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Abstract

We study the classification of free-fermionic heterotic string models. We start by
an introduction to string theory, from the bosonic string to the heterotic string, before
explaining the free-fermionic formalism used to construct our models. We then determine
the tools for a classification of free-fermionic heterotic string vacua in which the SO(10)
GUT symmetry is broken at the string level to flipped SU(5) x U(1) subgroup. We derive
the conditions for possible enhancements of this gauge group and determine algebraic
expressions for Generalised GSO projections for all sectors, which will allow a computer
analysis of the entire spectrum of these models. Finally we analyse the phenomenology
of an exophobic SU(6) x SU(2) heterotic string model that is free of massless exotic
fractionally charged states, obtained by enhancement of a Pati-Salam gauge group model.
We derive the superpotential and show the existence of F- and D-flat directions that leave
Higgs doublets light while giving masses to colour triplets beyond those of the Standard
Model.

Résumé

Nous étudions la classification de modeles de corde hétérotique de type fermions libres
(free-fermionic). Nous commengons par une introduction a la théorie des cordes, depuis
la corde bosonique jusqu’a la corde hétérotique, avant de détailler le formalisme free-
fermionic que nous avons utilisé pour la construction de nos modeles. Nous déterminons
ensuite les outils nécessaires a une classification des états du vide de la corde hétérotique
pour lesquels le groupe de grande unification SO(10) est brisé a 1’échelle des cordes en
le sous-groupe SU(5) x U(1). Nous dérivons les conditions nécessaires a l'obtention d'un
élargissement du groupe de jauge et déterminons pour tous les secteurs les expressions
des projections GSO généralisées, ce qui permettra une analyse informatique complete
du spectre de ces modeles. Pour finir nous analysons la phénoménologie d’un modele
exophobique de groupe de jauge SU(6) x SU(2) qui ne contient pas d’états exotiques
ayant une charge fractionnelle. Ce dernier est obtenu par un élargissement d’un modele
ayant pour groupe de jauge le groupe de Pati-Salam. Nous en dérivons le superpotentiel
et démontrons l'existence de directions F-flat et D-flat qui laissent les doublets de Higgs
sans masse tout en rendant massifs les triplets de couleur non présents dans le Modele
Standard.
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Introduction

The Standard Model is often hailed as one of the crowning achievements of twentieth
century theoretical physics. For the past 25 years, its predictions have matched expe-
rimental data with amazing precision; it has been tested with everything from desktop
experiments to huge particle accelerators, and it has yet to be faulted. But we believe it
cannot be the end of the story.

Indeed it seems too arbitrary, with so many free parameters, to constitute an accom-
plished theory of nature. There is some evidence of a possible embedding of the Standard
Model in larger grand unified groups, such as SO(10), reducing the number of gauge charge
parameters to one (the number of representations needed to accommodate the three gen-
erations of the Standard Model). But there remain questions to be answered, such as why
three generations or how do we determine the various mass and flavour mixing parameters
of the Standard Model? We can seek answers to these questions at an energy scale above
the GUT scale. But at such energies gravitational effects are no more negligible compared
to other forces, so that we need a theory that encompasses gravity.

String theory provides a self consistent framework for the synthesis of quantum me-
chanics and gravity. It no longer considers punctual particles but one-dimensional objects,
strings, whose oscillation modes correspond to particles. We are here interested in a phe-
nomenological approach that consists of building string models in four dimensions that
aim to reproduce the Standard Model.

There are five different 10-dimensional string theories, which are now believed to be
limits of a more fundamental theory. Any of these limits can be used to construct string
models. We do not expect any of these limits to provide a complete description of the
true vacuum, but we can use them to probe some of its properties. The heterotic string
theory facilitates the embedding of the Standard Model spectrum in SO(10) and will be
the framework of our study. In our phenomenological approach the heterotic string has
to be compactified from 10 to 4 dimensions. A class of compactifications that preserve
the embedding in SO(10) is based on the Zy x Z, orbifolds and has been studied using a
free-fermionic formulation since the late eighties.

Models in which the SO(10) GUT symmetry is broken at the string level to different
subgroups have been suggested and studied using the rules defined by Antoniadis, Bacchas
and Kounnas in [1, 2], in particular with a flipped SU(5) x U(1) gauge group ([5, 4, 3]).
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INTRODUCTION

However these attempts remained limited to the study of a few isolated models. Over the
past few years tools for the systematic classification of free-fermionic Z x Z, orbifolds
were developed and in this report we deal with an extension of this classification.

In the first part we will start by an introduction to string theory that will set the
framework of the heterotic string. We then explain the free-fermionic formalism and ex-
pose the tools used to study string vacua. In the third part we present our work on the
classification of free-fermionic models with a flipped SU(5) x U(1) gauge group, leading
to a set of algebraic expressions that enables the analysis of the spectrum of this class of
models. Finally the fourth part introduces a new string model with an SU(6) x SU(2)
gauge group and some of its phenomenological properties.



Part 1

From the bosonic string to the
heterotic string

In this part we will start by introducing string theory, mainly based on references
[8, 17]. We first describe both the bosonic string and the superstring including their
quantization. Then we present the heterotic superstring that will be the framework of our
work.

1.1 The bosonic string

1.1.1 The relativistic string

The string action

The string propagates in a D-dimensional Lorentzian space-time which sweeps out
a two-dimensional surface called the world-sheet. The points on the world-sheet are
parametrized by the coordinates oy = 7 € [—00, +00], which is time-like and 01 = o €
[0, ], which is space-like. The mapping functions X*(og, 01) describe the position of the
string in space-time.

The propagation of the string can be described by the the Nambu-Goto action

SNg——T/dO'dT\/—detGag 3 (11)

where G5 = G, (X) %if: gfg is the induced metric on the world-sheet and 7" is called

the string tension.

In the case of a flat Minkowski space-time, this action can be rewritten as

OXH aX axm\? (0X,\?
So =1 [ty (OGN (OXNONNT




1. From the bosonic string to the heterotic string

The Nambu-Goto action describes the area of the world-sheet, so that the motion of
the string minimizes the action.

We can also write down an equivalent action, the Polyakov action, by introducing an
additional world-sheet metric hqgs

I
Sp = —% /dadn/—hhaﬁalax“ (1.3)

0o QoB '’

where h = det hos. Due to the presence of the square-root in the Nambu-Goto action,
the Polyakov action is more convenient for the quantization of the string. From now on,
we will thus use the latter.

The Polyakov action can be written in a more convenient way. Using first the reparametriza-
tion invariance, the two-dimensional world-sheet metric becomes conformally flat (provid-
ing that there is no topological obstruction, which is the case here) :

hapg = eA(U)naﬁ ) (1.4)
-1 0 . . . .
where 1,5 = 0 1) Then, using the conformal invariance, we obtain
haﬁ = 77045 . (15)
This is called the conformal gauge. The Polyakov action becomes
T 2 2
Sp =5 [ dodr (X e ) , (1.6)
where X# = 85(: and X' = % :

The equation of motion
The equations of motion for the bosonic string are obtained by the variation of the

Polyakov action :

+oo

—00

5Sp :T/dng (X—X") 5X+T/da [Xax] —T/dT XSXT . (1)

The first term gives the equation of motion which is the wave equation
PXr  9EXH
orz  do?

In order to obtain this equation, the two other terms must vanish. This is done for the

former by the conservation of momentum. For the latter we have to impose boundary
conditions and thus distinguish the closed string from the open one.

0. (1.8)

e Closed string. In this case, the functions X* are periodic in o

X (r,0) = X" (1,0 +7) . (1.9)



1. From the bosonic string to the heterotic string

e Open string. For the open string, there are two different choices.
— Neumann boundary conditions. The ends of the string are free :

n n
0X (0:0):(9)( (c=m)=0. (1.10)
do do

— Dirichlet boundary conditions. The ends of the string are fixed :
XMo=0)=X} and XHt(o=m)=X!. (1.11)

From now on we will focus only on the closed string. The equation of motion can be
solved introducing the world-sheet light-cone coordinates

ocf=r1+0. (1.12)
The equation of motion becomes
0,0_-X"=0, (1.13)
which admits
XHo,7)=Xh(c7)+ X (o) (1.14)

as a solution. Here the functions Xz and X stand for the right- and left-moving parts
of the string.

The closed string solution can be expanded in Fourier modes :

1 1
I -\ _ — ,u 2 - u —2ino~
XR(U)—QQC lpa + ZZ —ah : (1.15)
n;éO
1 :
Xi(oh) = 5o + 2 P plot + —l Z — @t e (1.16)
n7£0
where x* is the center-of-mass position, p* = lozo is the total string momentum and [, is
the string length scale, related to the string tension and the slope parameter o/ by
1 1, ,
T= — and §ls =a . (1.17)

Finally the solution is

1 |
X0 = BT 0.5 ( e g et (1.18)
n;éO

In order for the function X* to be real, z* and p* must be real and the Fourier modes
at and &# have to be conjugate to each other

o, = (o) and af, = (ak)*. (1.19)

—-n

We also have to impose the equation of motion for the metric. That is the cancellation
of the energy-momentum tensor, which leads to the Virasoro constraints :

(X + X’>2 ~0. (1.20)



1. From the bosonic string to the heterotic string

Poisson brackets

In order to anticipate the quantization of the string, we write the classical Poisson
brackets for the dynamical variables :

[PH(T,0), P"(T,0")|p5. = [X*(1,0), X¥(1,0')|p5. =0, (1.21)
[PH(1,0), X" (1,0")|p g = d(c —a")n*", (1.22)

where PH = % = T X* is the canonical momentum. For the Fourier modes the Poisson
"

brackets become

[Oz% (Tv 0)7 O‘Z(Ta a,)]P‘B‘ = [&% (T? U)? ON‘Z(T’ OJ)]P.B‘ =—im 77”’” 5m+n,0 ) (1'23)
[Oéﬁn(T, U)? &;{L(T’ OJ)]P.B. = O ) (124)
[z, p"]pp. = 1" (1.25)

1.1.2 Quantization of the bosonic string

Light-cone gauge quantization

In order to perform the quantization of the closed string, we will place ourselves in
the framework of the light-cone gauge by first introducing the light-cone coordinates for

space-time
1
Xt =—— (X°+ xP1) . 1.26
75 ) (1.2

The D — 2 remaining transverse coordinates are noted X'.
Then in the conformal gauge a residual gauge symmetry still remains :
o — 5 (07, (1.27)
which can be used to make the choice of the light-cone gauge where
XHF,6)=at +12pt 7. (1.28)
This corresponds to setting
af =0 and &'=0 for n#0. (1.29)

The variable X~ can be expressed in terms of X using the Virasoro constraints (1.20) :

X +X =

2l 1'\2
= 2p+l2(X + X2 (1.30)

Thus in the light-cone gauge both X+ and X~ can be eliminated and only the transverse
oscillators X! remain.

The quantization of the closed string in the light-cone gauge is now within reach. Re-
placing fields by operators, Poisson brackets by commutators and making the substitution

[f. glps. — ilf. 4], (1.31)
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1. From the bosonic string to the heterotic string

give
[Oévln(T’ 0)7 O‘i(T’ Ul)] = [07{,1(7'7 0)7 di(ﬂ OJ)] =m 77” 5m+n,0 ) (132)
[a{n(Tv 0)7 d;{(T, OJ)} =0, (1-33)
[z, p"] = in™ . (1.34)

So now the condition (1.19) becomes

(i) =a! —and (&%) =a’

m

. . (1.35)

The ground state |0, p*), of momentum p*, is defined as the state which is annihilated by
all the lowering operators :

ay, [0,p") = a; [0,p*) =0, (1.36)

where a! = \/—%afn and al = \/% vl . Then the other states |®) are obtained by applying
various times the creation operator on the ground state :

I 0Lt ~J ~J
@) = aptt--attant--atto,p) . (1.37)

ny

Mass-shell condition and spectrum

In this section we will use the main results of the Virasoro algebra theory, without
explaining it in detail, as our goal is only to determine the mass-shell condition and the
closed string spectrum.

The Virasoro operators are defined as the Fourier modes of the energy-momentum
tensor :

Ty, =212 io Ly e M9 and T__ =212 io Ly, e~ 2mir=o) (1.38)
where
] B 1 =
Ly, = in—zoo Omn - 0 and Ly, = 2 2 Ooam,n Gy, (1.39)
In particular
H=1Ly+ Ly and P=1Lo— Ly . (1.40)

These are the classical expression of the Virasoro generators. The Virasoro constraints
(1.20) simply become 3
Ly,=L,=0. (1.41)

In the quantum theory, the normal ordering must be taking into account. Thus, the
Virasoro operators become :

1 1

Lmziz S Qpn - Oy ¢ and Em:—z S Qe Oy G (1.42)

n=—oo n=—oo



1. From the bosonic string to the heterotic string

Here the colons stand for the normal-ordering prescription where the lowering operators
always appear to the right. They verify the algebra

mm%pqm_mLmﬂ+%mmf—n%mp, (1.43)

where the second term on the right is called the conformal anomaly and ¢ = D is called
the central charge.
In particular, Ly becomes

1 =
Ly = 5048 + Z Ay -ty (1.44)
n=1
It can be rewritten as
Lo=Loa—a, (1.45)
where L corresponds to the classical case and a = % :3 n is a normal-ordering

constant. It is a priori infinite, but we will see later that we can give it a finite value.
Then to obtain the quantum theory, we will just replace Lo by Lo — a. Of course we can
derive the same formulae for L.

From (1.41), we get that the physical states |®) are described by the conditions
(Lo —a)|®) = (Lo —a)|®) =0, (1.46)
Ly |®) = Ly, |®) =0 form >0 . (1.47)

The mass-shell condition in the light-cone gauge can now be determined using the previous
equations :

4
M2:—p“pﬂza(N—a) , (1.48)
where
D—2
N = ol ol
i=1 n>0

n-—-n’

V- a) . (1.49)
The difference between the equations (1.48) and (1.49) gives the level-matching condition
N=N, (1.50)

is the number operator. Similarly taking N = >>7° %S &l al, we get
1

which means that the number of right-moving oscillators must be equal to the number of
left-moving oscillators. The mass-shell condition can thus be rewritten as

2 ~
M2== <N+N—2a> . (1.51)

(0%

We now turn to the spectrum by focusing on the states of lowest energy. Indeed, the
states with a mass at the string level would have a mass of the order of the Planck mass
and thus are not phenomenologically acceptable.

10



1. From the bosonic string to the heterotic string

a

e The ground state |0,p*). The mass-shell equation condition is M? = —%. We
will see later that a = 1, so this state has a negative mass and is a tachyon.

e The first excited level o' a’, |0, p*). This state corresponds to N = 1, such
that M? = & (1—a). It belongs to a representation of SO(D—2). Lorentz invariance
requires that a physical states belongs to a representation of SO(D — 1) for massive
states and of SO(D — 2) for massless states. As a consequence, the first excited
state must be massless and a = 1. Using (-function regularization, it can be given
a finite value to the normal-ordering constant a :

_D-2

- = 1.52
a=" (1.52)

which implies that D = 26.

