 0

giving
ψ = Ax+B

ψD = Cx+D
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Thus
e

2i
h̄
S0 =

Ax+B

Cx+D

⇒ S0 =
h̄

2i
ln

(
Ax+B

Cx+D

)
This gives an expression for the conjugate momentum as

p =
h̄

2i

[
AD −BC

(Ax+B)(Cx+D)

]
The A, B, C and D come from the invariance of the SD under a Mobius transforma-
tion (see section 7.2.1). As AD −BC 6= 0 from the definition of the transformation,
this expression can be simplified [11] to

p0 = ± h̄l1
(x+ l2)2 + l21

where l1 6= 0 and l2 6= 0. A similar treatment can be given for a general state [11],
which also introduces two independent variables. In a way, these can be considered
the hidden variables of the formulation.

5.3 Time parametization

It is very well having expressions for the reduced action and the conjugate momentum,
but in order to find proper trajectories time has to be introduced. In section 8.3, it
is noted for a special case that

t− t0 =
∂S0

∂E

This is known as Jacobi’s theorem. In classical mechanics this coincides with the
identification p = mdq

dt , but they do not coincide for the quantum version of the HJ
equation. The latter identification does not lead to expected results, such as the free
particle being at rest, but Jacobi’s theorem provides a better choice.

Using this, it is possible to construct definite trajectories depending on a couple
of hidden variables. The example of the symmetric linear potential has

e
2i
h̄
S0 =

CAi[β(αx− E)]
AAi[β(αx− E)] +BBi[β(αx− E)]

for Ai[−βE] = 0

=
CAi[β(αx− E)] +DBi[β(αx− E)]

AAi[β(αx− E)]
for Ai′[−βE] = 0

From this, a complicated expression for t − t0 can be found, but some features can
be seen without the explicit expression. It is obvious that this deviates from the
parabolic paths derived for the classical case in section 8.4. It differs also in a funda-
mental way from the calculation in section 2.2, where trajectories are a priori rejected.
This new EP formulation gives definite trajectories, but classically unexpected ones
due to the effects of the quantum potential.
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6 Conclusion

Quantum mechanics is an unsatisfactory theory.
But that is not to say that quantum theory has not been hugely successful over

the century of its existence. As we look forward to the future of physics, a new theory
needs to take the place of existing quantum mechanics as the framework of the rest
of the subject, circumventing any cognitive repression of radical new ideas.

The new EP theory relies on many ideas, new and old, drawing on mainstream
QM, Einstein’s work on GR and de Broglie-Bohm theory. The derivation of the SE
from the EP in section 3.3 is the first success of the theory, but it is not limited to
that. Indeed, in [13] the derivation of the relativistic quantum HJ equation is shown
to be more natural, with the time-dependent SE emerging only in the non-relativistic
approximation.

The SE is used in the new formulation in a seemingly very different way from
a mainstream probability interpretation, so finding the same energy levels being
predicted is an important result, as shown explicitly here for the symmetric linear
potential. This result has also been shown to be general for all potentials. The EP
theory has further consequences when applied in an HJ framework, including the
introduction of definite trajectories and hidden variables. This adds another strand
to the longstanding debate over hidden variables in QM.

There are a huge number of further consequences left unexplored here, such as the
connection with Legendre transformations, and the possible position for the Planck
length in the theory suggesting an intimate connection with gravity. Indeed, as noted
in [13], just because the formulation works in one dimension, it does not mean that
the extension to higher dimensions will immediately follow. But this extension to
higher dimensions has been made [13].

The EP theory certainly does not have all the answers to the problems of QM.
But it does suggest a new approach to solving these problems, and throws up some
interesting questions of its own. Quantum theory has certainly not heralded the end
of physics, and the dramatically different route taken by the EP theory shows that
we are likely still only at the beginning.
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7 Appendix A - Mathematical background

7.1 Wronskians and linearly independent solutions

A Wronskian is defined as

W (y1, y2) = y1
dy2

dx
− y2

dy1

dx
(7.1)

which can also easily be expressed as the determinant of a matrix. Their most
common property is that if W vanishes over the entire interval from −∞ to +∞
then y1 and y2 are multiples of each other. They can be used to show very general
properties about solutions to some ordinary differential equations.

