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1 Abstract

Quantum Mechanics and General Relativity are incompatible. It is reflected
at least in the discontinues of energy and the probability description in Quan-
tum Mechanics. There are two thoughts to connect the microcosmic with
the macroscopic: one is to reconstruct the Quantum Mechanics using the
structure of General Relativity, the other one is to reconstruct the General
Relativity from the structure of Quantum Mechanics. Equivalence Postu-
late in Quantum Mechanics uses the first thought. This report will focus on
how the Quantum Mechanics is reconstructed from the structure of Classical
Mechanics. The main structure of the report is based on the papers Qaun-
tum Mechanics from an Equivalence Principle (Faraggi & Matone, 1997),
and Equivalence Postulate in Quantum Mechanics (Faraggi & Matone, 1999)

2 Introduction

The thought of reconstructing Quantum Mechanics comes from imitating
the geometric structure of Classical Mechanics. The geometric structure is
reflected in the formats of the formulae and also displays the relation be-
tween physics quantities. Therefore considering that Heisenberg Uncertainty
separates momentum and position, the duality from the Hamilton’s formula
and Legendre Transformation is chosen as a start.

Then, need to check whether such reconstruction works, which means
it agrees with the solid conclusions in Classical Mechanics and Quantum
Mechanics. So try to obtain a way of changing the coordinates. This way
should agree with the Equivalence Principle.

Equivalence Principle is generated from the General relativity. It origi-
nally is relevant to that for the same physics states, the descriptions based
on different reference systems are equivalent to each other. The most fa-
mous example is that the force causing the acceleration in an inertia system
is equivalent to the non-inertia force in a non-inertia system (the reference
system with acceleration). Equivalence Principle in Quantum Mechanics
tries to make the changes of the reference systems in Quantum Mechanics
have the same effect as that in the General Relativity. In another words, be-
cause the wave function describes the possible states and their possibilities,
Equivalence Principle in Quantum Mechanics tries to expand the reference
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system changes including the possibility descriptions.

After discovering that Möbius transformation is the way of changing co-
ordinates which satisfies the requirements of the reconstruction, the problem
that such transformation failed at transforming “0 kinetic energy” state to
other states makes modifying the Hamilton-Jacobi Equation in need. Thus,
by adding two inhomogeneous terms into the Hamilton-Jacobi Equation, the
modification makes the transformation valid on each two states and thus sat-
isfies the Equivalence Principle.

Such transformation and modification generate the new wave function.
Because it is on the extended complex plane, the wave function can be
the linear combination of the two solutions of the Schrödinger Equation (a
second-order differential equation). However, the continuity and smoothness
conditions also need to be satisfied at the infinity point. These conditions
provides the different solutions from the classical solutions for the potential
well problems.

While it is imitating the Classical Mechanics, the meanings of the imi-
tating terms sometimes differ from the physical meanings in Classical Me-
chanics. For S0, it differs from the reduced action in the W = 0 state; For
trajectory, although there is an arguments that the second term in the gen-
erating function of the Canonical Transformation corresponds to the path
density, there are even different opinions on whether the trajectory in Quan-
tum Mechanics exists. However, whether the idea of de Broglie wave can
help to explain the contradiction point ”velocity level” may worth further
discussion.

3 Duality

3.1 Duality on the Format

The differences between the microcosmic world and the macroscopic world
are generated by the different origins of Quantum Mechanics and General
Relativity. Quantum Mechanics differs greatly from the Classical Mechanics
and its limits describe Classical Mechanics whereas the General Relativity
is the expansion of the Classical Mechanics. Because the formulae formats
express their geometric structure, Equivalence Postulate in Quantum Me-
chanics tries a new perspective to reconstruct the Quantum Mechanics: Keep
the formulae’s formats similar to the ones in the Classical Mechanics.
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In the Classical Mechanics, for the monogenic system without the time
parameter, there is a duality between momentum p and velocity dq

dt from
Lagrange Equation and Hamilton’s formula.

p =
∂L

∂ dqdt
(1)

dq

dt
=
∂H

∂p
(2)

so that the Legendre Transformation indicates that

L = p
dq

dt
−H (3)

where L and H can exchange, and the equation still remains in the same
form.

In the Equivalence Postulate in Quantum Mechanics, rather than using
the entire theory of trajectory in the Classic Mechanics, at the beginning it
only employs the form of the duality between p-dqdt and L -H. Under the
assumption that there is a similar duality in Quantum Mechanics, then to
derive what property such duality will result in, and also to compare the
results with the Classical Quantum Mechanics. In this duality, p and q can
be separate, which also corresponds to the Heisenberg Uncertainty: momen-
tum and position cannot be measured simultaneously.