The first excited level can be split into a symmetric and traceless part corresponding
to the graviton field, a trace term which is the scalar dilaton field and an antisy-
metric second-rank tensor field.

e Then, according to the mass-shell condition, the next states (with N > 1) will all
be massive.

The normal-ordering constant a and the dimension D of the space-time has been
determined using Lorentz invariance. However, there exists other possibilities to determine
these constants, e.g. the conformal invariance.

Finally, we have seen that the bosonic string requires a critical space-time dimension
D = 26, with the existence of the tachyon, which must be avoided. Moreover, it is a
theory with only bosons. In order to obtain fermions and no tachyon, introducing the
superstring is necessary. It will be presented in the next part.

1.2 The superstring

1.2.1 The Ramond-Neveu-Schwartz formalism
The superstring action

The world-sheet functions X*(7,0) describe the bosonic string. In order to add
fermionic fields to our theory, we introduce world-sheet variables ¢*(7, ¢). They describe
two-components Majorana spinors which are anticommuting, in agreement with the spin

statistics :
o= (0) (159
= |y ‘
+

{Vh(r,0),45(7,0")} = moap d(o — o) ™ (1.54)

11



1. From the bosonic string to the heterotic string

The superstring action is obtained by adding the standard Dirac action for fermions
to the bosonic string action in conformal gauge,

S = —g / drdo (0. X, 0% X" + P p*0aidy) (1.55)

where the p® are the two-dimensional Dirac matrices, with a = 0, 1

0 —1 01
P’ = (1 0) and p'= (1 0) : (1.56)

which obey the anticommutation relation {p®, p’} = 2n®®. The fermionic part of the
action can be rewritten

Sy =i [ o (00, + 04001, (157)
where we use the light-cone coordinates o, and o_.

As previously a conserved supersymmetric current J# and an energy-momentum tensor
T can be defined using the Noether procedure for the world-sheet supersymmetric and
translational invariances. So the Virasoro constraints (1.20) become

J+ - J_ - T++ - T__ - O . (158)

Boundary conditions

The boundary conditions and the Fourier expansion for the bosonic fields X* are the
same as those described in the previous part on the bosonic string. The variation of the
fermionic action (1.57) is

T o=T
38y = =T [ drdo (000 + 560200 = 5 [ dr (W0, — 0200, (159
So the equations of motion are
84,'(#7 =0 and 87w+ =0 (160)

These are the Weyl conditions for spinors in two-dimensions. The fields ¢ and v, are
thus Majorana-Weyl spinors. These equations imply that

Pt =yt (r — o) and Y =Yi(r+0) . (1.61)
As previously we require the cancellation of the second term in (1.59),
(7, 02) 0017, 0) — (7, 0.) S0_y(7,0.) = 0 , (1.62)

at each endpoint o, = 0 or 0, = m. This will give the boudary conditions for the super-
string.

We now consider the closed superstring, for which we impose periodic boundary con-
ditions. In the bosonic case, the closed string corresponds to the tensor product of a

12



1. From the bosonic string to the heterotic string

left-moving and a right-moving string. It is the same here so periodic or antiperiodic
boundary conditions can be imposed separately for the right- and left-movers :

Vi) = £¢i(r,0+7), (1.63)
Wiro) = Hvh(ro+m). (1.64)
The plus sign corresponds to the Ramond (R) boundary conditions, which are periodic,
while the minus sign corresponds to the Neveu-Schwartz (NS) boundary conditions, which

are antiperiodic. Therefore for the closed superstring the possible sectors are NS-NS, R-R,
NS-R or R-NS, where the left-movers are written on the left.

The mode expansion for the functions ¢/ are :

— Ramond boundary conditions :

Yr(ro) = Y die ) (1.65)
nez

Yi(ro) = ) die0ro) (1.66)
neZ

— Neveu-Schwartz boundary conditions :

Yr(r,0) = Z pre2ir(r=o) (1.67)
reZ+1/2

(T, 0) = Z pre2ir(rta) (1.68)
reZ+1/2

1.2.2 Quantization of the superstring

Quantization of the closed superstring

The closed superstring quantization can now be achieved. The method is the same as
previously. In the superstring theory, the light-cone gauge can still be defined, by setting

Xt (r,0) = zt+pr, (1.69)
YpH(r,0) = 0. (1.70)

Because of the Virasoro constraints (1.58), X~ and 1~ can be expressed as functions of
the transverse fermionic and bosonic oscillators.

For the bosonic part X7, the commutation relations are the same than for the bosonic
string :
(ol ol =[al, & = mbémnon™ (1.71)

and all other commutators vanish.

13



1. From the bosonic string to the heterotic string

For the fermionic part, the anticommutation relations are :

{0, 07} = {05, 0]} = b,450m™ (1.72)
{d,, d}} = {d}, d}} = Sminon™ (1.73)

and all other anticommutators vanish.

In both sectors, the ground state [0, p*) v ¢ R of momentum p* is defined as the state
which is annihilated by all the lowering operators :

ol 10,p") yg = 0710,p") yg =0 for m,r>0, (1.74)
ol 10,p") p =d510,p") =0 for m>0, (1.75)

and similarly for the left-moving modes.

In the Neveu-Schwartz sector the ground state is unique, whereas in the Ramond sector
it is degenerate. Actually the operators d} can act on it without changing the mass, as
we will see later.

Then the excited states are obtained by acting on the ground state with the creation
operators ol al bl and b’ for the Neveu-Schwartz sector and !, , &l . d!, and
dL, for the Ramond sector.

Super-Virasoro modes and mass-shell condition

The super-Virasoro generators are defined as the Fourier modes of the energy-momentum
tensor :

Ly =LY+ 10 (1.76)
where
1
LS’L) =3 Z DOy Qg (1.77)
nel
and
1
L%) =35 Z <r+ %) :b_p by, for the NS sector, (1.78)
reZ+1/2
1
L%) =3 (n + %) s d_p - dpyy, o for the R sector. (1.79)
ne”L

The Fourier modes of the supercurrents are defined as:

G, = Za,n “bpyn , m€Z+1/2 | for the NS sector, (1.80)
nez

F, = Za_n “dpan , mE€Z , for the R sector. (1.81)
nez

There are similar equations for the left-moving modes.

The spectrum of the closed superstring can now be determined. The physical states
conditions are :

14



1. From the bosonic string to the heterotic string

— NS sector :
Ly |®) = Ly, |®) =0 for m >0, (1.82)
G, |®) =G, |®) =0 for r >0, (1.83)
(L() — aNS) |(I)> = (LO — aNS) |<I>> = O . (184)
— R sector :
Ly |®) = Ly, |®) =0 for m >0, (1.85)
E,|®) = F,|®) =0 forn >0, (1.86)
(Lo — ag) |®) = (Lo —agr) |®) =0 . (1.87)
The massless condition becomes :
2 .
MQZJ (NA+NB—GA—(IB> s (188)

where A and B stands for the sector (NS or R). N and N are the number operators and
are defined by :

+oo +oo
Nys=>_a'al+ > rb b, (1.89)
n=1 r=1/2
—+o00o —+00
Ng = Z o' ol + Z nd  d (1.90)
n=1 n=1/2

and similarly for the left-moving number operators.
The level-matching condition (1.50) becomes :

NA—CLA:NB—CLB (191)

As previously the normal-ordering constant can be determined using Lorentz invariance.
It gives :

1
ans = 5 and arp=0. (1.92)
In particular this implies that the critical dimension for the superstring is

D=10. (1.93)

Superstring massless spectrum

The construction of the massless superstring spectrum is achieved in two phases. Since
the closed superstring is a tensor product of right- and left-moving, which could each be
in the Ramond or Neveu-Scwartz sector, we will first determine the possible states in both
sectors. Then we will proceed to the GSO projection in order to get rid of the tachyonic
state.
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1. From the bosonic string to the heterotic string

The Neveu Schwartz sector

e The ground state |0, p") ;g mass is given by o/ M? = —%. It is the tachyon, which
must be avoided. From now on it will be noted it |N.S).

e The first excited state is constructed by acting with the raising operators having
the smallest associated frequency : b’ /2 |NS). It is a massless vector with eight
transverse components.

The Ramond sector

e The ground state |0,p*), is a degenerate state. Indeed, as discussed above, acting
on it with the oscillators d) does not change the mass. As the zero modes obey
a Clifford algebra, they can be represented by Dirac matrices. Using simple linear
combinations of them they can be divided into raising and lowering operators. The
resulting states, which are constructed by acting with these operators in all possible
way, fall into a (282 = 16)-dimensional spinorial representation. By further consid-
erations, we can show that these states can be split into two different representations
8 of SO(8), whether they have an even or odd number of oscillators acting on them.
The Ramond ground states, which are now called |R+), are massless.

e The first excited state is constructed by acting with the raising operators o’ ; and
d’ ; on the Ramond ground state. They acquire masses, so they are not of interest.

The GSO projection. The last stage to find the spectrum of the closed superstring is
to apply the GSO projection on these states. This method was first introduced by Gliozzi,
Scherk and Olive.

First, we need to define the G-parity operator in the Neveu-Schwartz sector as :
Gng = (—1)FvsTL (1.94)

where Fyg = ;:T /2 b, bl is the number of b-oscillator excitations. Thus, the operator
determines whether a state has an even or odd number of world-sheet fermions oscillations.

In the Ramond sector, this oscillator is given by :
Gr=Tu (-1 (1.95)

where Fp = .7 d  d’ is the fermion number operator in the Ramond sector and
'y =gl ... Ty is the ten dimensional analog of the chirality matrice 5 in four dimen-
sions. The G-parity operator in the Ramond sector projects the states on the representa-
tion with either an even or an odd number of oscillators.

The GSO projection consists in keeping only the states with a positive G-parity in the
Neveu-Schwartz sector. As a consequence the tachyon will be projected out.
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1. From the bosonic string to the heterotic string

In the Ramond sector, states with positive or negative G-parity can be kept since the
ground state is massless.

Then the ground state in the Neveu-Schwartz sector is an eight-componant vector
boson, which matches with the fact that the ground state in the Ramond sector is an
eight-componant spinor. This is an indication of the spectrum space-time supersymme-
try. Actually at each mass level there is an equal number of bosons and fermions, as
required by supersymmetry.

The closed superstring massless spectrum can now be explicited. There are two pos-
sibilities depending on whether we choose for the left- and right-moving Ramond sector
a different parity or not.

Type ITA closed superstring :
|[R—) @ [R+)
521/2 INS+) ® bj,1/2 INS+) ,

b1y INSH) @ |R+)
|[R—) @' 5 INS+) .

Type IIB closed superstring :

|[R+) @ [R+) | (1.100)
Wiy INSH) @b, ), [NSH) (1.101)
b1 INSH) ® [R+) (1.102)

A few observations can be made on this spectrum :

— The first sector contains bosons with either the same or opposite chirality.

— In both cases, the second sector Ei_l/Q INS+) ® bjf1/2 |NS+) contains the graviton,
the dilaton and the second-rank antisymetric tensor. These states are bosons.

— Each of the two last sectors contains the spin % gravitino and the spin % dilatino,
superpartners of the graviton and dilaton. Therefore the superstring has a N = 2
supersymmetry coming from the left- and right-moving sectors.

We finally end up with a ten-dimensional superstring theory with N = 2 supersym-
metry and without tachyon.

17



1. From the bosonic string to the heterotic string

1.3 The heterotic string

We would prefer to have a type of superstring, namely the heterotic string, which has
four dimensions and a N = 1 supersymmetry. It is the framework used in our work so we
will now introduce it.

1.3.1 Construction of the heterotic string

In order to obtain N = 1 supersymmetry on the superstring, we decouple the left- and
right-moving modes. The supersymetric charges are carried by the left-moving currents,
while the right-moving world-sheet fields are described by the formalism of the bosonic
string.

The construction of the heterotic superstring occurs as follows.

For the left-moving sector, we consider the left-moving superstring fields X* and ¥
with © =0,...,9. The critical dimension is D = 10.

Then for the right-moving sector we have the ten bosonic right-movers X*. Since a
space-time boson contributes a unit to the central charge and a free-fermion contributes
half a unit, 32 Majorana-Weyl right-moving free-fermions A\° are needed to cancel the
conformal anomaly ¢ = —26 in the bosonic string.

The theory is still ten-dimensional because the space-time indices p = 0,...,9 are
carried by the coordinates X* in both right- and left-moving sectors, while the internal

fermions A\’ do not carry a space-time indice.

To sum up, we have to consider the following fields :

X% and 9% in the left-moving sector, (1.104)
X" and A" in the right-moving sector, (1.105)

where 4 =10,...,9and i =1,...,32.

The action for the heterotic string is thus

32
g=1 / d’o (2@){,@){“ O, +1) A@Mi) : (1.106)

v -
=1

1.3.2 Compactification to four dimensions

We are now looking for a four-dimensional theory. This can be achieved by following
the same procedure as previously.
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1. From the bosonic string to the heterotic string

Considering a four-dimensional space-time, that is the indice p now runs from 0 to 3,
18 Majorana-Weyl fermionic left-moving fields A* and 12 Majorana-Weyl fermionic right-
moving fields M are needed to cancel the conformal anomaly in both sectors.

The total set of fields is now

X%, ¢ and )\i in the left-moving sector, (1.107)
X" and A" in the right-moving sector, (1.108)

where p=0,...,9,2=1,...,44and j=1,...,18.
Let us adopt the complex coordinates, defining
z=7T+1i0 and Z=7T—i0 . (1.109)

The world-sheet fields are now functions of z and z. From now on the following notations
will be used for the fields :

XMz,2), n=1,2,
Pi(z), p=1,2,
N(z), i=1,...,18

N(E), j=1,...,44.

We have placed ourselves in the light-cone gauge, such that the space-time bosons and
fermions have only two degrees of freedom, namely the transverse coordinates.

The heterotic action can be rewritten as

1 18 ‘ A 44 o o
S == / d*z (QZXM@X“ — 2O, — 20 Y NON — 20> NN | . (1.114)
T

i=1 j=1

The heterotic string theory we have just described is the free-fermionic formulation.
It will be the framework of the rest of this report.
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Part 2

Free-fermionic models

Our goal is the construction of realistic models in the heterotic string theory. In
this part we describe the free fermionic formalism derived by Antoniadis, Bacchas and
Kounnas in [1, 2] and by Kawai, Lewellen and Tye in [13]. We explain how the modular
invariance constraint of the one-loop partition function leads to a set of rules which will be
our tool for constructing new free fermionic models. The method for constructing string
vacua and extracting the massless spectrum is then summarized and applied to a first
example.