7.1.1 Obtaining a 2nd solution

A 2nd order homogeneous linear ordinary differential equation is of form:

y′′ + p(z)y′ + q(z)y = 0 (7.2)

Two linearly independent solutions to this equation are y1 and y2. Differentiation of
the Wronskian gives

W ′ = y1y
′′
2 − y2y

′′
1

= −y1
[
p(z)y′2 + q(z)y@2

]
+ y2

[
p(z)y′1 + q(z)y1

]
= −Wp(z)

using the expressions for y′′ from equation 7.2. Integrating this gives an expression
for W in terms of p(z). The Schrodinger equation is of the form of equation 7.2, with
p(z) = 0, giving W as a constant.

Using expression 7.1 for W and rearranging gives

W

y2
1

=
y′2
y1
− y′1y2

y2
1

=
d

dz

(
y2

y1

)
Integrating this with respect to z and using a constant for W as for the Schrodinger
equation gives

y2 = y1

∫ 1
y2
1

dz (7.3)

7.1.2 Limits of solutions to the Schrodinger equation

The Schrodinger equation is of the form

y′′ + [E − U(x)] y = 0 (7.4)

and the situation we are interested in is that E −U(x) < 0 for x > x0 ie the particle
is confined by the potential. The symmetric linear potential is obviously of this type
as it tends to ∞ as x increases. The same reasoning as that applied here can be used
to find similar conclusions about the limit at −∞.
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Two linearly independent solutions are y1 and y2 as before, but here these are of
a particular form: y1(x0) = 1, y′1(x0) = 0, y2(x0) = 0, y′2(x0) = 1. A general solution
can be expressed in terms of these functions:

y = αy1 + βy2

and so y(x0) = α and y′(x0) = β.
Some properties of y1 and y2 can be seen from the equation. As y(x0) > 0 and

E − U(x) < 0 for x > x0, y′′1 > 0 for x > x0 (using equation 7.4), so y1 will tend to
∞ as x increases from x0. A similar argument applies to y2, except that y′′ starts at
0 at x0, but as y′(x0) > 0 at x0, y increases and so y′′ increases.

As both y1 and y2 increase to ∞ as x increases, there is only one possibility
for an expression for a solution to the Schrodinger equation which does not diverge
similarly. Define u(x) = y1

y2
, and take the limit of u(x) as x→∞ as C.

y = y1 − Cy2 (7.5)
= (u(x)− C) y2 (7.6)

If the factor in front of y2 goes to 0 quicker than y2 goes to ∞, then we have found
a solution which does not diverge. A more detailed treatment in [15] shows this to
be the case, but it can be seen from the expression 7.3: the ratio y1

y2
will tend to its

limit faster than y2 itself.
The more detailed treatment in [15] yields the more complete conclusion:

i) there is one solution of equation 7.4 which approaches 0 as x approaches
infinity, at least as rapidly as e−Mx.

ii) all the other solutions to equation 7.4 tend towards infinity as x in-
creases, at least as rapidly as eMx.

7.2 The Schwarzian Derivative

The Schwarzian Derivative (SD) is a simple expression involving first, second and
third derivatives of a function with respect to a specific variable, and enjoys some
interesting properties which result in its use in a wide range of physics and mathe-
matics. The SD of w with respect to z, {w, z} is defined as

{w, z} =
(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

(7.7)

The properties involving real functions find an application in the study of chaotic
systems [16] and the SD also has extensive use in complex analysis [17]. These
properties include invariance under linear fractional transformations, some simple
chain rule-like relations and an interesting connection to particular 2nd order linear
differential equations.
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7.2.1 Invariance under linear fractional transformation

A good example of the appearance of the SD is the consideration of a function that
would be invariant under a linear fractional transformation / Mobius transformation,
that is under a transformation of form

W : w → Aw +B

Cw + d

where w and W are functions of z. Differentiation of the expression for W gives

W ′ =
((Cw +D)A− (Aw +B)C)w′

(Cw +D)2
=

(AD −BC)w′

(Cw +D)2

where the prime denotes differentiation with respect to z. Differentiation of the
logarithm produces