To specify the imitating from Classical Mechanics, take T0 to imitate
Hamiltonian H0, and S0 to imitate the Lagrangian L0, p does not change,
q to imitate the dq

dt in the Canonical Equation of Hamilton. The results are:
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Position Description Momentum Description

T0 = q ∂S0
∂q − S0 S0 = p∂T0∂P − T0

p = ∂S0
∂q q = ∂T0

∂p

p dq
dS0

= 1 q dp
dT0

= 1

Take a derivative with respect to S0 Take the derivative with respect to T0
dp
dS0

dq
dS0

+ p d
2q
dS2

0
= 0 dq

dT0
dp
dT0

+ q d
2p
dT 2

0
= 0

1
q
√
p
d2q
√
p

dS2
0

= 1√
p
d2
√
p

dS2
0

1
p
√
q
d2p
√
q

dT 2
0

= 1√
q
d2
√
q

dT 2
0

= − 1
4p2

( dp
dS0

)2 + 1
2p

d2p
dS2

0
= − 1

4q2
( dq
dT0

)2 + 1
2q

d2q
dT 2

0

Define U(S0) := 1
4p2

( dp
dS0

)2 − 1
2p

d2p
dS2

0
Define V (T0) := 1

4q2
( dq
dT0

)2 − 1
2q

d2q
dT 2

0

= {q,S0}
2 = {p,T0}

2

where {h(x), x} = h′′′

h′ −
3
2(h

′′

h′ )
2

So that ( d2

dS2
0

+ U(S0))q
√
p = 0 So that ( d2

dT 2
0

+ V (T0))p
√
q = 0

and ( d2

dS2
0

+ U(S0))
√
p = 0 and ( d2

dT 2
0

+ V (T0))
√
q = 0

3.2 Duality in the Transformation

In Classical Mechanics, considering the stationary (independent from the
time parameter) system, Hamilton’s Principle requires the line integral,
which is also named as reduced action, I =

∫ t2
t1 Ldt should have a stationary

value for the actual path of motion (Goldstein et al. 2000). Hence, it need
L0 to be a constant in no matter what reference system. For the recon-
struction of Quantum Mechanics not relevant to time, because the physical
meaning of p and q in Quantum Mechanics are similar as they are in the
Classical Mechanics, to imitate the Classical Mechanics, S0 is required to be
invariant under the coordinate transformation.

Having manifest p-q and S0 − T0 duality, then try to see what may
happen when transforming coordinates. In the Classical Mechanics, Canon-
ical Transformation is aimed at finding the free system with total energy
in Hamilton-Jacobi Equation equals to zero. So in the Quantum Mechanics
try to find a invertible transformation from V (x) − E = 0 in Schördinger
Equation to other states. Therefore, define the invertible v-transformation
v(x): x 7→ xv, such that S0(qv) = S0(q). V (x) − E corresponds to the
Canonical potential U(S0). Because S0 required to be invariant under the
transformation, next step try to find a concrete transformation that keeps
U(S0) invariant.
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Möbius transformation satisfies the requirement that U(S0) is invariant.
Recall that from Section 2.1

1

q
√
p

d2q
√
p

dS2
0

=
1
√
p

d2√p
dS2

0

(4)

so that q
√
p and

√
p are the two linear independent solutions of

(
d2

dS2
0

+ U(S0))y = 0 (5)

Therefore, q
√
p and

√
p span the solution space {y|y := Aq

√
p+B

√
p}. Note

that

U(S0) =
{q, S0}

2
=
{ q
√
p√
p , S0}
2

(6)

such relation among the two linear independent solutions and U(x) in the
equation (6) is a property of Schwarzian Derivative. To abstract mathemat-
ically, assume f1(x) and f2(x) are the linear independent solutions of the
differential equation

(
∂2

∂x2
+ V (x))y(x) = 0 (7)

For A×B 6= 0, transpose the terms to obtain

V (x) = −(Af
′′
1 +Bf

′′
2 )

Af1 +Bf2
(8)

Due to the fact that the Möbius transformation M does not change the
result of Schwarzian Derivative, which means {M(f(x)), x} = {f(x), x}, M
is a possible transformation as

U(S0) =
{q, S0}

2
=
{M(q), S0}

2
(9)

Additionally, Möbius transformation is the only transformation satisfy-
ing that U(S0) is invariant. For {f(x), x} = {x, x} = 0, because

{f(x), x} = (ln[f(x)′])′′ − 1

2
(ln[f(x)′])′2 = 0 (10)

To solve the differential equation, take y := ln[f(x)′]′,

y′ − 1

2
y2 = 0;−1

y
=

1

2
x; y = ln[f(x)′]′ = − 2

x+ c1
(11)
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Then,

ln[f(x)′] =

∫
−2

x+ c1
= −2ln(x+ c1) + c2; (12)

f(x)′ =
ec2

(x+ c1)2
(13)

So,

f(x) =
c3

x+ c1
(14)

f(x) is a Möbius Transformation. Furthermore, because the chain rule on
Schwarzian Equation indicates that

{g(f(x)), f(x)} = (
∂x

∂f(x)
)2({g(f(x)), x} − {f(x), x}) (15)