2.1 Fermionic formalism and partition function

2.1.1 Fermionic formalism of the heterotic string

We place ourselves in the framework of the heterotic string theory. As seen in the
previous part, we can interpret the degrees of freedom needed to cancel the conformal
anomaly as free fermions propagating on the string world-sheet. To formulate the theory
directly in 4-dimensions we need 18 left-moving real Majorana-fermions and 44 right-
moving real Majorana-Weyl fermions.

In the light-cone gauge we have the following world-sheet field content :

Left-moving X1(2) w=1,2 2 transverse coordinates
P (2) w=1,2 their superpartners
X1(2),yr(2),wr(z) I=1...6 18 internal real fermions

Right-moving Xg(2) =172 2 transverse coordinates
(%) i =1...44 44 internal real fermions

In the Polyakov picture string theory is formulated as a perturbative sum over path
integral on the string world-sheet, a genus-g Riemann surface. The free fermions can
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2. Free-fermionic models

be propagated around non-contractible loops on this surface so we will have to specify
boundary conditions for each world-sheet fermion.

World-sheet supersymmetry should be preserved, which imposes that the supercurrent
Tr must be uniquely defined, up to a sign, under the transformation of the world-sheet
fermions. The supercurrent is taken to be

TF:zZJ“@XM—I—iZX[waI, (2.1)
I

where the {x;(2),y7(z), w;(z)} transform as the adjoint representation of SU(2)%. The
transport properties of right-moving fermions and left-moving fermions (for which we need
to consider the transformation of the supercurrent) around a non-contractible loop show
that we can realise any configuration of boundary conditions in some basis consisting of
64 fermions.

We note here that we can pair two real fermions into a complex fermion in the following
way :

kl_i kil
A *\/é()‘ +iX). (2.2)

In this report we will use the following notations for the basis fermions :

Real left fermions : {1p#, #2 x1 gyt w2, v2, w2, 3, o2, w3, x4yt wt, X3, v°, wd, xC, 8, w}
Real right fermions : {7, w!, 9% @?, 3, w?, y*, w*, y°, w’, y°, 0O}

Complex right fermions : {1, ¥? %, % ¢¥° 7t 7%, 7%, L, @2, 03, &4, &° 06 7§81

We will sometimes complexify some of the left-moving fermions and use the following
complex fermions : {¢#, x12, 3, x5°}.

2.1.2 String amplitude on the torus

String amplitude

In the Polyakov approach to string theory, a string amplitude is calculated by the path
integral

An = Z/DhDX#/(pzl A2z, Vi(z1, 21) - Vi(2n, Zn), (2.3)
g=0

where we must insure that we sum only over physically inequivalent paths. The V; are
vertex operators of external string states on the genus-g Riemann surface defined by the
world-sheet.

Therefore the total string amplitude is a sum over all possible Riemann surfaces moded

out by conformal invariance, similar to the sum over all Feynman graphs in Quantum Field
Theory. The conformal invariance maps the tree level string topology to the sphere and
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2. Free-fermionic models

the one-loop topology to the torus.

At tree level all reparametrizations are local and quantum corrections are not taken
into account, but at higher level further constraints will arise. Hence it is instructive to
look at the one-loop vacuum to vacuum amplitude, with no external states. This is the
one-loop partition function.

Torus and modular invariance

The one-loop string amplitude is a sum over all non-equivalent tori. We have to look
at the symmetries of a torus to determine what are the non-equivalent tori.

Figure 2.1: The two non-contractible loops of the torus.

We can map the torus to the complex plane by cutting it along its two non contractible
loops shown on the Figure 2.1. The torus can be characterized by specifying two finite
and nonzero periods in the complex plane A, Ay with a nonreal ratio :

ZNZ+/\1, ZNZ+/\2. (24)

The torus is then identified with the conplex plane modulo a two-dimensional lattice
A(/\1,)\2)7 where A(>\17>\2) = {m/\1 + ’fl)\Q, m,n € Z}

Using the reparametrization z — z/Ay the torus is equivalent to one whose periods

are 1 and 7 = i—;, as shown in Figure 2.2.

The torus is left invariant by the two following transformations :
T : 7 — 7+ 1 redefines the same torus, (2.5)

1
S 17— —— swaps the two coordinates and reorients the torus. (2.6)
T

These transformations span a group of transformation, the modular group :

ar +b
cr +d’

a,b,c,d € Z,ab — cd = 1. (2.7)
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2. Free-fermionic models

Imz

T T+1

Y

0 1 Rez

Figure 2.2: The torus mapped to the complex plan when the opposite edges of the paral-
lelogram are identified.

Thus the modular group is PSL(2,Z) = SL(2,Z)/Zs, where the division by Z, takes the
equivalence of an SL(2,7) matrix and its negative into account. The moduli space .# of
the torus (the space of conformally inequivalent tori) is

M =C/PSL(2,7Z. (2.8)
A fundamental domain can be taken as

F={r||r| > 1,|Rer| < 1/2,Imt > 0}. (2.9)

Imrt

NS

GlealNal

-2 -1.5 0.5 1.

Figure 2.3: The shaded region is the fundamental region of the modular group of the
torus.

So the partition function is a sum over this domain in order to integrate over all con-
formaly inequivalent tori. The SL(2,Z) invariant measure over the fundamental domain

is
/ d*r
(Im7)?

In addition, we have to require that the partition function does not depend on the
parametrization of the tori, so it should be invariant under the modular transformations
spanned by 7" and S.
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2. Free-fermionic models

Boundary conditions

For each world-sheet fermion we have to specify boundary conditions that express the
shift of phase of the fermionic field under parallel transport around each noncontractible
loop of the torus :

f— —eimy, (2.10)

For real fermions a(f) is either 0 (Neveu-Schwarz conditions) or 1 (Ramond conditions),
whereas for complex fermions «(f) € (—1,1]. Since there are two noncontractible loops
on a torus, the complete phase assignment for a fermion can be written as a set of two
phases

{O‘m} . (2.11)

A set of specified phases for all basis fermions for one noncontractible loop is called a
spin-structure and is expressed as a 64-dimensional vector :

a={a@),... a(®)}. (2.12)

The complete spin-structure assignment to all fermions on the torus can then be defined
by two vectors

m . (2.13)

2.1.3 The one-loop partition function

Now let us have a look at the partition function. One can think of the path integral
on a torus of parameter 7 = 7 4+ i1y as formed by a field on a circle that has been evolved
for Euclidean time 277, translated by 277, and identified with the initial circle. The
generator of translations in time is the Hamiltonian H = Ly + Lo + ﬁ and the generator
of translation in space is the momentum operator P = L — Ly, as seen in equation (1.40).
The identification of the ends of the cylinder thus formed is realized by taking the trace
over the Hilbert space of states.

Z(Tl, 7_2) — Z <S ‘627riT1Pe—27riT2H| S> (214)
seH
, = r:g[_\cr 627T’i7'1pe—27riT2H, (215)

2miT

which can be rewritten with ¢ = e*™" and using (1.40) as

Z(1) = ¢ VST T gloghe (2.16)

This can be calculated since we know how L acts on the states space.
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2. Free-fermionic models

We can compute this for each fermion. If the time boundary condition is antiperi-
odic (NS), then the partition function is just given by the trace with Ly acting on the
appropriate R or NS Fock space :

Z%*Sg(r) = Trys ¢~ /* and ZgS(T) = Trp g~o~ /48, (2.17)
When the time boundary condition is periodic (R) the definition of the trace is modified:
ZE (1) = Tryg(=1)Fglo V% and ZE(r) = Trp(—1)F¢lo~ /48, (2.18)

where F is the fermion number operator, defined by the relations

F(f) = 1,if fis a fermionic oscillator, (2.19)
F(f) = —1,if fis the complex conjugate of a fermionic oscillator, (2.20)
Fl+), = 0, (2.21)
Fl=), = 1, (2.22)

where |+) 5, | =), are the degenerated Ramond vacua.

The partition function must include all possible combinations of boundary conditions,
it is therefore a sum over all spin-structures. All the previous work now leads to the
complete partition function :

Z = /? % z2 tu}%c(?) ﬁ[lZF {ggm (2.23)

Let us explain each term :

drdr

(Tmr)? is the invariant measure under the modular transformations of the torus.

— Zp is the bosonic contribution

1
[T [n(7)

where )
n(T) =qm H (1 — q2") with ¢ = e*™7,

n

is the Dedekind eta function.

— The C’(g) are coefficients on the spin-structures that are yet to be determined.
o falh)

50)
ditions «(f) and B(f). It can be calculated using (2.16) to obtain the following

is the contribution of the fermion f, wich depends on its boundary con-
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2. Free-fermionic models

results:
Zp 8 _ \/% (2.24)
Zp (1) = \/%’ (2.25)
Zp (1) _ \/% (2.26)
Zp 1 _ \/% (2.27)

where 9; are defined as

1 1 0 0
smof]. weof] wmofl]. anof] ea
and
9 |:Zj| _ Zq%262m’(n7b/2)(nfa/2)_ (2.29)
neZ

These formulae should be complex conjugated for the right moving fermions.

2.2 Model building and constraints

2.2.1 Modular invariance of the partition function

Let us recall the expression of the partition function. Its invariance under modular
transformations will give us further constraints to build a model.

Z:/ fgf ; C( >f[le [gg}’iﬂ (2.30)

structure

The measure element and the bosonic contribution are modular invariant. Now we
have to focus on the modular invariance of the other terms of the partition function.

Under 7 — 7 4+ 1, we have the following transformations :

n — ™12y, (2.31)
0y — ™4, (2.32)
Wy — ™4, (2.33)
U3 < U4, (2.34)

26



2. Free-fermionic models

and under 7 — —% :

0 — (—ir)'n, (2.35)
% R e—m/z% (2.36)
% <o %, (2.37)
% — % (2.38)

Since the partition function is a product of the spin-structures of 64 fermions, the
modular transformations will take us from one spin-structure to another. Modular invari-
ance requires that both spin-structures related by these transformations be present in the
partition function with equal weight. This gives the constraints

(J(Z) = eii(a'a“‘nc( 5 o 1), (2.39)

C (g) = (il o (i) ) (2.40)

where 1 is the vector corresponding to periodic boundary conditions for all fermions and
1 1
SURED SRED SIS DD S LUt
real left  complex left real right  complex right

Another constraint arises when considering higher order loops :

o o CiTad! a o
o(5)e(5) =soemimre(, 2 )e(y5 ) 242

where §, is the space-time spin statistics index defined as

5 — l & O‘(WﬁQ)
* —1 < a(yh,)

. (2.43)
1. '

Now we can use these constraints to derive the rules for constructing a model.

Using (3.6) and (3.7) with o/ = a and 8 = 0 implies that

0(00‘>2 - 5@(3‘) c<g) (2.44)

wich means that either C’(g) =0or C(g) = 0., Where we have normalized C’(g) =1. We

define a set of vectors = by
== {a O(g‘) - 5a} (2.45)
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2. Free-fermionic models

Using (3.6) and (3.7) we see that = is an Abelian additive group, and spin-structures
contributing to the partition function are pairs of elements in =. Furthermore, if we
take = to be finite (and therefore the boundary conditions to be rationnal), it is in fact
isomorphic to

(1
I

k
P zx.. (2.46)
=1

which means that = is generated by a set of basis vectors {by, ..., b}, such that
k
i=1

where NN; is the smallest positive integer where N;b; = 0.

Now if we take three vectors o, 5, v € Z, (3.7) can be rewritten as

o522 ()e()

Equation (3.5) with a = /3 gives

C (Z) = mifaa( (‘;‘) . (2.49)

Manipulating (3.6), (3.7), (3.8) and since (8 generates a finite group of order Ng, we show
that if N;; is the least common multiple of N; and Nj, it must satisfy

When ¢ = j this constraint holds when N; is odd. If it is even we have the stronger
constraint :

N;b? = 0 mod 8. (2.51)

When all the constraints derived in this section are satisfied, the modular invariance
condition is also satisfied, and thus there is no further obstruction to consistently assigning
coefficients to pairs of elements of =.

2.2.2 Deriving the spectrum of a model

We can rewrite equations (2.17) and (2.18) in the general case as

a(f)] _ He  mif-Fo
Zr [ﬁ(f)} =Tr, [¢"e p |, (2.52)

where H, is the Hamiltonian and F, the fermion number operator in the Hilbert space
sector 7, defined by the vector a.

28



2. Free-fermionic models

The partition function can then be written as a sum over sectors, using the fact that
the basis vectors b; are generators of a discrete group Zy, and applying equation (3.8) :

[t 4 Tr{H (s0(()emsn v

Ni—1
+ {5@(2) e”bi'Fa} + 1) e”TH“} . (2.53)

The only states that appear in the partition function are those that realise a generalised
GSO projection

¢imiFa | gy = 500(2) S)... (2.54)

The full Hilbert space is therefore

=P f[ {e”bi'Fa = 5.C (Z‘) } A, (2.55)

a€cs i=1

The mass of a state in the sector J7, is given by the Virasoro gauge conditions

1 g, -y,
M? = —= 2.56
- 2 i 8 +left—mzoversy ( )

2 AR - QR
Mp=—1+——+ Yoy (2.57)

right-movers

where ay r are the boundary conditions defined by the vector o for the left and right
moving fermions and we should have M? = M3 for each state. We can compute the
frequencies of the fermionic oscillators depending on their boundary conditions :

fo—emDyp oy emimal) g (2.58)

The frequency for the fermions is then given by

1+ o 1l -«
= P = 2.59
which can be rewritten using their fermion number operator F as
1
= ;a+p (2.60)

Each complex fermion f generates a U(1) current, with a charge with respect to the
unbroken Cartan generators of the four-dimensional gauge group given by

Qxﬂzv—%, (2.61)
o) p (2.62)

2
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2. Free-fermionic models

2.3 Rules of construction of a model

Now that we have derived all the constraints to build a free-fermionic model we recall
them in a set of rules called ABK rules, namely Antoniadis, Bachas and Kounnas who
derived them in the two papers [1, 2]. These will be our working tools for the work
described in the following parts, and an understanding of the previous derivations is not
necessary to follow it.

2.3.1 The ABK rules

Rules on the basis vectors

The first thing we require is a set of basis vectors that defines =, the space of all
sectors. For each sector § € = there is a Hilbert space of states. Each basis vector b;
consists of a set of boundary conditions for each fermion, written as

b = {a@t,),. .., a(w®)|aly'),...,a(®®)}, (2.63)
where a(f) is defined by
f— —emf, (2.64)

The b; have to form an additive group and satisfy the constraints derived in the
previous section. If NV; is the smallest positive integer for which N;b; = 0 and N;; is the
least common multiple of N; and N}, the following rules must hold :

1 Zle m;b; =0 < m; =0 mod N; Vi,

2 l1ez,

3. Ni;b; - bj = 0 mod 4, (2.65)
4 N;b? = 0 mod 8,

5t even number of real fermions.