(lnW ′)′ =
W ′′

W ′ =
w′′

w′
− 2Cw′

Cw +D

⇒
(
W ′′

W ′

)′
=
(
w′′

w′

)′
− 2Cw′′

Cw +D
+

2C2w′2

(Cw +D)2(
W ′′

W ′

)2

=
(
w′′

w′

)2

+
4Cw′′

Cw +D
− 4C2w′2

(Cw +D)2

From this, it is obvious that(
W ′′

W ′

)′
− 1

2

(
W ′′

W ′

)2

=
(
w′′

w′

)′
− 1

2

(
w′′

w′

)2

Using the definition of the SD (equation 7.7), this has shown that the SD is invariant
under any linear fractional transformation.

{w, z} = {W, z}

This may often be seen as the defining property of the SD.

7.2.2 Chain rule

When using standard derivatives, be it ordinary or partial, the chain rule is very
useful in simplifying statements when changes of variables are being used. A similar
rule for the SD is also useful.

Application of the chain rule for ordinary differentiation on a function h = h(x)
where x = x(y) gives:

dh

dx
=
dy

dx

dh

dy

d2h

dx2
=

dy

dx2

dh

hy
+
(
dy

dx

)2 d2h

dy2

d3h

dx3
=
d3y

dx3

dh

dy
+
d2y

dx2

dy

dx

d2h

dy2
+ 2

dy

dx

d2y

dx2

d2h

dy2
+
(
dy

dx

)3 d3h

dy3
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By substituting these expressions into the definition of the SD (7.7), a simple chain
rule is produced:

{h(x), x} =
(
dy

dx

)2

{h(y), y}+ {y(x), x} (7.8)

A similar expression for h = h(y) is found for y = y(x):

{h(y), y} =
(
dx

dy

)2

{h(x), x}+ {x(y), y}

Substituting this back into (7.8) gives

{y, x} = −
(
dy

dx

)2

{x, y} (7.9)

This gives an alternate expression for the chain rule:

{h(x), x} =
(
dy

dx

)2

({h(y), y} − {x, y}) (7.10)

7.2.3 A simple application of the chain rule

By using exponentials, the square of an ordinary derivative can be expressed as the
difference between two SDs.

Let h(x) = eαy(x).

⇒ {h(x), x} =
(
dy

dx

)2

{eαy, y}+ {y, x}

{h(y), y} can be simply evaluated to give −α2

2 , thus giving(
dy

dx

)2

=
2
α2

[{y, x} − {eαy, x}] (7.11)

7.2.4 Connection with 2nd order linear ordinary differential equa-
tions

The SD also appears when considering some linearly independent solutions to a
particular subset of 2nd order DEs. An equation of form:

d2y

dz2
+ p(z)y = 0 (7.12)

has a first solution u1(z). Another solution of the form u2(z) = u1(z)w(z) can be
found, as long it has certain properties:

d2

dz2
(u1w) + p(z)u1w = 0

⇒ u1w
′′ + 2u′1w

′ + w
[
u′′1 + p(z)u1

]
= 0
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Therefore, the product is a solution as long as

w′′

w′
= −2

u′1
u1

Differentiating this gives(
w′′

w′

)′
= −2

u′′1
u1

+ 2
(u′1)

2

u2
1

= 2p(z) +
1
2

(
w′′

w′

)2

⇒ {w, z} = 2p(z) (7.13)

w = const cannot be a solution to (7.13), as the SD of a constant vanishes, and so the
new solution u2 = wu1 must be a linearly independent solution of equation (7.12).
This statement can be reversed, to say that a solution w to equation (7.13) involving
the SD can be expressed as a ratio between two linearly independent solutions of the
2nd order linear DE (7.12). A more thorough argument can be found at [17].
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8 Appendix B: An introduction to Classical

HJ theory

Hamilton-Jacobi (HJ) theory is an elegant expression of classical mechanics. The
development from Newton’s laws, through Lagrangian and Hamiltonian formulations,
to HJ theory provides deep insight into the foundations of the subject. Classic
expositions of the subject include Goldstein [18] and Landau and Lifshitz [14], so here
only some key points, pertaining to its extension in the application of the EP, will
be illustrated, especially the retrieval of trajectories from the differential equation.