It implies that only if g is Möbius Transformation, then {g(x), x} = {f(x), x},
because

{g(f(x)), f(x)} = (
∂x

∂f(x)
)2({g(f(x)), x} − {f(x), x}) = (

∂x

∂f(x)
)2 × 0 = 0

(16)

With the v-transformation v(x) so that S0(qv) = S0(q), then after the
Möbius transformation on either p or q, the new coordinate and momentum
p̃ and q̃ are:

q̃ = qv = Aq+B
Cq+D p̃ = pv = Ap+B

Cp+D

p̃ = dS0
dqv q̃ = dT0

dpv

= dS0(q)
dq

dq
dqv = dT0(p)

dp
dp
dpv

= p (Cq+D)2

AD−BC = q (Cp+D)2

AD−BC
T̃0 := T0(p̃) = q̃p̃− S0(q̃) S̃0 := S0(q̃) = q̃p̃− T0(p̃)

= Aq+B
Cq+D

(Cq+D)2

AD−BC p− pq + T0(p) = Ap+B
Cp+D

(Cp+D)2

AD−BC q − pq + S0(p)

= T0(p) + ACpq2+BDp+2BCpq
AD−BC = S0(p) + ACqp2+BDq+2BCpq

AD−BC

3.3 Properties of the Duality

Möbius transformation is valid for the entire space because it does not lose
the generality: firstly, any Möbius transformation is bijective, and secondly
it covers the entire extended complex plane C̄ := C ∪ {±∞} (although for
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coordinates, extended real line is enough).

The definition of the Möbius transformation is that a map M : C̄ 7→ C̄,
which can be represented in the form w = az+b

cz+d , for a,b, c, d ∈ C̄ and
ac× bd 6= 0. Hence, for c = 0, w = az + b, if a 6= 0, then solve the equation
to obtain that z = w

a −
b
a , which means it is invertible. Else if c 6= 0, it can be

solved that z = −dw+b
cw−a . Finally, ∞ 7→ d

c and a
c 7→ ∞. Summarize above, M

is bijective and its inverse transformation is also a Möbius transformation.
Additionally, infinity is not removable from the space.

Then, to see under what condition, S0 and T0 (position description and
momentum description) are overlap, which means they can interchange. As-
sume there is the simplest relation between p and q:

qv = αp pv = βq.
So,

qv = T0(pv)
∂pv = α∂S0(q)

∂q pv = S0(qv)
∂qv = β ∂T0(p)

∂p

substitute ∂pv

∂q = β Substitute ∂qv

∂p = α

Then,
T0(pv)
∂q = T0(pv)

∂pv
∂pv

∂q = αβ ∂S0(q)
∂q

S0(qv)
∂p = S0(qv)

∂qv
∂qv

∂p = αβ ∂T0(p)
∂p

Integral over q, Integral over p,
T0(pv) = αβS0(q) + c1 S0(qv) = αβT0(p) + c2

T0((pv)v) = αβS0(qv) + c1 S0((qv)v) = αβT0(pv) + c2

= (αβ)2T0(p) + c1 + αβc2 = (αβ)2S0(q) + αβc1 + c2

First thought: Hoping to simplify the process, assume S0((qv)v) = S0(q)
and T0((pv)v) = T0(p). That is (αβ)2 = 1. For the stationary case, imitate
the reduced action S(q, t) = S0(q) − Et and T (p, t) = T0 + Et. And as
required invariance: S0(qv) = S0(q), as well as T0(pv) = T0(p). So S(q, t) =
±T (p, t) + γ. Because

dS = d(pq − T ) = pdq + qdp− qdp− ∂T

∂t
dt (17)

the sign before T (p, t) is negative: S(q, t) = −T (p, t)+γ. So αβ = −1. Addi-
tionally, from the imitation of Legendre transformation S(q, t) = pq−T (p, t),
so pq = γ. Hence, the condition is that pq = γ.

Second thought: Apart from that the invariance of S(q) and T (p) on the
transforming p and q, from the perspective of Möbius transformation

qv =
A1q +B1

C1q +D1
=
∂T (pv)

∂pv
∂pv

∂p
, (18)
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pv =
A2p+B2

C2p+D2
=
∂S(qv)

∂qv
∂qv

∂q
(19)

Recall the duality in 3.2, there will be the requirement that

(A1C1q
2 + 2B1C1q +B1D1)p

A1D1 −B1C1
=

(A2C2p
2 + 2B2C2p+B2D2)q

A2D2 −B2C2
(20)

4 Modify the Classical Hamilton-Jacobi Equation

4.1 Changing the Coordinates

Shödinger Equation, which is used to derive the wave function and thus
very important in Quantum Mechanics, comes from substituting the de-
fined quantum momentum p := −i~ ∂

∂x into Hamilton-Jacobi Equation. The
Equivalence Principle suggests that the descriptions about the same physics
states under arbitrary reference system are equivalence with each other.
However, when changing the reference system from the W = 0 state, the re-
sult is a fixed point. Thus, a modification on the classical Hamilton-Jacobi
Equation is required to guarantee the equivalent descriptions on physics
states on the different reference systems.