Rules on the coefficients

Once the space of states is defined we have to specify the phases C' (2’) for all intersec-
J

tion of basis vectors. These coefficients are required to obey the constraints (3.6), (3.8)
and (3.9), which can be rewritten as :

27 27

L C(Zj) = 0, eNi" = Ob, e bibi N,

2. )=o), (2.66)
s o) =ene o)

4. C(bjiibk) = 0y, C(Z]) C(é’k)
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GSO projections

There is only a limited number of physical states that realise a generalised GSO con-
straint. These states have to survive the GSO projection

eimiFa |y :5@(3) 1S),, Vi, (2.67)

where |S) is a state in the sector a € =.

Expliciting the massless spectrum

Now that these conditions are satisfied we can use the following formulae to analyse
the complete spectrum.

The mass of a state in the sector « is given by

1 ap-«
2 L L
M; = —3 + 3 + E v, (2.68)
left—movers
2 QR - QR
Mp=-1+ 3 + § v, (2.69)

right—movers

where ay r are the boundary conditions defined by the vector o for the left and right
moving fermions and we should have M? = M3.

The frequencies of the fermionic oscillators are

I+« . l—a
I/f: 2 ) Vf: 2 )

(2.70)

and when a U(1) gauge group is realised by a free fermion the charge under this U(1) is

Qu(f) = @ + F. (2.71)

2.3.2 A first example of a free fermionic model

Let us start to construct the simplest model to understand how this construction works.

Since the vector 1 (all conditions are periodic) is required to be in =, we will start
with the basis {1}. We have two sectors : = = {1,2-1 = 0}. We will use the notation
NS for the sector 0, which is the Neveu-Schwartz sector.

2:1 =0,s0 N; = 2and 1-1 = —12, therefore the rules on the basis vectors are satisfied.

Since the states with a mass at the string level would have a mass of the order of the
Planck mass they are not phenomenologically acceptable. We will be especially concerned
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2. Free-fermionic models

with the massless string spectrum, which must include all the particles of the Standard
Model. We need to insure that there are no states with M < 0. Applying (2.68) we find
in this simple model :
For the sector 1
1 10
2 e —— —
Mj=—5+—=+ > v>o, (2.72)

left—movers

so this sector contains no massless states.

For the NS sector

1 0
2 _ E
ML = —5 + g v, (273)
left—movers
0
2 _
Mpp=~1+2+ > v, (2.74)

right—movers
where for the fermions the frequency is given by

1+0 1
i 5 =3 (2.75)
We need to satisfy M? = M%. Thus we either get a tachyonic state with a negative mass
—% by acting on the NS vacuum with one fermionic right-moving oscillator, or a mass-
less state by acting with one left-moving fermionic oscillator and either two right-moving
fermionic oscillators or one right-moving bosonic oscillator.

The massless states are then the following :

-y /28)2 710) yg, Where OXV is the bosonic creation operator. These states correspond

to the graviton, the dilaton and the antisymmetric tensor.

- W/ﬁ?/ﬁ’i/z 0)vg, @b e {1,...,44} : Gauge bosons in the adjoint representation

of SO(44).

—~ {Xi/z,yi/Z,wi/Q}aXf 0) o, @ € {1,...,6} : Gauge bosons in the adjoint represen-
tation of SU(2)S.

a

~ X2 Uiy W0} P 9P 5 10) vg s @ € {1,...,6} 1 Scalars in the adjoint representa-
tion of SU(2)% x SO(44).

The tachyonic states are i"f/Q 0) yg with a mass M? = —1.

Now we have to perform the GSO projection for each state. For example for the first
state we have

eI, 0XY 10) s = —¥)),0X7 [0) s (2.76)
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2. Free-fermionic models

and using the rules (2.66) we compute C(]\QS) = 0; = —1, therefore

NS ) YV "V
avsC (") UOXE10) s = ~4,0%7 o). .17)

This state survives the GSO projection.

Similarly all other states in this model, including tachyons, survive the GSO projec-
tion. To get rid of the tachyons we need to add more basis vectors with appropriate
phases, in order to project it out of the spectrum with the corresponding GSO projec-
tions. But we would also like to include the particule content of the Standard Model and
reduce the gauge group. In the next part we will study models with these properties.
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Part 3

Classification of flipped SU(5) x U(1)
heterotic string models

We now turn to a specific class of free-fermionic models. Models with a flipped
SU(5) x U(1) gauge group have already been studied in [3, 4, 5]. Our approach is different
since we use a general basis to generate a large class of models with the appropriate gauge
group and study their content. We start by explaining the choice of basis vectors before
studying the gauge bosons in the spectrum of these models. We derive the conditions for
possible enhancements of this gauge group. Then we compute analytical expressions for
the generalised GSO projections of all sectors, that allow to study the possible matter
content in the spectrum of all these models.

3.1 Construction of flipped SU(5) x U(1) models

3.1.1 A general basis for models with an SO(10) gauge group

As explained in the previous part, we have to specify a set of basis vectors to build
a free-fermionic model. A class of free-fermionic constructions corresponds to Z X Zs
toroidal orbifolds compactification. The free-fermionic Z5 x Z5 orbifolds preserve the
SO(10) GUT embedding of the Standard Model spectrum and a classification of these
models has been undertaken in [11, 12]. In [12] a single basis is used to generate the dif-
ferent classes of models. Our work will be based on the same basis, which we explicit here.

We use the notations introduced in Part 2 for the world-sheet fermions :

{w,u’ Xl ..... 6;3/1 ..... 6,w1 ..... 6|g1 ..... 6,@1 ..... 6’7—]1,2,3’2/_}1 ..... 5’(1)1 ..... 8}. (31)
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3. Classification of flipped SU(5) x U(1) heterotic string models

We start with the basis :

vi=1 = b, b e leeb| et Gle pl23 L Hles)
=5 = {0
v =€ = {y, W'y, @'Y, i=1,...,6,
vo=b1 = {4,y 5% 7%, 7t s, (3.2)
vio=by = {2, 412,452, 57, 72, b0,
v =21 = {(I)I ..... 4}’
Vg = 29 = {(55 ..... 8}’

where the fermions between brakets are those with R-boundary conditions (periodic) and
those not quoted have NS-boundary conditions (antiperiodic).

The vectors 1,5 generate an N = 4 supersymmetric model, with SO(44) gauge sym-
metry. The vectors e;, ¢ = 1,...,6 give rise to all possible symmetric shifts of the six
internal fermionized coordinates; they break the SO(44) gauge group but preserve N = 4
supersymmetry. The vectors by and by define the SO(10) gauge symmetry and the Zy x Z,
orbifold twists, which break N = 4 to N = 1 supersymmetry. The remaining fermions not
affected by the action of the previous vectors are &, i = 1,...,8, which normally give
rise to the hidden gauge group. The vectors zq, 2z, reduce the untwisted gauge group from
SO(16) to SO(8) x SO(8). This choice of basis is the most general set of basis vectors,
with symmetric shifts for the internal fermions, compatible with a suitable SO(10) em-
bedding.

Once we have performed GGSO projections for massless states on models constructed
with this basis we end up with gauge bosons belonging to the adjoint representation of
SO(10) x U(1)? x SO(8)%, where we can identify SO(10) with the gauge group under
which observable matter is charged, because SO(10) contains SU(3) x SU(2) x U(1) as a
subgroup, and the U(1)? x SO(8)? is supposed to convey interactions for hidden matter.

3.1.2 A general basis for flipped SU(5) x U(1) models

Now we are interested in flipped SU(5) x U(1) models so we have to break the gauge
group from SO(10) to SU(5) x U(1). This is done by adding a vector « to the previous
basis. There are several possible choices for a that satisfy the rules on basis vectors, but
we have to add a condition : it should be possible to project all enhancements of the
gauge group from new sectors out in order to keep only flipped SU(5) x U(1) models. We
take

Pt = 2 90 =11, (3.3)

where the condition ¢** = 1 breaks SO(10) to SU(5) x U(1) and the other conditions

are required in order for the rules on basis vectors to be satisfied.
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3. Classification of flipped SU(5) x U(1) heterotic string models

This time we have 4 - a = 0, but 2 - « # 0 because of the % boundary conditions, so
we also have to consider the sector 2a. We observe that

6
xz2a+zlzl+S+Zei+zl+22, (3.4)
i=1

so that {v;_12,} is not linear independent. Therefore we have to remove one of the
vectors from the basis. To keep a symmetry we decide to remove the vector v; = 1. Our
basis is now {vq_ 12, a}.

3.1.3 Generalised GSO projections

The second ingredient that is needed to define the string vacuum are the generalised
GSO projection coefficients that appear in the one-loop partition function, c(zj;), spanning
a 12 x 12 matrix. We only have to choose the elements with ¢ > 7, while the others
are fixed by modular invariance. A priori there are therefore 78 independent coefficients
corresponding to different string vacua. They can take the values £1 when the two vectors
have periodic or antiperiodic boundary conditions, and +1 or + ¢ when « is one of the
two vectors. Coefficients on the diagonal are also related by modular invariance, which
gives rise to eleven constraints :

Eleven coefficients are fixed by requiring that the models possess N = 1 supersymme-
try. Without loss of generality we impose the associated GGSO projection coefficients

0(5) :o(s> :c(s) :o(s> _ (3.10)
€; bm Zn 0]
i=1,..6,m=1,2n=12

We remark here that there may exist some degeneracies in this space of physical vacua
with respect to the properties of the effective low energy field theory.
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3. Classification of flipped SU(5) x U(1) heterotic string models

3.2 Enhancements of the gauge group

Now that the basis is defined and that each possible choice of GSO phases corresponds
to a model, let us have a look at the gauge group. The vector bosons from the Neveu-
Schwartz sector generate an

SU((B) x U(1) x U(1)* x SU(4) x U(1) x U(1) x SO(6) (3.11)

gauge symmetry. Depending on the choices of the projection coefficients, extra gauge
bosons may arise from the following sectors :

21, 29, 21 + 22, 200 + 2y, a,
G = o+ 2, a + 29, o+ 2z + 2, —a, —a+ 2z, p. (3.12)
—+ 29, 0x+21+ 2, —a+ 2+ 2

Vector bosons that arise from these sectors may transform under a subgroup of the
Neveu-Schwartz gauge group and enhance the untwisted gauge symmetry. Some of these
enhancements might lead us back to an SO(10) (or other groups) observable gauge group,
which is not what we intend to study, or only enhance the hidden gauge group. We im-
pose the condition that the only space-time vector bosons that remain in the spectrum
are those that arise from the untwisted sector.

We now present the type of enhancements that can occur from different sectors with
the conditions on the GGSO coefficients that allow them. Enhancements with conditions
that do not satisfy the constraints (3.5)-(3.9) are not possible and are not presented here.
We introduce a new notation for the GGSO coefficients :

O(z) = ™l (b]by) € {0,%,—%,1}. (3.13)

Sector 2o + z;

Enhancement Condition Resulting Enhancement
(2a + z1]e;) = 2a + z1]zr) = 2a + z|a) = | SU(B) x U(1) x U(1)3

(200 + z1]bg) =0 — SU(6) x SU(2) x U(1)?
(2a+ z1]e;) = 2a+21|zx) = 2a+z1|a) =0 | SU(B) x U(1) x U(1)?
(2 + 21]b1), (2a + z1|b2)) # (0,0) — SO(10) x U(1)?
(2a+z1e;) = 2a+ z1]2k) = 2a+z1]bk) =0 | SU(B) x U(1) x U(1)?

(2a + z|a) =1 — SO(10) x U(1)3

(2a+ z1]e;) = 2a+21|zx) = 2a+z1|a) =0 | SU(B) x U(1) x U(1)3
(2a+ z|a) =1 — SU(6) x SU(2) x U(1)?
(20 + z1[b1), (2a + z1|bg)) # (0,0)

The relations above hold for all i =1...6 and £ = 1,2. Note that the general condition
to have an enhancement in this sector can be summarized as (z1]e;) = 0 and (zq]e;) = 1.
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3. Classification of flipped SU(5) x U(1) heterotic string models

Sector z; + 29

Enhancement Condition Resulting Enhancement
— SU(8) x U(1)

The relations above hold for all i =1...6 and k£ =1, 2.

Sector «

According to the formula (2.68) and using the expression of the frequency of fermionic
oscillators (2.70) we observe that we need to add either one oscillator of frequency % or
two oscillators with frequency i acting on the vacuum in order to obtain massless states.

States with two oscillators i :

Enhancement Condition Resulting Enhancement
(ale;) = (a]z1) = (albr) =0 SU(4) x SU(5) x U(1)3 x U(1)
— SU(9) x SU(2) x U(1)?
(ale;) = (a]z1) =0 SU(B) x U(1) x U(1)* x U(1)
((a]br), (|b2)) # (0,0) — SU(5) x SU(3) x U(1)*
(ale;) = SUM4)xU1)xU(1) xU(1)
(a]z1) = — SU(4) x SU(2) x SU(2) x U(1)
((a]br), (e]bs)) # (1,1)
(ale;) = SU(B) x U(1) x SU(4) x U(1) x U(1)
(ar]z1) = (a|b) =1 — SU(7) x SU(3) x SU(2) x SU(2)

The relations above hold for alli =1...6 and k£ =1, 2.

States with one oscillator % :

Enhancement Condition Resulting Enhancement

(ale;) = (a]z1) = (albr) =0 SO(6) x U(1) — SO(7) x U(1)
(ale;) = (alz1) = 0 U(1) — 0U(1)

(ale;) =1

AND

(a]b)) =0,i=1,2

or

(a]bg) =0, =3,4

or

(a]by) = (ar]bg), i = 5,6

The relations above hold for all 4,57 =1...6 where i # j and k = 1, 2.
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3. Classification of flipped SU(5) x U(1) heterotic string models

Sector o + z1

States with two oscillators i :

Enhancement Condition Resulting Enhancement

(a+ 21le;) = (a+ z1]21) = (a4 21|br) =0 | SU(4) x SU(5) x U(1)* x U(1)

(a+ 21]|22) = (a+ z1]a) + 1 — SU(9) x SU(2) x U(1)?

(a+ z1]e;) = (@ + 2z1]2z1) =0 SU(B)x U(1) x U(1)? x U(1)

((av + 21]b1), (a0 + z1|b2)) # (0,0) — SU((5) x SU(3) x U(1)?