8.1 Lagrangian and Hamiltonian formulations

Classical mechanics is deterministic - if ‘all the coordinates and velocities are simul-
taneously specified . . . the state of the system is completely determined and . . . its
subsequent motion can, in principle, be calculated.’ [14]. The starting point of
this calculation is a principle of least action, whose applicability is a result of its
compatibility with Newton’s laws, rather than its mysterious physical content.

The motion of the system from time t1 to time t2 is such that the line
integral

S =
∫ t2

t1
Ldt

where L = T − V , has a stationary value for the actual path of the
motion[18].

where T is the kinetic energy and V is the potential energy. This statement, and
application of the calculus of variations, directly leads to Lagrange’s equations

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
for all coords qi(i = 1, 2 . . .) (8.1)

Arguments of homogeneity and isotropy of space and time [14] and compatibility
with Newton, lead to specific expressions for T and V.

Compatibility of equations 8.1 with or equivalence to Newton’s laws, with the co-
variance of the equations with respect to change of coordinates, means that equations
8.1 apply under any suitable generalised coordinate system.

The Hamiltonian formulation of the laws of mechanics arise from a Legendre
transformation - ie a change of independent variables from qi and q̇i to qi and pi,
where pi = ∂L

∂q̇i
is the generalised momentum. The transformation

H(p, q, t) =
∑

piq̇i − L (8.2)

leads to Hamilton’s equations of motion:

q̇i =
∂H

∂pi
and ṗi = −∂H

∂qi
(8.3)

These, like Lagrange’s equations and Newton’s second law, are differential equations
which can, in principle, be solved for the trajectory of the particle or system state
qi = qi(t) for i = 1, 2 . . ..
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8.2 Changes of coordinates

When solving problems, changes of coordinates which simplify the problem can be
used extensively, especially transformations which make a particular variable constant
in time. But in the Hamiltonian formulation, general transformations of form

Qi = Qi(qi, pi, t) and Pi = Pi(qi, pi, t)

will not in general retain the form of Hamilton’s equations. Transformations which
do keep the form are called ‘canonical transformations’.

Hamilton’s equations can be derived directly from the variational principle:

δS = δ

∫ (∑
piq̇i −H

)
dt = 0 (8.4)

So, Hamilton’s equations will apply is equation 8.4 also applies in the new coordinates:

δS = δ

∫ (∑
PiQ̇i −K

)
dt = 0 (8.5)

where K is the new Hamtiltonian. After a little examination, it can be seen that this
can only be the case if the two expressions under the integral only differ by a total
derivative dF

dt .dt.

⇒
∑

PiQ̇i −K +
dF

dt
=
∑

piq̇i −H

⇒ dF =
∑

pidqi −
∑

PidQi + (K −H)dt

⇒ dF

dqi
= pi ,

dF

dQi
= −Pi ,

∂F

∂t
= K −H (8.6)

where F is known as the generating function of the transformation.
A particularly simple set of variables, coordinates and momenta, would be for all

Qi and Pi to be constant in time.

Q̇i =
∂K

∂Pi
= 0 and Ṗi = − ∂K

∂Qi
= 0

Therefore, up to an additive constant, which is physically irrelevant, K = 0. Using
this new set of coordinates and vanishing Hamiltonian in the last part of equation
8.6 gives:

H(qi,
∂F

∂qi
, t) +

∂F

∂t
= 0 (8.7)

- a partial differential equation in n+1 variables. Further analysis shows that the
function F is in fact the action S up to an additive constant:

S =
∫ (∑

PiQ̇i −K +
dF

dt

)
dt

⇒ S =
∫
PidQi + F = F + c
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as dQi = 0 at the end points.
This gives the full Hamilton Jacobi equation:

H

(
qi,

∂S

∂qi
, t

)
+
∂S

∂t
= 0 (8.8)

where S is both the action and the generating function of a canonical transformation
to variables which are constant in time.