The classical Hamilton-Jacobi Equation is

H(q1, ..., qn,
∂F

∂q1
, ...,

∂F

∂qn
, t) +

∂F

∂t
= 0 (21)

where F is the generating function of the Canonical Transformation. The
generating function is tightly connected with the reduced action, because
from the perspective of dimensions, Hamiltonian H and Lagrangian L cor-
respond to energy and thus the generating function has the same dimen-
sion as the reduced action I. Substitute the expression of Hamiltonian H:

− p2

2m + V (q) = E, recall that p = dS
dq , it is − 1

2m(dSdq )2 + V (q)−E = 0, where
E is the total energy and V(q) is the potential.

Take position description. Then try to change the reference system on
the classical Hamilton-Jacobi Equation. As v-transformation required in
2.2, S0(q) remains invariant under the changing of the reference system,
so the v-transformation here must be Möbius transformation. The only
concern is that V (x) may varies. Consider U(S0) defined in 2.1, the for-

mat of ( ∂2

∂S2
0

+ U(S0) = 0) is similar to the one in the Shödinger Equation

(− ~
2m

∂2

∂q2
+V (x)−E = 0). The canonical potential U(S0) is invariant under
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Möbius transformation, therefore, take V (x)− E = U(S0).

Take W := V (x) − E. For the Equivalence Principle in Quantum Me-
chanics, for a coordinate q, there exists a transformation into q̃, such that
W (q) = W (q̃).It is known that

p̃ =
dS0

dqv
= p

(Cq +D)2

AD −BC
=
dS

dq

(Cq +D)2

AD −BC
(22)

So, it is hoped that

W (q̃) = − 1

2m
(
∂S(q̃)

∂q̃
)2 = − 1

2m

(Cq +D)4

(AD −BC)2
(
∂S(q)

∂q
)2

=
(Cq +D)4

(AD −BC)2
W (q)

(23)

so called Co-cycle Condition, for the modified Hamilton-Jacobi Equation.

4.2 Modify the Format of Hamilton-Jacobi Equation

The Equivalence Principle in Classical Mechanics failed at the reference sys-
tem where at least one particle is at rest. For an instance, consider the case
of two free particles A and B, where the mass of A is mA, the mass of B is
mB, If take the reference system relatively rest to A, then The reduced ac-
tion I(qA) = constant, I(qB) = mBvqB. However, because no non-constant
transformation can force the variable qB ≡ constant, A, B are not equivalent
as it cannot be always true that I(f(qB)) = I(qA). The non-equivalence for
the reference system with at least one particle at rest against the goal of the
Equivalence Principle: there is a coordinate transformation in which each
two reference systems are equivalent.

The similar problem exists when analyse from the Classical Hamilton-
Jacobi Equation, then for W (q) = 0, W (qv) = (∂q

v

∂q )−2W (q) = 0, Therefore,

(∂q
v

∂q )−2 = 0, which means q is a constant. In another words, only on a
fixed point that a state with W (qv) 6= 0 can transformed to the state with
W (q) = 0. However, for reference system changing, it is hoped that for an
arbitrary coordinate, there is a transformation changes the W (qv) 6= 0 to
W (q) = 0 state. To reach the hoped goal, modifying the Classical Hamilton-
Jacobi Equation is in need.The method is to provide W (q) a inhomogeneous
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term Q(q).

Define the Co-cyclic Condition as (a; b) = (∂c∂b)
2[(a; c) − (b; c)]. In order

to have

1

2m
(
∂S0(q)

∂q
)2 +W (q) +Q(q) =

1

2m
(
∂S0(qv)

∂qv
)2 +W (qv) +Q(qv) = 0 (24)

noted that from 2.2,

(
∂S0(qv)

∂qv
)2 = (

∂q

∂qv
)2(

∂S0(q)

∂q
)2 (25)

so the remaining part W (qv) +Q(qv) = (∂qqv )2(W (q) +Q(q)), to simplify the
work of modification, using the same transformation of S(q) on W (q)+Q(q)
because they satisfy co-cycle condition.

After writing the Quantum Hamilton-Jacobi Equation in the form

1

2m
(
∂S0

∂q
)2 +W (q) +Q(q) = 0 (26)

where in Classical Mechanics the limit of Q(q)→ 0. Then need to find the
suitable Q(q). The format of {eiαh, x} is a possible choice. However directly
calculate {eiαh, x} is a bit tedious, so using the method of substitution.
Chain Rule of Schwarzian Derivative indicates that

{a(b), b(c)} = (
dc

db(c)
)2({a(b), c} − {b(c), c}) (27)

If take function c := a that is

{a(b), b(a)} = (
da

db(a)
)2({a(b), a} − {b(a), a})

= (
da

db(a)
)2(0− {b(a), a})

= −(
da

db(a)
)2{b(a), a}

(28)

Then, take a := eh, b := x, {eh, x} = −(de
h

dx )2{x, eh}. Meanwhile, if a := x,
b := eh, c := h, then

{x, eh} = (
dh

deh
)2({x, h} − {eh, h})

= e−2h({x, h}+
d3

dh3
[ln(

deh

dh
)]− 1

2
[
d

dh
[ln(

deh

dh
)]]2)

= e−2h({x, h} − 1

2
).