(a+ z1|22) = (@ + z1|a) + 1

(a+ z1]e;)) =0 SU4)xU(1) xU(1) x U(1)
(a+z|zn) =1 — SU(4) x SU(2) x SU(2) x U(1)
((a 4 21b1), (@ + z1[b2)) # (1,1)

(a+ 21|22) = (oc+zl|oz)

(a+ zle;) = SUB) x U(1) x SU(4) x U(1) x U(1)
(a+ z1|z1) = (oz+zl|bk):1 — SU(T) x SU(3) x SU(2) x SU(2)
(a+21l2) = (a+ z1|0)

The relations above hold for alli =1...6 and k£ =1, 2.

States with one oscillator % :

Enhancement Condition Resulting Enhancement
(a+ze;) = (a+ 2z1]z1) = (a+ 21]bg) =0 | SO(6) x U(1) — SO(7) x U(1)
(a4 z1]22) = (@ + z1|a) + 1

(a+ zlej) = (a+ 21]z1) =0 U(l) —» U(1)

(v + 21e;) =1

(a+ z1|22) = (@ + z1|)

AND

(Oé + leb1> = O, 1= 172

or

(a+ 21]b2) = 0,7 =3,4

or

(Oé + 21|b1> = (Oé + 21|b2), 1= 5,6

The relations above hold for all 4,57 =1...6 where i # j and k =1, 2.

Sectors —a, —a+ 21

These sectors give the same conditions and the same enhancements as the sectors «,
o+ 2.
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3. Classification of flipped SU(5) x U(1) heterotic string models

Sector o + 29

Enhancement Condition

Resulting Enhancement

(a+ 2zle;) = (@ + 22]21) =0

SO(6) x SU(5) x U(1)

4

(1,1)
a+ zle;) = (o + 22]bk) =0
o+ zla) =3

SO(6) x SO(4) x U(1) — SO(10) x U(1)?

(o + z|e) = 3 — SO(11) x SU(2) x U(1)?

(Oé + Z2|bk) =1

(a+ mles) = (@ + zlz) =0 SO6) x U(1) = SO(5) x SU )
(a+ z|e) = 3

((a + 22]b1), (o + 22[b2))

( (

( 1

(

o+ 22|21> =1

The relations above hold for alli =1...6 and k =1, 2.

Sector —a + 2o

Enhancement Condition

Resulting Enhancement

(—or+ z2le;) = (- + 22]21) = 0
—a+ zmla) = —3

SO(6) x SU(5) x U(1)
— SO(11) x SU(2) x U(1)?

(—a+ 23|21) =0

£

—a + 2le;)
—a+ nla) = —3

SO(6) x U(1) — SO(5) x SU(5)

(1,1)
—a+ zle;) = (—a+ 20b) =0
—a+ zla) = —1
-+ 22‘21) =1

(
(
(
(
E(—a + 23]b1), (—a + 22]b2))
(
(

SO(6) x SO(4) x U(1) — SO(10) x U(1)?

The relations above hold for all i =1...6 and k£ =1, 2.

Sector a + z; + 2o

Enhancement Condition

Resulting Enhancement

(a+ 21 + 2z2|e;) = (v + 21 + 22]21) =0
a+ z1 + zla) =

o+ 21 + 22|bk) =

—_ N

SO6)xSU(5)xU(1) — SO(11)xSU(2) x
U(1)?

D=~

a + 21 + 2'2|6i)
o+ 21+ 22|Oé) =

a+z1+ 22021) =0

£ (11
=0

)

SO(6) x U(1) = SO(5) x SU(5)

a4+ z1 + 2)e;) = (a+ 21 + 22|b)
o+ 21 +22|Oé) = —%

(

(

E

E(a + 21 + 20|b1), (v + 21 + 22|b2))
(

(Oé + Z1 + 22|Zl) =1

SO(6) x SO(4) x U(1) — SO(10) x U(1)?

The relations above hold for alli =1...6 and k£ =1, 2.




3. Classification of flipped SU(5) x U(1) heterotic string models

Sector —a + z1 + 29

Enhancement Condition

Resulting Enhancement

(—a+ 21+ 2le;) = (—a+ 21+ 22|21) =0
Oé+21+22’06): L

Oé+21+22|bk) =1

SO(6) x SU(5) x U(1)
— SO(11) x SU(2) x U(1)?

2
a+ 21+ 290e;) = (—a+ 21 + 22]21) =0
Oé+21+22|04) = ;

—at21+2(b)) # (1,1)

(—Oé—f-Zl +22|b1)7 (

SO(6) x U(1) — SO(5) x SU(5)

o+ 2z + Zg|6i)
o+ z1+ 22|Oé) =
a+ 21+ 29)21) =

(—Oé + Z1 + Zg|bk> =0

1
2
1

(
(
(
(
(
(
(
(

SO(6) x SO(4) x U(1) — SO(10) x U(1)?

The relations above hold for alli =1...6 and k =1, 2.

Sector z;

Enhancement Condition

Resulting Enhancement

(z1le:) = (21]bk) = (21]a) =0 SO(6) x U(1) x SU(4) x U(1)
(21]22) =1 — SO(8) x SO(8)

(z1]€:) = (z1]bk) = 0 SO(6) x U(1) x SU(4) x U(1)
(21]22) = (z1]a) =1 — SO(12) x SU(2) x SU(2)
(z1]€i) = (21]22) =0 SU(4) x U(1) x U(1)

((21]01), (21]b2)) # (1,1) — SU((5) x U(1)

(z1]€i) = (21]22) =0 SU(4) x U(1) x SU(5) x U(1)
(z1]b1) = (21]b2) = 1 — SU(9) x U(1)

Ezliej)) = £21|22) = (z1]a) =0 U(l) = SU(2)

AND

(Zl‘bl) = 0, 1= 1,2

(2’1|bl) = (2’1|bg), 7= 5,6

(z1]ej) = (21]22) = 0
(z1]e;) = (z1la) =1

AND

(z1]b1) = 0,i=1,2
or

(21]b2) = 0,0 =3,4
or

(21]b1) = (21]b2), i = 5,6

SU(4) — S0(7)

The relations above, hold for all 4,7 =1...6 where ¢ # j and k = 1, 2.
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3. Classification of flipped SU(5) x U(1) heterotic string models

Sector 2z
Enhancement Condition Resulting Enhancement
(22]€;) = (22]bk) =0 SO(6) x U(1) x SU(4) x U(1)
(22]21) =1 — SU(8) x U(1)
((22[b1), (22]b2)) # (1,1) — SU(5) x U(1)
(22]€;) = (22]21) =0 SO(6) x U(1) x SU(5) x U(1)
(22|Z)1) = (22‘62) =1 — SU(9) X U(l)

The relations above hold for alli =1...6 and k =1, 2.

We now impose in this part that the set of GGSO coefficients for studied models does
not satisfy any of these conditions for enhancements.

3.3 Matter content and expression of the projectors

We analyse the matter content in the different sectors. When we consider different
models (different choices of GGSO coefficient) the matter content varies, since some states
are projected out by the GGSO projections. The conditions for a sector to provide states
in a sector can be expressed in term of projectors P(GGSO coefficients), where P = 0
means that the sector does not provides states and P = 1 means that the state is present
in the spectrum.

3.3.1 Chiral matter

The chiral matter spectrum arises from the twisted sectors. The chiral spinorial rep-
resentations of the observable SU(5) x U(1) arise from the sectors :

Bzgtlz)rs = S+ b1+ pes + qes + res + seg,
{¥" X2 (1= p)y’y’ p’c®, (1 = @)y'y", qu'e?,
(1 =)’y rw’@®, (1 — s)y°y°, swba@®, 7', 2}, (3.14)
Bz(,ils = S+ by+ per + qes + res + seq,
B® = S+ by+pe; + qes +res + sey,

pgars

where p,q,7,5 = 0,1 and by = by + by + 2a + z;. These 48 sectors give rise to 16 and 16
representations of SO(10) decomposed under SU(5) x U(1) :

16 — <3,—§) + (10,%) -, g), (3.15)
16 = (5,5) + (10, ~3) + (1, ). (3.16)

The charges of the different states under the Cartan generators associated with com-
plex world-sheet fermions can be computed using Equation (2.71). The states here have
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3. Classification of flipped SU(5) x U(1) heterotic string models

charges (1, )2, Q3, Q4, Q5 equal to j:% under the observable gauge group, so they should
be linked to hypercharge and electromagnetic charge. We used the following normalisa-
tions for the hypercharge and the electromagnetic charge :

Y = —%U(1)5 + é?, (3.17)
Qem =Y + T37 (318)

where Y is the trace of the charges and Tj the isospin of the weak symmetry :
U(l)s = (Ql + Q2+ Q3) — —(Q4 +Qs), (3.19)
Y = Q1 + Q2+ Q3+ Qs+ Qs (3.20)
= 5(@4 — Qs), (3.21)

which gives

- %(@1 FQut Qi) H(Qit Q) (3.22)
Qem =Y + = (Q4 - Qs). (3.23)

The following table summarises the eigenvalues of the electroweak SU(2) x U(1) Car-
tan generators, in respect to states which fall into the chiral observable SU(5) x U(1)
representations :

Representation P23 PP Y Qem
(5,2) (+,+,4+) | (+,—) | 1/2 1,0
(++,—) | (+.+) | 2/3 2/3

(5.—3) (+—=-) | (=) |-2/3] -2/3
(= ——=) | (+—)|-1/2] -10

(10,3) (++,+) | (==)| O 0
(+, = =) | (++) | 1/3 | 1/3
(++ ) | ()| 1/6 |-1/3.2/3

(10, —3) (++-) | (=—=) | -1/3] -1/3
(+.— =) | (=) | -1/6 | 1/3,-2/3

(—— =) | (++) ] O 0

(1,9 (+,++) | (++) | 1 1
(1,-3) (= =) | (=) ] -1 -1

In the previous table, “"+" and ”—" label the contribution of an oscillator with fermion
number F' = 0 or F' = —1 to the degenerate vacuum. The case of (+, —, —) under 23
for example, corresponds to a part of the Ramond vacuum formed by one oscillator with

43



3. Classification of flipped SU(5) x U(1) heterotic string models

fermion number F = 0 and two oscillators with fermion numbers F' = —1.

These states correspond to particles of the Standard Model. More precisely we can
decompose these representations under SU(3) x SU(2) x U(1) :

- 3 _ 2 1
(57__5) _'(3717__§)u°4_(1727__§)L7 (3‘24)
1 1 — 1
(107 5) - (37 27 E)Q + (37 ]-7 g)dc + (17 ]-7 O)Vca (325)
(1, g) = (1,1, 1)ee, (3.26)

where L is the lepton doublet and ) the quark doublet.

A phenomenologically viable model must consist of 3 families, so we have to count
the number of 16 and 16. The choice of GGSO coefficient will determine the model we
consider and the number of families. In order to be able to distinguish between 16 and
16, one has to define operators that will determine the representations in which the states

of each observable sector will fall into. The operators X;(;ZS;U@ = +1 that define the SU(5)
chirality (5 or 5) for B! . B2 _and B3 _ are given by combining the constraints arising

Dpgrs: Ppars pars
on the chirality Ch(¢'*) when applying the GGSO projections :
X(I)SU(5) _ C( Béé')l‘s )
P b+ (1—7)es + (1 —s)eg)’
(2)
(2)su(s) Bhpgrs
X rs — C 5 3-27
ba (bl +(1—=r)es+ (1 — 8)66) ( )
X(3)SU(5) _ C Bé:;')l‘s
pars bi+(1—7r)es+ (1 —9)es)’

The states in the sector Bf.é?«s can be projected out of the spectrum by the GGSO
projection of the vectors by, by, z; and z5. Similarly for all sectors, we can define a
projector P such that the states survive when P =1 :

1 el €9 21 22
P16 Blgs Blg)s Blgs Bigs
1 €3 €4 21 22
PE) :(1-0( )).(1_0( )>.<1_o( )).<1_o< )) 3.2
bars = 16 BE, BE, BE, i) 2
1 €5 €6 21 22
P :(1-0( )).(1—0( )).(1—0( )).(1—0( )) 3.30
=15\, B, B, si)) O

These projectors can be expressed as a system of linear equations with p, ¢, r and s as
unknowns. The solutions of a specific system of equations yield the different combinations
of p, q, r and s for which sectors survive the GSO projections. We use the notation defined
in (3.13) for the coefficients. The analytic expressions for each different projector Pz}éf’s?’
respectively, are given in a matrix form A'W* =Y".
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3. Classification of flipped SU(5) x U(1) heterotic string models

(erles) (erlea) (eiles) (erles)\ [P (e1]b1)

(e2les) (ezles) (ezles) (eales) | [a| _ | (e2]br) (3.31)
(z1]e3) (21lea) (21les) (z1les) | | 7 (21]b1) '
(22e3) (220ea) (22les) (22]es)/ \s (22/b1)

(esler) (esle2) (esles) (esles)\ [P (e3]b2)

(ealer) (ealea) (eales) (eales) | [a | _ [ (ealb2) (3.32)
(z1]e1) (z1le2) (21les) (z1les) | | 7 (21]b2) '
(22le1) (22le2) (22les) (22]es)/ \s (22]b2)

(esle1) (esle2) (esles) (esles)\ [P (es]b3)

(esler) (esle2) (esles) (eslea) | [a | _ [ (es|bs) (3.33)
(z1]e1) (z1le2) (21les) (zaled) | | 7 (21]3) '
(z2e1) (22le2) (220es) (z2]eq)/ \s (22]b3)

3.3.2 Spinorial representations

States also arise from different sectors, with a different matter content. If we want a
model to reproduce exactly the content of the Standard Model we should project them
out of the spectrum. We can also keep hidden matter, but massless states with fractional
electric charge should be eliminated. Indeed there are restrictive experimental constraints
on these exotic states : the lightest fractionally charged state is necessarily stable and
overproduced in the evolution of the early universe. Consequently it must be sufficiently
massive and diluted to avoid constraints from contemporary searches.