8.2.1 Other forms of the HJ equation

In some simple situations, other forms of the HJ equation may crop up. For example,
if the Hamiltonian does not explicitly depend on t (as the system is conservative),
the substitution S = S0 − Et yields the stationary Hamilton-Jacobi equation:

H

(
qi,

∂S0

dqi
, t

)
= E (8.9)

The Hamiltonian may also take a standard form

H = T + V

=
1

2m
p2 + V

=
1

2m
(gradS0)2 + V

giving a Stationary Hamilton Jacobi equation of form

1
2m

(gradS0)
2 + V = E (8.10)

8.3 Solving for trajectories

The HJ equation is a partial differential equation for the action S in n+1 variables,
and so the full solution will have n+1 arbitrary constants. However, as S itself is not
explicitly contained in the equation, only its derivatives, one of these constants will
only be additive and so can be discarded as it will not affect the physics.

Solution of the HJ equation gives S as a function of the coordinates, time and
these n independent constants of integration, α1, α2 . . .:

S = S(q1, q2 . . . , α1, α2 . . . , t)

Without losing generality [18], these constants can be taken as the constant momenta
in the reference frame with zero Hamiltonian. When F = F (qi, Qi, t), it has been
shown that Pi = − ∂F

∂Qi
. It can also be shown that when F is expressed as F =

F (qi, Pi, t):

Qi =
∂F

∂Pi
=

∂S

∂αi

As the Qi are also constant, and to clarify are expressed as constants βi, we now have
a set of n equations relating qi and t which can be solved for each qi = qi(αi, βi, t),
which is a solution to the problem.
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When S can be expressed as S = S0 − Et, where E is a constant, E can be
identified as one of the constant momenta as well as the total energy of the system. A
particularly simple example is a 1-dimensional system, where the constant coordinate
Q is ∂S

∂E :
∂S

∂E
=
∂S0

∂E
− t = β

⇒ t− t0 =
∂S0

∂E
(8.11)

8.4 The linear potential

The linear symmetric potential

V (q) = αq for q > 0
= −αq for q < 0

and a Stationary HJ equation of form

1
2m

(
∂F0

∂q

)2

+ V (q) = E

gives

∂F0

∂q
= (2m)

1
2 (E − αq)

1
2 for q > 0

= (2m)
1
2 (E + αq)

1
2 for q < 0

Integration of this gives

F0 = −(2m)
1
2

α
.
2
3
(E − αq)

3
2 + k1 for q > 0

=
(2m)

1
2

α
.
2
3
(E + αq)

3
2 + k1 for q < 0

Continuity of F0 at q = 0 gives the integration constants k1 = −k2 = 2
√

2m
3α E

3
2 ,

implying an expression for F itself as:

F =
2
√

2m
3α

[
E

3
2 − (E − αq)

3
2

]
− Et for q > 0

=
2
√

2m
3α

[
(E + αq)

3
2 − E

3
2

]
− Et for q < 0

Use of equation 8.11 gives

β + t =
√

2m
α

[
E

1
2 − (E − αq)

1
2

]
for q > 0

=
√

2m
α

[
(E + αq)

1
2 − E

1
2

]
for q < 0
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Figure 4: Trajectory for particle subjected to symmetric linear potential

Rearrangement of this gives an expression for q in terms of t and the two constants
of integration E and β:

q =
1
α

(
E −

[
E

1
2 − α√

2m
(β + t)

]2)
for q > 0

=
1
α

([
E

1
2 +

α√
2m

(β + t)
]2
− E

)
for q < 0

These two parabolas with sample values for the constants are illustrated in Figure 4.

However, the condition on continuity imposed by the HJ equation is not just on
F0, but on F itself. This leads to conditions being placed on the solution every time
the q = 0 axis is crossed, which results in these parabolas being translated sideways
to create a repeating oscillation.

This solution was obvious from the start: the linear potential results from a
constant force, resulting in constant acceleration, resulting in the parabolas found so
often in basic mechanics problems involving gravity. There are no dissipative forces,
so these parabolas join at q = 0 to form an infinite oscillation in time.
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