(29)
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Thus,

{eh, x} = −(
deh

db(x)
)2{x, eh}

= −(
deh

dx
)2(

dh

deh
)2{x, h} − 1

2
)

= −(
dh

dx
)2 − 1

2
(
dh

dx
)2.

(30)

So

{eiαh, x} = {h, x}+
α2

2
(
∂h

∂x
)2 (31)

{eiαh, x} = {h, x}+
α2

2
(
∂h

∂x
)2 (32)

If α2

2 (∂h∂x)2 corresponds to −(∂S0
∂q )2, it implies that

W (q) +Q(q) = −(
∂S0

∂q
)2 =

β2

2
(−{e

2iS0
β , q}+ {S0, q}) (33)

Take Q(q) = β2

2 {S0, q}, then W (q) = −β2

2 {e
2iS0
β , q}. Observing the result,

although eiαh is a complex number, the output is real number.

However, the problem of non-equivalence for W = 0 still exists as taking
the free system with W (q) = 0, That is (∂S0

∂q )2 = −2mQ. That S0 is
invariant under the transformation implies Q ≡ 0. This result indicates
that W = 0 is still away from connecting to other W 6= 0 state via a non-
constant transformation.

4.3 Modification on the Existed Terms

Now, try to reach from the state W = 0 to an arbitrary state where W 6=
0. Because that the singularity of the state W (q) = 0 when connecting
to other W 6= 0 states indicates that current W does not satisfy the Co-
cyclic condition, try to modify the term W (q). Denoting (q; qv) as the
inhomogeneous term depending on q and qv to be determined, which satisfies
the cocyclic condition. So, W (qv) = ( ∂q∂qv )2W (q) + (q; qv). It is known that

W (qv) +Q(qv) = (
∂q

∂qv
)2(W (q) +Q(q)) (34)
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Substitute newly defined W (qv) with additional inhomogeneous term, which
gives

(
∂q

∂qv
)2W (q) + (q; qv) +Q(qv) = (

∂q

∂qv
)2(W (q) +Q(q)). (35)

Firstly, to see the calculation property of the co-cylic condition

(a; b) = (
∂c

∂b
)2[(a; c)− (b; c)] (36)

Assume A, B are constants and f(x), and h(x) are functions.

(a; a) = (
∂a

∂a
)2[(a; a)− (a; a)] = 0 (37)

(Aa; a) = (
∂Aa

∂a
)2[(Aa; a)− (a; a)] = A2(Aa; a)⇒ (Aa; a) = 0 (38)

(a;Ab) = (
∂b

∂Ab
)2[(a; b)− (Ab; b)] = A−2(a; b) (39)

Because T0 = pdS0
dq + S0 will not change if adding a constant to S0, the

general function of S0 only depends on its first derivative and higher order
derivatives: F (s′0, s

′′
0, s
′′′
0 , ...) = 0. Because Hamilton-Jacobi Equation is the

classical limit of the function F , the modification term (a; b) should only
depends on the first and higher order derivative of a. So,

(a+B; b) = (a; b) = (a; b+B) (40)

Then to show that the sufficient and necessary condition for the co-cyclic
condition (a; b) only depends on the first derivative or higher derivative
of a is that in the case a = b + εf(b), it always satisfies that (a; b) =
c1εf

(3)(b) + O(ε2) with c 6= 0. For (qv; q) assume qv infinitesimally differs
from q, that is qv := q+ εf(q). It is required that (a; b) only depends on the
first and higher order derivatives of a, so

(q + εf(q); q) = c1εf
(k)(q) +O(ε2) (41)

To determine the k. From the calculation properties above, it can be derived
that

(A(q + εf(q));Aq) = (q + εf(q);Aq) = A−2(q + εf(q); q)

= A−2c1εf
(k)(q) +O(ε2)

(42)
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If F (Aq) := Af(q), then use chain rule

(Aq + εF (Aq); q) = c1εF
(k)(Aq) +O(ε2) = c1εA

1−kf (k)(q) +O(ε2) (43)

Therefore k=3, and

(q + εf(q); q) = c1εf
(3)(q) +O(ε2) (44)

Then is to show that (q; qv) = − β2

4m{q, q
v}. Firstly to show the condition

where the solution for (q; qv) exists. Expand the O(ε2), for εn, the term is

ci1...inεF
(i1)(Aq)...F (in)(Aq) = ci1...inA

n−Σkikεnf (i1)(q)...f (in)(q) (45)