We start by looking at spinorial representations. We have states corresponding to the
representation 4 of SO(6) in the sectors

4+ ,54+.,6 _ 1,2,3

Bt = B a2z (3.34)
4-5-6-) 1,2,3

Bzgqr’s ) = Bz()qrs ) —a + 2. (3.35)

And similar states in the sectors

B;;;rs,8+,9+) — Bézll;“zs’g) + o+ 21 + 29, (336)
By = B —atat (3.37)

States corresponding to the representation 8 of SU(4) x U(1) arise from the sectors

BUO112) — BO23) | o (3.38)
Finally states corresponding to the representation 8 of SU(6) x U(1) arise from the sectors
BZ(,(1173nZg14’15) — B;z(;(lz;'zs’g) _|_ 2a _|_ 21 + Z29. (339)

The projectors for all these states, as well as their matrix formulation, are given in
Appendix A.1.
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3. Classification of flipped SU(5) x U(1) heterotic string models

3.3.3 Vectorial representations

Massless states are obtained in some sectors by acting on the vacuum with a Neveu-
Schwarz right-moving fermionic oscillator. Vectorial representations can arise from the
sectors

(164,17+,18+) __ n(1,2,3)
qum - qurs +a,

(3.40)

and produce the following representations :

o {7'}R >§2T5, i=1,2,3, where |R >1(92T5 is the degenerated Ramond vacuum of the
Bz()z)rs sector. These states transform as a vectorial representation of U(1).

o {7*}R >0 and{7*}|R >0 . i =1,2,3. These states transform as a vectorial
representation of U(1).

o {1} R >;(;2r5, 1 = 1,2,3. These states transform as a vectorial representation of
SU(5) x U(1).

o {O-4}|R >\, i =1,2 3. These states transform as a vectorial representation of
SU@) x U(1).

The same states with conjugate oscillators are found in the sectors

—, 77, -) — 1<y
;(oé?s 17-,18-) _ B}géé@ — a. (3.41)
Similar states appear in the sectors

and produce the following representations :

o {7'}R >§fq)rs, i=1,2,3, where |R >§,?Ts is the degenerated Ramond vacuum of the
B;(,Z)m sector. These states transform as a vectorial representation of U(1).

o {7*}R >0 and{7*}|R >0 ., i =1,2,3. These states transform as a vectorial
representation of U(1).

o {Y°}R >§,2rs, © = 1,2,3. These states transform as a vectorial representation of

SU(5) x U(1).

o {OL4YR >}(fq)rs, 1 = 1,2,3. These states transform as a vectorial representation of
SU(4) x U(1).
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3. Classification of flipped SU(5) x U(1) heterotic string models

The same states with conjugate oscillators are found in the sectors

B{9=20=217) = pL28) _ 4 2. (3.43)
Finally in the sectors
22,23,24) _ p(1,2,3
B2 = BUL23) 4 2 + 2, (3.44)

we find the following representations :

o {i*}R >4 and {7"*}|R >0 i = 1,2,3, where R >0 . is the degenerated
Ramond vacuum of the B]E,fl)rs sector. These states transform as a vectorial represen-
tation of U(1).

o {015} R >0, and {5} R >\, i = 1,2, 3. These states transform as a vecto-
rial representation of SU(5) x U(1).

o {O4}R >, and {®+} R >4, i =1,2,3. These states transform as a vecto-
rial representation of SU(4) x U(1).

o {B°}R >0, and {®*}|R >, i = 1,2,3. These states transform as a vectorial
representation of U(1).

o {08} R >, and {53} R >\, i =1,2,3. These states transform as a vecto-
rial representation of SO(6).

The projectors for all these states, as well as their matrix formulation, are given in
Appendix A.2.

3.4 Perspectives and future work

Now that we have derived algebraic expressions for the projectors, we can analyse the
entire massless spectrum for a given choice of GGSO projection coefficients that com-
pletely specify a specific string model. These formulae will be inputted into a computer
program which can scan the space of string vacua produced by different choices of GGSO
coefficients. This work is similar to what has already be done with Pati-Salam models in
[7] and is conducted by J.Rizos at the University of Ioannina.

Interesting results will be for example the number of models with three generations
and the possibility of models without any exotic massless states with fractional electric
charge. This approach will also enable us to pick models with quasi-realistic spectrum,
and the next stage will be to analyse the Yukawa couplings and to study phenomenological
properties of these models.
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Part 4

An SU(6) x SU(2) heterotic string
model

We now construct a new specific heterotic-string model with an SU(6) x SU(2) gauge
group. It is obtained by enhancement from a model with a Pati-Salam gauge group. We
explain the construction and analyse the spectrum, which contains three chiral families
and no exotic fractionally charged states. Then we compute the superpotential and derive
the F-flatnness and D-flatness conditions.

4.1 Construction and spectrum of an SU(6) x SU(2)
model

4.1.1 Construction by enhancement from Pati-Salam models

Analysing the possible enhancements from the flipped SU(5) x U(1) heterotic string
model, we observe that the observable gauge group can be enhanced to SU(6) x SU(2).
Since such a model has not been obtained from string theory yet, this enhancement could
be interesting . We will therefore study a model with such an observable gauge group.

This enhancement also appeared in the Pati-Salam classification described in [7]. Since
a computer program already exists for an analysis of such models, we can use it to obtain
the SU(6) x SU(2) heterotic-string model in the free-fermionic formulation. The con-
struction of this model follows the same steps as for the flipped SU(5) x U(1) models we
described previously. We recall here some of the main features.

Starting with the set of twelve basis vectors (3.2) we add a thirteenth one,
a={g" o7} (4.1)

It breaks the SO(10) symmetry to the SO(6) x SO(4) Pati-Salam gauge group and the
hidden symmetry SO(8); to SO(4); x SO(4),. The gauge group becomes

SO(6) x SO(4) x U(1); x U(1)g x U(1)3 x SO(4); x SO(4)2 x SO(8)3 . (4.2)
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4. An SU(6) x SU(2) heterotic string model

We also define the two vectors

6

r=1+854) e+a+n={7"" "} (4.3)
=1

b3:b1+b2+$. (44)

We are interesting in an SU(6) x SU(2) heterotic string model. This can be realised
from the Pati-Salam model, provided that the following enhancement of the observable
gauge group from the sector x is realised :

SU(4)ps x SU(2)g x U(1) — SU(6) x SU(2) , (4.5)
where U(1) = U(1); + U(1); — U(1)5. The gauge group in our model is therefore
SU(6) x SU(2) x U(1)] x U(1)y x SO(4); x SO(4)y x SO(8), , (4.6)
where
ULy =201), —U1)e+U(1)3 , (4.7)
Uy, =U(1), +U(1)s, (4.8)

are two orthogonal combinations.

As explained in the section 3.4, the work of part 3 can be imputted in a computer
program which can span the space of string vacua produced by different choices of GGSO
projection coefficients. A similar algorithm is presented in [6, 7] for the Pati-Salam het-
erotic string model. It allows us to pick a model satisfying certain conditions amongst
random sets of GGSO projection coefficients.

We are looking for a model with the following characteristics :
— an SU(6) x SU(2) observable gauge group,

— three chiral generations for the standard model matter,

— no exotic massless states.

Inputting these conditions in the Pati-Salam program, we obtain the following set of
GGSO projection coefficients :

1111111111111
111111111111
01 01001O0O0O0O

0010010001
01 00O0O0O0T1T71
01001110

011001

1 0110

1 001

1 11

11

1
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4. An SU(6) x SU(2) heterotic string model

where we use the notation C(;’)

J

are fixed by modular invariance.

= ¢m(vilv) and where the coefficient under the diagonal

This set of coefficients describes a model without massless fractionally charged states.
They only exist in the massive spectrum, which is consistent with experimental con-
straints. Thus this is an exhophobic model.

4.1.2 Matter content of the SU(6) x SU(2) model

We now determine the spectrum of this SU(6) x SU(2) model. Using the previous
notation for the generic sectors, states arise from the following sectors in representations
of the Pati-Salam gauge group :

— Neveu-Schwartz (NS) and X sectors : untwisted matter.

- Bl()é;?s’?’) sectors : spinorial twisted matter in the observable sector.
— B2 4 2 sectors : vectorial twisted matter (observable and hidden).

- BSEY 4 a4z, BEEY a4

spinorial twisted matter in the hidden sector.

Sector Field | SU(6) x SU(2) | UL); | U1y | SO(4)1 x SO(4)2 x SO(8)

(35,1) 0 0 (1,1,1)

(1,3) 0 0 (1,1,1)

(1,1) 0 0 (6,1,1)

Vi (1,1) 0 0 (1,6,1)
(1,1) 0 0 (1,1,28)

(1,1) 0 0 (1,1,1)

(1,1) 0 0 (1,1,1)

Fy (15,1) -2 0 (1,1,1)
Fs (15,1) 2 0 (1,1,1)
3P (1,1) 0 2 (1,1,1)
P (1,1) 0 -2 (1,1,1)
oy (1,1) 0 0 (1,1,1)
S®S+z i) (1,1) 0 0 (1,1,1)
Fs (15,1) 1 -1 (1,1,1)
Fs (15,1) -1 1 (1,1,1)
D3y (1,1) 3 1 (1,1,1)
D3y (1,1) -3 -1 (1,1,1)
iR (1,1) 0 0 (1,1,1)
oy (1,1) 0 0 (1,1,1)
F; (15,1) 1 1 (1,1,1)
F; (15,1) -1 -1 (1,1,1)
D56 (1,1) 3 -1 (1,1,1)
56 (1,1) -3 1 (1,1,1)
o5 (1,1) 0 0 (1,1,1)
g (1,1) (1,1,1)

Table 4.1: Untwisted gauge and matter spectrum
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4. An SU(6) x SU(2) heterotic string model

Sector Field | SU(6) x SU(2) | U1), | UL), | SO(4)1 x SO(4)2 x SO(8)
F (15,1) 1 0 (1,1,1)
1,1 -3 0 1,1,1
S4by+eq X1 (1,1) ( )
® G (1,1) 0 1 (1,1,1)
© (1,1) 0 1 (1,1,1)
S+bi+es+x _
G (1,1) 0 -1 (1,1,1)
Co (1,1) 0 -1 (1,1,1)
S+br+es+es
® f1 (6,2) 1 0 (1,1,1)
S+bi+es+e+x
Py (15,1) -3 3 (1,1,1)
1,1 3 -3 1,1,1
St byt X2 (1,1) 2 2 ( )
o Ca (1,1) 5 5 (1,1,1)
1,1 3 1 1,1,1
S+bytesta s (L.1) 2 2 ( :
Cs (1,1) -3 -1 (1,1,1)
Ca (1,1) -3 -1 (1,1,1)
S+ba+ear+es
® fa (6,2) -3 3 (1,1,1)
S+bxt+extes+x
Fs (15,1) -3 3 (1,1,1)
. 1,1 3 -3 1,1,1
S+ by +er + e X3 (1,1) 2 2 ( )
@ 45 (171) 2 2 (17171)
Cs 1,1 -2 -1 1,1,1
Stbytertesta (D 5 ; (o
o (1,1) 3 1 (1,1,1)
G5 (1,1) -3 —3 (1,1,1)
S+ b2 +er
) fa (6,2) -3 3 (1,1,1)
S+b2+er+x
1,1 3 1 1,1,1
S+b2+$+81+€2 gll (1 ) ?)) 21 (77)
Cll (171) ) ) (17171)
1,1 3 1 1,1,1
S+bx+x+es €12 ( ’ ) L2’) 21 ( s Ly )
Cia (1,1) -3 -1 (1,1,1)
Fy (15,1) -3 -3 (1,1,1)
X4 1,1 +3 +2 1,1,1
S + b3 +eq4 +e2 ( ) g ? ( )
@ CS (171) 2 ) (17171)
Cs 1,1 -3 1 1,1,1
S+bstesterta (hn ; : ( )
Cr (1,1) 3 -1 (1,1,1)
G (1,1) -3 % (1,1,1)
Fy (15,1) 3 3 (1,1,1)
X5 1,1 -2 -3 1,1,1
S+bg+estexter (11) : : ( )
Co (1,1) -3 1 (1,1,1)
@ Cro (1,1) -3 1 (1,1,1)
S+bz+es+ex+er+x _ 3 1
Cio (1,1) 3 -1 (1,1,1)
Co (1,1) 3 -1 (1,1,1)
S+b3+eq
® f (6,2) 3 3 (1,1,1)
S+b3t+es+x
S+bsz+es+er
(&) fT4 (672) 7% 7% (17171)
S+bz3+es+e+x

Table 4.2: Observable twisted matter spectrum
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4. An SU(6) x SU(2) heterotic string model

Sector Field | SU(6)x SU2) | U, | vy, | SO@4): x SO(4)2 x SO(8)
S+bi+z+es+es Hiq (1,1) 0 1 (4,1,1)
S+bi+x+eqs+es5+eg Hoq (1,1) 0 1 (1,4,1)
S+bi+x+e3+es+es Z1 (1,1) 0 1 (1,1,8)
S+by+x+e+ex+es His (1,1) 3 1 (4,1,1)
S+bytx+er+er+es+eg Hjo (1,1) 3 1 (1,4,1)
S+bs+x+es5+es His (1,1) 2 1 (4,1,1)
S+bo+x+es Hos (1,1) 3 1 (1,4,1)
S+bz+z+e+es+ey Zs (1,1) -3 i (1,1,8)
S+bs+x+estes Zs (1,1) 2 -1 (1,1,8)
S+by+x+22+e3+eq+es+eg Zy4 (1,1) 0 1 (1,1,8)
S4+bi4+x+20+eq4+e5 Zs (1,1) 0 1 (1,1,8)
S+bi+z+21+e3+es+es+es Hyo (1,1) 0 1 (2,2,1)
S+bi+xz+21+e3+estes Hi22 (1,1) 0 1 (2,2,1)
S+bi4+x+21+e3+es+eg Hios (1,1) 0 -1 (2,2,1)
S+bi+z+21+es+eq Hi24 (1,1) 0 -1 (2,2,1)
S+bs+x+ 21 Hiaos (1,1) -3 i (2,2,1)
S +b3+x+ 21 +e2 Hizg (1,1) -3 i (2,2,1)
S+bs+x+2+er Hior (1,1) -3 i (2,2,1)
S+b3+x+z1+exter Hiosg (1,1) -3 1 (2,2,1)

Table 4.3: Twisted hidden matter spectrum.

Because of the enhancement the states arising from the observable sector fall in rep-
resentations of the SU(6) x SU(2) gauge group. These can be obtained by adding the
states in a sector to the states in this sector plus z, for example b; ® b; + x.

The gauge bosons come from the sector NS @ NS+z in the representation (35,1) + (1, 3),
according to the decomposition of the adjoint of SU(6) under SU(4) x SU(2) x U(1) :

35=1(4,2,-3)+ (4,2,3) + (15,1,0) + (1,3,0) + (1,1,0) . (4.10)

The observable matter spectrum can be accomodated in the representation 27 of Ej.
Therefore according to the embedding

27 = (15,1) + (6,2) , (4.11)

the observable matter spectrum must be in the representations (15,1) and (6,2) of
SU(6) x SU(2)g.

Decomposing these representations under Pati Salam SU(4) x SU(2) x SU(2) gauge
group gives

~—

(15,1) = (1,1,1)+(6,1,1) + (4,2,1) , (4.12)

6,2) = (1,2,2)+(4,1,2) . (4.13)
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4. An SU(6) x SU(2) heterotic string model

Then the standard model is embedded in the Pati-Salam gauge group in the following
way :

Q

- (313)
(1,2,2) = (1,2,_%)h+ <1,2,%)h0 | (4.14)

)

We thus find the quarks and leptons of the standard model. We also have two Higgs h and
h¢ in the representation (1,2,2) of Pati-Salam which are used to break the electroweak
symmetry and two coloured triplets D and D°.

The full massless spectrum is shown in tables 4.1, 4.2 and 4.3. It contains :

— The quarks and leptons fields in three chiral generations from (15,1) + (6,2).

— A pair of Higgs in (15,1) + (15, 1) to break the SU(6) x SU(2)r symmetry.

— A pair of Higgs in (6,2) + (6,2) to break the Pati-Salam symmetry.

— Light Higgs doublets in (6,2) + (6,2) to break the electroweak symmetry.

— Hidden matter which transforms according to representations of the hidden gauge
group.

U(1) anomaly

Looking at the charges of the states, it appears that this model contains one anomalous
U(1):
viy,=u), TUQ1),=172, (4.15)
while U(1)] is non anomalous.

We will see later that this anomaly can be cancelled using the Dine-Seiberg-Witten
mechanism.
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4. An SU(6) x SU(2) heterotic string model

4.2 Analysis of the model

4.2.1 Derivation of the superpotential

We now calculate the cubic-level superpotential, following the method described by
A.E. Faraggi in [10]. We will not explain the rules in detail since a complete understand-
ing of how they are derived is not necessary for the following work.

The trilevel superpotential of our model describes the Yukawa couplings and thus en-
ables to compute the mass of particles that interact with Higgs fields.

It is obtained by calculating correlators between vertex operators Vif ®)

Ay = </d2z1/d2z2/d223 vlfv2fv;,b> . (4.16)

Each term in the superpotential will be the product of three-point functions corresponding
to different world-sheet fields. The non vanishing terms in the trilevel superpotential are
those for which the following rules are respected :

1. For a complexified two-dimensional fermion which produces a U(1) current, the total
U(1)-charge must be zero : Q1 + Q2+ Q3 =0.
This concerns the fields {x'2, x34, x°6, 15, pt-3 @18}

2. A left-moving real two-dimensional fermion f, paired with a right-moving real
fermion f, produces an Ising model operator o, corresponding to the two different
fermion number projections in the Ramond sector. Thus real fermions, i.e. y* and
w’, can only appear in the following combinations :

= (f(21)ox(22)),
— (o4(21)0x(22)),
~ (o ( ) —(22)f(23)),
< o (2)f(2 )>

To find the non vanishing terms in the superpotential, we have to check the previous
rules for all the fermions in each possible term.

The superpotential for the SU(6) x SU(2) heterotic string model is then :
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Wsnm

2 ={FRE+hHLEY+{ i+ AR+ {F P Fs+ Py Fy

+F s+ fiiFs+ fafoFo+ fafa Fr } + { Fs Fs Fs + fs f3 Fg

+AfiFr+ F Py Py +{F5s Fixai+ Fs Faxa + Fs Fs x3 + Fr Fyxa

+ Fr Fyxs } 4 X1 x2 Xa + { Fs Fo Fr + F5 Fg Fr } + { @12 P34 Psg + P12 P3q s }

+ { Fs Fs ®s6 + F5 Fr @34 + Fs Fg @5 + Fs Fr O34 + Fg Fr @10 + Fr Fg @10 }
+{GGx2+0Gxa+GGxa+Glxa+Ghxi+ Gl

+ C1o0Ci1 X1 + €1 G xs )

+{ H11 H11 + Hay Ho1 + Hi21 Hio1 + Hioo Hioo + Z1 Z1 + Z4 Za + Zs Zs } @12

+ { Hi2 Hi2 + Hao Hap + Hi3 Hi + Hag Hag } $34 (4.17)
+{ Hi2s Hia5 + Hi26 Hi26 + Hi27 Hio7 + Hiog Hiog + Zo Zo | @56

+ { Hi23 Hi23 + Hi24 Hi24 } @12 + Z3 Z3 P56 + { Hi1 Hi2 + Ho1 Hao } X5
%21235124-{(1@ +0G P+ {00+ 00k} P
F{UU+GG+HGG+H GG+ 011+ G262} Pu+{GG+0UG
+C6C6 + G5 G5 + Ci1 Ci1 + Ci2 Ci2 } Paa 4 { s Cs + C7 7 4 Cr0 Cro + o Co } Pse
+{CsCs + Cr Cr 4 Co Co + G0 Cro } Ps6 + { Cu1 G + G2 Cio } Dy

+ %{FJMH +fifiGa+ G CoCin + ¢l }-

+ 2y Zyx3 +

4.2.2 Anomaly cancellation

We now discuss the pattern of symmetry breaking and the anomaly cancellation. Once
again, we will only describe the procedure without trying to have a profound understand-
ing of how it works.

In order to cancel the U(1) anomaly, we have to define a flat direction. It is a (complex)
scalar field whose potential vanishes along that direction :

(D-flatness) : D, = ZQE“)]%P =0, (4.18)
(F-flatness) : F; = Z—W ; W=0. (4.19)
T

The anomalous U(1) is broken by the Green-Schwartz-Dine-Seiberg-Witten mecha-
nism in which a potentially large Fayet-Iliopoulos D-term § = 55—-TrU(1); is generated
by the vacuum expectation value (VEV) of the dilaton field. Such a term would in general
break supersymmetry unless there exists a direction in the scalar potential ® = > . a;®;
which is F-flat and D-flat with respect to the non anomalous symetries. In that case
this direction will acquire a VEV, cancelling the ¢-term, restauring supersymmetry and

stabilizing the vacuum.

In concrete terms, we impose a Fayet-Illiopoulos D-term in the anomalous direction,
giving non zero VEVs to certain massless fields :

A g
Da=> QW+ Ty U1 =0 (4.20)

95



4. An SU(6) x SU(2) heterotic string model

while D-flatness in the non anomalous direction and F-flatness are maintained.

We now write the D-flatness and F-flatness constraints for the SU(6) x SU(2) model.

D-flatness constraints

U(1)1: D1 =—6|x1|* + 3|x2l* + 3|xs|* + 3|xal® = 3|xs|” + 3(|¢al* + 3|¢s|* — 3|¢3]* — 3| Cl?)
+3(1¢s1* — 31¢6] + 31¢6]* — 31¢51?) + 3(|¢s|* — 3[Cs|* + 3[¢7[* — 3IG7[%)
+3(|Col* + 1¢10* = 31¢ol* = 3I¢10l?) + 3(1C11[* = 3111l + 3[¢12]? — 3[C12)?)

_ _ 4.21
+6(|D2|* — 6|D2|?) + 6(]P3|* — 6|3]%) (21
+ 211 = o> = 1 fs]? + 1 A1* = | fal
+2|F|? = |Rf = |Fsf — |[Ful* + |[Fu)> = 0,
U(1)y: Da = —3|xz2> = 3|xs|* + 3|xal® = 3Ixs|* + 2(|C1* + 2| |* — 2IC1* — 2/¢[%)
+ (|Gl + 1¢s1? = 1617 = 1G) + (167 — 166l + 1¢6* — 1¢51%)
+ (1G12 + 181 = 167 = 1G17) + (160 + €10l = Cr0l* = 1G0]?)
+ (Gl = 1 + (G2l = [C1af?) + 4(1@1 2 = [B1]2) + 2| — [@2]?) (4.22)
+2(|@32 — |@5)%) + | ol + | f* + | f1]? = | ful?
_ 32 . M?
+ |Fo? + 2|F32 — |Fyf* + |Fy]* + Lﬁgp =0.
8
F-flatness constraint
ow
o = 0 for all fieldsn; ; W =0. (4.23)
i

It gives a set of non-linear equations which are shown in the Appendix B.

Additional conditions

The next step is to solve these equations. For that purpose we need to add additionnal
constraints. The first one is that the Higgs doublets in (6,2) + (6,2) must remain light.
They correspond to the fields fi, fa, f3, f4 which are in (6,2) and f; which is in (6,2).
We write down the Higgs doublets mass matrix

Fs Fy 0 (o Fy
F, Fg 0 0 0
Mi=|(0 0 F 0 F|. (4.24)
e 0 0 F 0
F, 0 F 0 F;

Its determinant must vanish to ensure that the electroweak Higgs fields are massless :

det(M;) = [(FsFs — Fy *)Fr — (3 Fs)(FoFr — F?) — F3 °F¢F; =0 . (4.25)
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4. An SU(6) x SU(2) heterotic string model

In order to break SU(6), we choose a pair of (15,1)+ (15, 1), namely F and Fy. They
must be massless too, which is ensured by the condition FgF7 = 0.

Then in order to break Pati-Salam, we also have to choose a pair of (6,2) + (6,2), for
example fo and fi, which are also massless.

~ We can now present a solution, assuming that the fields Fy, Fy, Fy, Fs, Fs, I7, Fy,
Fﬁ, F7, fl; f3, f4 don’t have a VEV.

The minimal choice

Fy=1F} (4.26)
f=h (4.27)
_ 1, - 3 392 ine M7
o2 = +o| B2 + 2|2 + Zstring TP
with all the other field VEVs vanishing, satisfies all F and D-flatness conditions.

We have described an exophobic SU(6) x SU(2) heterotic string model which contains
the Higgs representations that are needed to break the SU(6) x SU(2) and Pati-Salam
symmetries and to generate fermion masses at the electroweak scale. It also contains
the three generations of the Standard Model, as expected. We have also calculated the
superpotential and found F- and D-flat directions which leave the Higgs doublets light.
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Conclusion

We have developed tools to analyse the spectrum of a large class of models in which
the SO(10) GUT symmetry is broken to the flipped SU(5) x U(1) subgroup. We have
derived algebraic expressions that allow us to compute easily the gauge group and the
matter content of these models. Once these expressions are entered in a computer pro-
gram, a classification of these models will provide us with a more accurate knowledge of
the string vacua. In particular one interesting feature will be the number of models with
three generations of chiral matter. We would also like to know whether such models exist
such models without exotic fractionally charged states.

Another part of this work has been the construction of the first SU(6) x SU(2) string
model. This model has been obtained from a similar classification of heterotic string
vacua with a Pati-Salam gauge group and contains three generations of chiral matter and
no exotic fractionally charged states. It also contains the Higgs representations needed to
break SU(6) x SU(2) and the Pati-Salam down to the Standard Model. The next step in
this work will be to look at some phenomenological properties of the model, such as the
masses of the particles of the three generations.

This new approach consists in classifying string vacua instead of picking up isolated
models. It allows either to scan a large class of models, which is what we have developed
for flipped SU(5) x U(1) models, or to select a single model with interesting properties
from the classification and to analyse it, as we have done with the SU(6) x SU(2) model.
For now it remains a mystery how a specific string vacuum can be dynamically singled
out. This is matter for future work.
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Appendices

A. Projectors and matrix formalism

A.1 Spinorial representations

Sectors Bz(éi), B;SLZ??, Bégi)

BHSH6) — BUL2Y) |y 2, (4.29)
BY—569) = B23) _ 4 2 (4.30)

. €2i—1 €24
plB+)E) L 1—-C , J1=C 4
pqrs 16 B,()E]?;Js”)i) B,S(qii‘)i)
Z1 (6%
(14+C . -(1-C i 4.31
( i (B£23i1>*>>) ( <B£éii )ﬂ)) 43

) () i
ezles) (ezleq) (ezles) (ezles ql _ €2001 T + 29
(z1les) (z]ea) (zles) (aales) | |7 ] = |14 (zalor £ 0+ 22) (4.32)
(ales)  (ales) (ales) (ales) s (ar]by + o + 22)
i ) £ ) 1 e
e4leq eglez) (esles) (esleq ql _ €4|b2 T v + 29
(aler) (s1len) (aales) (anles) | |r | = |14 Galbo £ @ + 22) (4.33)
(aler)  (alex) (ales) (ales) s (b + a4 23)
a1 I A N B
egl€1 eslez) (esles) (egleq ql _ €6|b3 T v + 29
(a1ler) (salen) (aies) (anlen) | |r | = |14 (albs £ @ + 22) (4.34)
(aler)  (alex) (ales) (ales) s (ar]bg + a4 29)
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Sectors B;(;Zris), Bﬁzfs), Bz(,gﬁ)

BUESEON) = BUL23) 4 o 4 21 + 2y

B]()Z,;’S_’g ) = BI%TQSS) —a+ 2+ 2
; €2;_1 €2;
P < C( ((6+i)% )) (1 - C<B((6+i):|:))>
pqrs pgrs
(1 e(ggion)) (1 (pion))
(61|63) (61|64) (€1|€5) (€1|€6) p (61|b1 Ta+z+ 22)
(e2les) (ealea) (eales) (eales) | || _ | (e2lbr £a+ 21+ 20)
(z1]es) (21les) (z1les) (zales) | | 7 L+ (2] £+ 21 + 22)
(ales) (ales) (ales) (ales) /) \s L+ (alby £ o+ 21 + 22)
(esler) (esle2) (esles) (esles) P (e3|by £ o + 21 + 29)
(ealer) (eale2) (eales) (eales) 91 _ (ealby = v+ 21 + 20)
(z1le1) (z1]e2) (z1les) (z1les) r L+ (z1]bs £ a + 21 + 22)
(aler)  (ales) (ales) (aleg) s 14 (a|by £ a+ 21 + 22)
(esler) (eslea) (esles) (esles) p (es5]b3 & o + 21 + 29)
(esler) (esle2) (esles) (eslea) | [q] _ (eslbs = v + 21 + 22)
(21|61) (leeg) (leeg) <21|64) T 1 + (Zl|b3 + « + 21 + 22)
(aler)  (alex) (ales) (ales) s 14+ (a|bs £ o+ 21 + 29)

Sectors B\, Blil, BS2)

BU01L12) _ p(123) | 9,

pqrs pqrs

. 1 €2i_1 €2;
s = g B Byard)
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22

B}

9+4-1)
qrs

))

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)
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(e1]ea)
(e2leq)
(22]e4)

(eslez)
(eslez)
(22]€2)

(eslez)
(eslez)
(22]e2)

Sectors B;(mlﬁ, Bééﬁ)s, B}g}}il

. 1
1241
P]qu«:) :g (1_0(

(e1]es)
(eales)
(21]es)

(esler)
(ealer)
(z1]er)
((6561)

(esler)
(21]€1)

(e1es)
(eales)
(22]es)

(esles)
(esles)
(22]es5)

(esles)
(esles)
(22e3)

(e1les)
(e2leq)
(22]e6)

(esles)
(esleq)
(22]€6)

(es|ea)
(eslea)
(22leq)

|

|
|

=~
n I3

=

»w 3R

=
n IR
N—

(61|b1 + 20é>
_ ((ezbl + za)) (4.43)
(Zg|b1 + 2@)