Because without substitution of F (Aq), it is A−2, Thus, Σkik = n+2. Then
to show that either c1 6= 0 or (q + εf(q); q) = 0. Define εab(b) := εf(b) :
b 7→ a := εf(b), think the infinitesimal mapping vab : a 7→ b,vbc : b 7→ c,
vca : c 7→ a. So that

b = a+ εba(a) = a− εab(b) = a− εab(a+ εba(a)) (46)

c = b+ εbc(b) = b+ εbc(a+ εab(a)). (47)

From b, εba + εab ◦ (1 + εba) = 0, so εba = −εab. similarly for a and c. And

εca = εcb + εba = εcb − εab (48)

Because (qv; q) satisfies cyclic condition, when q = qc,qv = qa := c1 +ε(3)(qc)
substitute the equation of co-cyclic condition to the infinitesimal expansion,

(qa; qc) = c1ε
ac(3)(qc) +Oac(ε2)

= (1 +
dεbc(qc)

dqc
)2[c1ε

ab(3)(qc) +Oab(ε2)− (c1ε
cb(3)(qc) +Ocb(ε2))]

(49)

If c1 = 0, the left terms would be

Oac = (1 +
dεbc(qc)

dqc
)2(Oab(ε2)−Ocb(ε2)). (50)

Because
dεbc(qc)

dqc
=
d(εf(qc))

dqc
= ε

df(qc)

dqc
≈ 0 (51)

Oac = Oab(ε2)−Ocb(ε2) (52)
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which differs from that εac = εab+εbc. However, it is all about the second or
higher order terms of ε, so for the first order term, the required relationship
εac = εab+εbc is not guaranteed (because c1 = 0 directly cancels all the first
order terms), and also it implies that (qa, qc) = 0.

Then, it is to show that Schwarzian Derivative is the only possible an-
swer. The different brackets are to denote different relationship between
a and b, and they are all satisfies the co-cyclic condition. The method
is to include an assumed Schwarzian Derivative term in the final answer,
then to check that the answer must also be a Schwarzian Derivative. De-
fine [a; b] := (a; b) − c1{a; b}, because both (a; b) and {a; b} satisfy only
depending on the first and higher order derivatives of a. So, [q+ εf(q); q] =
c2εf

(3)(q) + O(ε2). It is known that {q + εf(q), q} = c2εf
(3)(q) + O(ε2).

According to Faraggi &Matone (1999), c2 = 0, so [q + εf(q); q] = 0. Thus,

(q; qv) = c1{q, qv} = − β2

4m .
Now, the Quantum Mechanics Hamilton Jacobi Equation is

1

2m
(
∂S0

∂q
)2 + V (q)− E +

β2

4m
{S0, q} = 0 (53)

where

W (q) =
β2

4m
({S0, q} − {e

2i
β
S0 , q} −Q(q)) (54)

Q(q) =
β2

4m
({S0, q} − {e

2i
β
S0 , q}+ {q0; q}) (55)

so that both W and Q satisfy Co-cyclic Condition.

4.4 New Wave Function

Wave function is derived from solving the Schrödinger equation. Classi-
cal Schrödinger equation can be obtained by substituting quantum momen-
tum i~ ∂

∂q . After determining that the Quantum Mechanics Hamilton-Jacobi
Equation is

1

2m
(
∂S0

∂q
)2 + V (q)− E +

β2

4m
{S0, q} = 0 (56)

the corresponding new Schrödinger Equation is

[− β
2

2m

∂2

∂q2
+ V (q)]ψ = Eψ (57)

Compare with the classical Schrödinger equation, it is derived that β = ~.
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For classical Schrödinger Equation, the solution is often two conjugate

solutions ψ1 = Re
iS0
~ or ψ2 = Re−

iS0
~ . In Classical Mechanics, the wave

function has to approach 0 when q approaches to the infinity. However,
for the Quantum Mechanics Hamilton-Jacobi Equation, because the Möbius
transformation works on the entire extended complex plane, it is no need to
force the wave function to be 0 at infinity. So try to think of the possibility
of the solution in form of Aψ1 +Bψ2.

For the solution has the form

ψ =
1√
S′0

(Ae−
iS0
h +Be

iS0
h ) (58)

Because the solution space is closed under scale multiplication,

ψ3 =
Aψ1 +Bψ2

Cψ1 +Dψ2
=
Aψ1

ψ2
+B

C ψ1

ψ2
+D

(59)

is another solution. Thus e
2iS0
~ = ψ1

ψ2
. The e

2iS0
~ is also the same as the first

term in the Schwarzian Derivative in W = −~2
2 {e

2iS0
~ , q}. Then a new wave

function is obtained

ψ3 = e
2iS1
~ =

Ae
2iS0
~ +B

Ce
2iS0
~ +D

(60)

It can be solved that

S1 =
~
2i
ln(

Ae
2iS0
~ +B

Ce
2iS0
~ +D

) (61)

That two solutions of a second-order differential equation are linearly inde-
pendent is a common case. There is a case worth consideration: one of the
solutions is linearly dependent on the other solution while the other solution
can also be viewed as its conjugation. For the this case where ψ̄ ∝ ψ, the
simplest one is that ψ = ψ̄. In this case,

Ce
iS0
~ = e−

iS0
~ (62)

so

S0 =
1−c

√
i

~
(63)
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is a constant.