(€3|b2 + 206)
= ((6462 + 2a>) (4.44)
(22|b2 + 20()

(e5|b3 + 2a)
_ ((66b3 v 2a)) (4.45)

(22|b3 + 2a)

BI()(11§;14,15) _ Bz(ulzi,S) + 20+ 2 + 2 (4.46)
€2i_1 €2i A1

7 : 1—C< 1244 >'(1_O< 12 z)) (4‘47)
Bz(ulz%; ))> ( Béqrj ) B ’(”1’": )

(e1]eq)
(e2]€4)
(21]eq)

(esle2)
(eale2)
(21]e2)

(eslez)
(esle2)
(21]€2)

(e1]es)
(ezles)
(21]es)

(esles)
(edles)
(21]es)

(esles)
(esles)
(21]e3)
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(4.48)

(4.50)

(e3lbz + 2a)
_ ((e4b2 + 2a)) (4.49)



Appendices

A.2 Vectorial representations

Sectors B,(D}I,an), B,(mlﬁ), Bﬁﬁﬁ

(16+,17+,184) __
qurs

= B2 4

pgrs

States {7'}|R > and {¢"°}|R >

15+0)+H) AL 1 €2i—1
Pp((g’r‘s+ )Rl R — L (1 (B( o +))> (1
pqrs
(vre(ggian)) (-
pqrs
(e1]es) (e1]es) (e1]es) (e1les) p
(e2]es) (e2]es) (e2]es) (€2es) a1 _
(21]es) (z1]eq) (21]es) (21]es) r
(20 + ales) (z0+ales) (z20+ales) (22 + ales) S
(esler) (eslea) (esles) (esles) p
(ealer) (eale2) (eales) (eales) a| _
(z1]e1) (z1]e2) (21]es) (21]es) r
(22 + aler) (z0+ ales) (z2+ ales) (22 + ales) S
(esler) (es]e2) (esles) (esles)
(esler) (esle2) (esles) (esles) q
(2’1|€1) (21|€2) (Zl|€3) 21’64 r
(20 +aler) (20 +ales) (20+ales) (22 + ales) s

States {7*}|R > and {7**}|R >

P;Séii—ﬂ) H)(@*573) 1_16 (1 _ O(

€2i—1

(4.51)

€9;
C
)
o+ 29
c( i) @5
qrs

(61|b1 +(Jé)
(e2|by + )
1+ (21|01 + @)
1/2 + (a4 2]b1 + )
(4.53)

(e3|by + )
(64’[)2 +Oé)
1+ (z1|b2 + @)
1/2 4+ (o + 23]by + )
(4.54)

(e5|b3 + )
(e6|bs + )
1+ (21|b3 + @)
1/2 4+ (a + 22]bs + )
(4.55)

i— €2
: (1-0C ;
Béﬁ,i“”))) ( (Bé%i* W))

-+ 29

21
(e e(ggon)) (1ric(gen)) a0
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(e1]es) (e1]eq) (e1]es)
(e2]es) (e2]es) (e2]es)
(21]es) (21]€a) (z1]es)
(20 + ales) (2o + ales) (22 + ales)
(esler) (eslez) (esles)
(ealer) (eale2) (eales)
(z1]e1) (z1]e2) (z1]es)
(22 + aler) (224 ales) (22 + ales)
(es|e1) (es]e2) (es]es)
(esler) (esle2) (esles)
(z1]e1) (z1]e2) (z1]e3)
(20 +aler) (224 ales) (224 ales)

States {¢"**}|R >

P+ DE) _ 1 <

pqrs 16

(e1les) (e1]ea) (e1les)
(eales) (eales) (eales)
(21es) (z1]es) (z1]es)
(22 + ales) (204 ales) (22 + ales)
(esler) (esle2) (esles)
(ealer) (eale2) (esles)
(21]e1) (21]e2) (z1]es)
(22 +aler) (22 +ales) (22 + ales)
(esle) (eslez) (esles)
(esler) (eslez) (esles)
(21]e) (21]€2) (21]e3)
(20 +aler) (zo+ ales) (22 + ales)

(e1les) P (e1]br + @)
(e2les) q| _ (e2]b1 + @)
(21]eq) r L+ (21|b1 + @)

(20 +aleg) ) \s —1/2 4 (a + z|by + @)

(4.57)
(esleq) p (eslbz + )
(eales) q| _ (e4]be + @)
(Zl|€6> r 1+ (Z1|bg + O{)
<22+Oé|€6) S _1/2+(Oé+22|b2+04)
(4.58)
(es]es) D (es|bs + )
(es|e4) q| _ (eslbs + )
(21]e4) r 1+ (z1]|b3 + @)
(20 4+ ales)) \s —1/2 4 (a + z|bs + @)
(4.59)
€2i— €9;
( (15+z ) ) <1 C ( ((15+4)+ ) )
pq?"s pqrs
-+ 2
(3;;2“ >)> (1 o C(Bééii*’”))) (4.60)
(e1]eq) (e1|by + @)
(eales) q (e2]by + @)
(z1]eq) r (z1|b1 + @)
(22 + aleg) s —1/2 4 (a + 29]b1 + )
(4.61)
(esles) D (e3]be + )
(eales) q (e4]b2 + @)
(z1]eq) r (z1|bs + @)
(22 + aleg) s —1/2 + (a+ 22]bs + @)
(4.62)
(eslea) (e5]bs + )
(esles) q (e6]bs + )
(21ea) r (21]bs + o)
(22 + aey) s —1/24 (o + 22]b3 + )

(4.63)
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Sectors BI(,}IES_ ), B},}]ZS_ ), Bﬁlfs— )

BU6—17-18-) _ p(1.23) _ (4.64)

pgrs pqgrs

States {7'*}|R > and {¢*°*}|R >

1544 1..5% €2i—1
P]Szgrs+) @) - 1_16 (1 < ((1541) ))
qurs

(1 + C( ((15+z
pq’r"s

622
(0% + zZ
Brpgrs

(e1]es) (e1]ea) (e1]es) (e1]es) p (e1]br — )
(e2]es) (e2]e4) (e2]es) (e2]eq) 7| _ (e2]br — )
(21]es) (21]e4) (21]es) (21]es) r 1+ (z1]by — o)
(22 +ales) (22+ales) (22+ales) (224 ales)) \s —1/2+ (a+ 2|bi — @)
(4.66)
(esle1) (eslez) (esles) (esles) p (eslbs — )
(ealer) (eslez) (esles) (edles) 9| _ (ealbr — )
(z1]€1) (21]€2) (21]es) (#1]es) r 1+ (z1]b2 — a)
(22 +aler) (224 alea) (22+ales) (22+ales)) \s —1/2+ (a+ 22[b2 — a)
(4.67)
(esle1) (eslez) (esles) (esles) p (eslbs — )
(esle1) (es|e2) (es|e3) (es|e4) 91 _ (eslbs — )
(21]e1) (21]e2) (21]es) (21]ea) r 14 (21]bs — @)
(22 +aler) (224 alea) (22+ales) (2+aled)) \s —1/2+ (a + 22[bs — a)
(4.68)

States {7*}|R > and {7*}|R >

) —) (727 €2i—1 €9;

plas+)=)@*a®) L 1—C : 1=-C .
pqrs 16 B,ggé“)*) B}()ggﬂ)—)
21 ) a+ 2o

pars pqrs
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(e1les) (e1les) (e1]es) (e1les) p (e1]br — )
(eales) (e2]eq) (e2les) (e2leq) q| _ (ealbr — @)
(21]e3) (21]€4) (21]es) (21]es) r 1+ (z1]br — o)
(22 + ales) (224 ales) (22+ales) (22+ales)) \s 1/2+ (a + 2|by — @)
(4.70)
(esler) (eslez) (esles) (esles) p (ezlbs — @)
(ealer) (eale2) (edles) (eales) q| _ (ea]b — @)
(21]e1) (21]e2) (21]es) (21]eq) r L+ (21|by — )
(22 +aler) (224 alea) (22+ales) (22+ales)) \s 1/2 4 (a + 22|by — @)
(4.71)
(es|e1) (es]e2) (es|es) (es|ea) p (es]bs — )
(es|e1) (es|e2) (esles) (eslea) 71 _ (es|bs — )
(21]e1) (21]e2) (21]es) (21]ea) r 1+ (21bs — o)
(22 +aler) (224 alea) (22+ales) (2+ales)) \s 1/2 4 (a + 22|bs — @)
(4.72)
States {p'1}|R >
e =i (- eggit)) (- agion))
(1-elagon)) (-ie(e)) - om

(e1les) (e1]ea) (e1les) (e1les) p
(eales) (eales) (eales) (e2les) q
(z1es) (21]ea) (21es) (21]es) r
(22 + ales) (204 ales) (20 + ales) (22 + aleg) s
(esler) (esle2) (esles) (esles) p
(esler) (ealez) (esles) (eles) q
(z1]e) (21]e2) (21]es) (21]es) r
(22 +aler) (204 ales) (2o + ales) (22 + aleg) s
(esle) (esle2) (esles) (eslea) p
(esler) (eslez) (esles) (esles) q
(21]e) (21]€2) (21]es) (21]e4) r
(20 + aler) (2o + ales) (22 + ales) (22 + aley) s
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el\bl —Oé)
62‘[)1 —Oé)
Zl‘bl —Oé)
1/2 4+ (a + 22]b1 — )
(4.74)
63‘[)2 —Oé
64‘[)2 —Oé
Zl|b2 —(1/
1/2 4 (a + 2]by — )
(4.75)
€5‘b3 —Oé
€6|b3 —Oé
Z1|b3 —O,/
1/2 + (a+ 23]b3 — «)
(4.76)
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Sectors BI(,}I'EQF), BT(,?][T);F), Bﬁi?)

B19+20+214) _ pOL23) | 4 o (4.77)

pgrs pgrs

States {#'}|R > and {¢"°}|R >

D) (Al €2i—1 €2;
P;féi?* ) ( C( ((1844)+ )) (1 - C(B((18+i)+)>)
qu‘S pars

a+ 29
(e e(ggon)) (1ric(gio)) 079

(e1les) (e1]es) (e1les) (e1]eq) p (e1]br + o + 21)
(e2]es) (e2]es) (e2]es) (e2]eq) a1 _ (e2]br + a + 21)
(21]e3) (21]€4) (21]es) (21]es) r L+ (z1]by + a + 2z1)
(22 +ales) (22+ales) (22+ales) (22+ales)/ \s —1/2+ (a+ 2|bi + o + 21)
(4.79)
(esler) (e3le2) (esles) (e3]eq) p (eslb2 + a + 21)
(ealer) (eale2) (eales) (eales) q| _ (ealbo + a + 21)
(z1]e1) (21]€2) (21]es) (21]es) r 1+ (z1]b2 + a + 21)
(22 +aler) (224 ales) (22+ales) (22+aleg)) \s —1/2+ (a+ 22fba + a + z1)
(4.80)
(esler) (esle2) (esles) (esles) p (es]bs + a + 21)
(es|e1) (esle2) (es|e3) (es|e4) 7] _ (eslbs + v + 21)
(z1l€1) (z1]e2) (z1)es) (z1]e4) r L+ (z1]bs + a+ 2z1)
(20 + aler) (za+ales) (224 ales) (22 + ales) s —1/2 + (a+ 2]bs + o + z1)

(4.81)

States {7**}|R > and {7**}|R >

i 2% . = 3% €2;—1 €9;
Pigs O = g (1 - C<B((1s+z’>+>)> ‘ (1 - C(B(<1s+i>+>))
pars pqrs
. o+ 2
pars pqrs
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€1|€3

62|€3

Z1|€3
2’2 +Oé|€3

63|€1)
(ealer)
(z1]e1)
(22 + afeq)

65|€1)
(esler)
(z1ler)
(22 + aleq)

:
:
:

(e1lea)

(eales)

(21]e4)
22 +CY|€4)

€3|€2)

(ealez)

21‘62)
(22 + arle)

€5|€2)

(esle2)

(21]e2)
(22 + ales)

States {¢**}|R >

pgrs

(e1les)
(eales)
(21]es)

(esler

(€5|€1

((Z2FC¥€3)
)

(ealer)
(21]e1)

(22 + aleq)

)

(esler)

(z1]e1)
(22 + aey)

(e1]ea)
(eales)
(21]ea)

(22 + ales)

(eslez)
(eslez)
(21]€2)

(29 + ales)

(eslez)
(esle2)
(21]€2)

(22 + aes)

(e1les)

(eales)

(21]es)
(22 + ales)

(esles)

(eales)

(21]es)
(22 + ales)

(esles)

(esles)

(21es)
(22 + ales)

(18+)+)(g™*) _ 1
p<>>(>ﬁ<

-

(e1les)
(eales)
)

(21|€5

(esles)
(esles)
(21]es)

(z2 + ales

(esles)
(21]e3)

)
(esles)
)

(22 + ales

(22 + aleg
(

(e1les)

(eales)

(21]es)
(22 + arfeq)

(esles)

(esles)

(21]es)
(22 + aes)

(esleq)

(eslea)

(21]€4)
(22 —+ 04’64)

€2i—
(18+z
Bhpgrs

(e1les)
(eales)
(21]es)

Zl|€6

(z2 + ales) (22 + aleg)

(esles)
(esles)
(21]es)
)
)
)

(esles
(esleq
(21]e4
ZQ+06’€4

)
)
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[
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]

p
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p
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s
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|
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(4.83)

(€3|b2 + o+ Zl)
_ (ealby +a + 21)
o 1+ (z1]be + o + 21)

1/2 + (o + 22]by + a + 21)
(4.84)

(es5]bs + o + 21)
(66|bg + o+ Zl)
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€92;

((18+4)+
Bpgrs

o+ z
C ( B((lgﬂfﬂ)) (4.86)
pqrs

(61’[)1 + o+ 2’1>
(62’[)1 + o+ Zl>
(2,'1|b1 + o+ 21)
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(63’()2 + o+ Zl>
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—1/2 4 (a + 29]bs + a + 21)
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Sectors BI(,}I‘ES ), B}fl[ﬁs ), B}flis)
19—,20—,21— 1,2,3
ngrs ) = Bg(oqrs — + 21 (4-90)

States {7'*}|R > and {¢*°*}|R >

D) (Bt €2i—1 €2i
P;(%H ) (739 ( ( (15.+3) ))) . (1 — C(B((lgﬂ) )>>
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Sectors B2, B2, B3
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States {¢*°} R >, {¢"**}|R >, {°}|R > and {¢"*}|R >
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B. F-flatness constraints

[ PP
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PP By + Fs P+ 67+ &7+ 67+ 65 =0,
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€40 &x1+2864Ps56=0, (4.144)
€6 1 28 P3a =0, (4.145)
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