Q =
~2

4m
{S0, q} =

~2

4m
(ln(

dS0

dψ

dψ

dq
))′′ − 1

2
ln(

dS0

dψ

dψ

dq
)′2

=
~2

4m
(ln(−R ~

iS0

dψ

dq
))′′ − 1

2
ln(

dS0

dψ

dψ

dq
)′2) = − ~2

2mR

∂2R

∂q2

(64)

Choose a simplest case, ψ is a constant, for the other solution of the
second order differential equation

− h2

2m

∂2

∂q2
ψ + (V − E +Q)ψ = 0 (65)

The coefficient of the first order term is 0, so Wronskian

Wr = e−
∫

0dx = econstant (66)

is never 0. Hence, the two solutions are linearly independent. So the case
ψ ∝ ψ̄ is unlikely to happen. For the simplest case, choose the constant=0,
so

ψ̄ = R

∫ q

q0

1

R2
dx (67)

From equation (60),

S0 =
~
2i
ln
ψ̄

ψ
=

~
2i
ln

∫ q

q0

1

R−2
dx (68)

5 About the Trajectory

5.1 S0 and the Reduced Action

S0 imitates the Lagrangian when establishing the duality on the format.
However, its physical meaning does not correspond to the Lagrangian, but
to the Reduced Action.

Because Classical Mechanics is viewed as the limits of Quantum Mechan-
ics, Scl0 is hoped to be the same as lim~ 7→0 S0. However, it is not always the
case, especially for W = 0. a counter example is that in classical harmonic
oscillator,

∂Scl0
∂q

=
√

2mT =

√
2m

mω2(A2 − q2)

2
= ±mω

√
A2 − q2 (69)
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where A is the amplitude. However in Quantum Mechanics S0 = 0, which
differs from the classical one. Additionally,

Q = En −
mω2q2

2
= (n+

1

2
)~ω − mω2q2

2
(70)

also differs from the classical one mω2(A2−q2)
2 . Therefore, there is a case that

S0 does not agree with its classical limit.
For this situation, it is possible to substitute the classical limits into the

solution, and the wave function has to vanish at ±∞ . That is

ψ =
1√
Scl0
′
(Ae

−iScl0
~ +Be

iScl0
~ ) (71)

where either A or B is 0.

5.2 Path Integral

Because the format of formulae in Classical Mechanics is actually based on
the theory of trajectory, it is necessary to see what the trajectory would
be like in Quantum Mechanics. In classical mechiancs, Hamilton’s Principle
states that the motion of the system from t1 to t2 is the stationary-valued line
intergral I =

∫ t2
t1
Ldt for the actual path of motion. According to Roncadelli

& Schulman (2007), if choosing (q̂, Q̂) as the set of independent Canonical

variables, and K(Q̂, P̂ , t) = H(q̂, p̂, t)+ ∂w(q̂,Q̂,t)
∂t , where K is the transformed

Hamilton and w(q̂, Q̂, t) is the generated function, then

w(q̂, Q̂, t) = S((q̂, Q̂, t)− i~
2
logdet

∂2S

∂q∂Q
(72)

where —S((q̂, Q̂, t) means the solution of Classical Hamilton-Jacobi Equa-
tion and the second term means the density of the path.

The method used in the paper is that for a very small time t, the gener-

ating function F is in the form F (q,Q) = m(Q−q)2
2t . Then to guess the limit

of operator

Ŵ :=
m

2t
(Q̂2 − q̂Q̂− Q̂q̂ + q̂2) + g(t) (73)

Hamilton-Jacobi Equation is the case when K=0 in the Canonical Trans-
formation. Hence, 0 = m

2t2
[q̂, Q̂] + ∂g(t)

∂t is required. It is known that the
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Heisenberg Equation of motion provide the relation q̂ = Q̂+ P̂ t/m. Hence,

∂g

∂t
=
i~
2t
.g(t) =

i~
2
lnt (74)

Therefore,

Ŵ =
m

2t
(Q̂− q̂)2 +

i~
2
lnt (75)

K(q,Q, t) = C

√
1

t
e
i
~ (m

2t
(Q2−2qQ+q2) (76)

The solution S of the Hamilton-Jacobi Equation S = m
2t (Q

2− 2qQ+ q2) So,

w = S(q̂, Q̂, t)− i~
2
logdet

∂2S

∂q∂Q
(77)

The second term in w is the path density along a classical path and it
also adjusts the difference caused by the non-commutative of operators.

However, there is also argument suggests that for compact space, there is
no trajectory for the Quantum Hamilton-Jacobi Equation involving the time
parameter. In the Quantum Mechanics, energy is quantised. Therefore, t1−
t2 = ∂S0

∂En
implies that there should also exists velocity levels with respect to

energy levels (Faraggi & Matone, 2013). Considering in Quantum Mechanics
wave function is related to probabilities, it may be possible that the ”velocity
level” has some connection with de Broglie wave. It may worth further
consideration.

6 Example: Potential Well

Take potential well as an example. Assume

V (x) =

{
V1 < E |x| < L
V2 > E |x| > L

(78)

Schördinger equation is that

− ~2

2m
ψ′′ + (V (x)− E)ψ = 0 (79)

Take k2
1 := 2m|E−V1|

~2 ; k2
2 := 2m|E−V2|

~2 . The classical general solution is

ψ(x) =


Aek2x x < L
Csin(k1x) +Dcos(k1x) |x| ≤ L
Fe−k2x x > L

(80)
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Because V (x) is an even function, for |x| < L, it is either ψ1 = Csin(k1x)
or ψ2 = Dcos(k1x). For |x| > L, it is symmetric, either ψ3 = Aek2x or
ψ4 = Be−k2x. Because it is on the extended real line, the Möbius Transfor-

mation on continuity condition requires that ψ̃(±∞)
ψ(±∞) should be convergent in

the extended real line. So the only two possible cases are ψ1 joining ψ3, and
ψ2 joining ψ3. Otherwise there will be vibrating divergence at infinity

The first case ψ1 joining ψ3 gives the result

ψ =
1

k1


−sin(k1L)ek2(x+L) x < −L
sin(k1L) |x| < L

sin(k1L)e−k2(x−L) x > L

(81)

k1cot(k1L) = −k2 (82)

ψ̃ =
1

2cos(2k1L)


e−k2(x+L) + cos(2k1L)ek2(x+L) x < −L
2cos(k1L)cos(k1x |x| < L

e−k2(x−L) + cos(2k1L)e−k2(x−L) x > L

(83)

ψ̃

ψ
=

k1

2sin(2k1L)


−cos(2k1L)− e−k2(x+L) x < −L
2sin(k1L)cot(k1x |x| < L

cos(2k1L) + e−k2(x−L) x > L

(84)

lim
q 7→±∞

ψ̃

ψ
= ±∞ (85)

±∞ in extended real line can be viewed as a limit point.

The second case gives the result:

ψ =


cos(k1L)ek2(x+L) x < −L
cos(k1L) |x| < L

cos(k1L)e−k2(x−L) x > L

(86)

ψ̃ =
1

2cos(2k1L)


cos(2k1L)ek2(x+L) − e−k2(x+L) x < −L
2sin(k1L)sin(k1x |x| < L

ek2(x−L) − cos(2k1L)e−k2(x−L) x > L

(87)

ψ̃

ψ
=

1

2k1sin(2k1L)


cos(2k1L)− e−k2(x+L) x < −L
sin(2k1L)tan(k1x) |x| < L

−cos(2k1L) + ek2(x−L) x > L

(88)

lim
q 7→±∞

ψ̃

ψ
= ±∞ (89)
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The solutions contain both the exponential function and the trigonomet-
ric function, which is different from the solution in the Classical Quantum
Mechanics.

7 Conclusion

The report focuses on establishing one-dimensional time-independent Equiv-
alent Postulate in Quantum Mechanics. The reconstructing is based on the
geometric structure of Legendre transformation in the Classical Mechanics.
So the p− q and S0−T0 duality is obtained. The duality also generates the
Canonical Potential U(S) in the form of Schwarzian Derivative. Imitating
the stability of the reduced action indicates that S0 is invariant, Möbius
transformation is the proper transformation because it does not change the
value of Schwarzian Derivative.

Then because for Hamilton-Jacobi Equation, W = 0 states is isolated
from connecting with other W 6= 0 states, which disagrees with the Equiv-
alence Principle. So the modification on the Hamilton-Jacobi Equation is
necessary. The method of modification is adding inhomogeneous terms into
W so that it processes the Co-cyclic condition as ∂S0

∂q . As the consequence
of the modification, the Quantum Hamilton-Jacobi Equation is

1

2m
(
∂S0(q)

∂q
)2 +W (q) +Q(q) = 0 (90)

Because the Möbius transformation involves the entire extended complex
plane, the vanishing of the wave function at infinity is not necessary, but the
convergence on the extended real line at the infinity. So, the wave function
can be different from that in the Classical Quantum Mechanics.

The physical meaning of S0 is a bit ambiguous. It imitates the La-
grangian but processes some property of reduced action. In the W = 0
case, it differs from its Classical limit. For path integral which is the place
generates the reduced action, the second term of the generating function in
the Canonical Transformation corresponds to the path density. However,
there are arguments about whether the trajectory exists in the Quantum
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Mechanics following the Equivalence Postulate. This area may require more
investigation.
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