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Abstract

A study of string theory as a viable model of particle physics.
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Chapter 1

Introduction

The goal of string phenomenology is to predict the framework and data of
particle physics using string theory. Showing that string theory is consistent
with previous models of particle physics is a major step as gravitation can
then be incorporated into a more fundamental framework. To understand
how this is achieved we firstly need to understand an earlier model of particle
physics known as the standard model, improve this model into a Grand
Unified Theory and then show the problem of its incompatibility with the
gravitational interaction.

After examining the mechanics of string theory we will show that not
only can string theory reproduce the data requirement of the standard model
and G.U.T’s but improve them to become a more fundamental theory by in-
corporating gravity. Just as G.U.T’s improved on the standard model, string
phenomenology seeks to prove that string theory is yet another progression
to a deeper and more fundamental model of particle physics.

1.1 The Standard Model

The standard model is a quantum field theory of the three generations of
matter and three of the four known interactions that affects these elemen-
tary particles.

The elementary particles are separated into two groups;

Fermions (matter particles with spin 1/2 fields) and gauge bosons (force
carriers with integer spin fields). There are three generations of fermions de-
noted here by i where i = 1, 2, 3. The fermions consist of quarks and leptons.

Quarks (up-type µi and down-type di ) are defined by carrying colour
charge, electric charge and weak isospin, enabling them to interact with
other fermions via the electromagnetic or weak interactions.
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Leptons (the charged lepton Li and its corresponding uncharged neu-
trino Ni )are defined by carrying weak isospin but not the colour charge.
Three of the leptons also carry the electromagnetic charge.

The interactions are represented by gauge groups known as unitary
groups, each with different dimensions to reflect the number of gauge bosons
that generate their force.

All of these groups are required to be gauge invariant meaning that they
possess local quantum gauge symmetry. This allows all their observables
to remain unchanged after transformations (i.e., their amplitudes are renor-
malizable). The three local symmetries in the standard model (spin 1 fields)
are named; electromagnetism U(1), weak SU(2) and strong SU(3). With the
group combination generally written as SU(3)XSU(2)XU(1).

Another vital component of the standard model is the spin 0 higgs field
which has one gauge boson known as the higgs particle h. The SU(2) field
has three gauge bosons which carry the weak force and in order to satisfy the
gauge symmetry they are required to be massless. However the weak inter-
action is short ranged, behaving as if the gauge bosons are extremely heavy.
In order to meet the gauge invariant requirement and describe the weak
interaction the higgs field was required to produce heavy weak gauge bosons
and still maintain an invariant system. This is known as symmetry breaking.

This completes the gauge fields of the elementary particles,

We have the spin 1 fields,

U(1) gauge field with 1 gauge boson Bµ carrying weak hypercharge.

SU(2) gauge field with 3 gauge bosons W±µ,Wµ
3 carrying weak isospin.

SU(3) gauge field with 8 gauge bosons Gµ carrying color charge.

The standard model is a chiral gauge theory meaning that the two helic-
ities behave differently. Only the left handed fermions feel the weak force,
to combat this problem the right handed fermions can be thought of as left
handed anti-fermions.

Note: there are no right handed neutrinos. When the standard model
was formulated the neutrino was believed to be massless thus travelling at
the light speed constant. Since this constant is unpassable the neutrino
could never be viewed to be right handed. The neutrino is now believed to
be massive so a correct model requires a right handed neutrino.

The spin 1/2 fields are,

3



SU(3)singlet,SU(2)doublet,U(1)weak hypercharge -1 (left-handed lepton doublets)(VL,eL)=Lil
SU(3)singlet,SU(2)singlet,U(1)weak hypercharge 2 (left-handed antileptons)=right handed charged leptonsLir
SU(3)triplet,SU(2)doublet,U(1)weak hypercharge 1/3 (left-handed quark doublets)(UiL,DiL)=Qil
SU(3)triplet,SU(2)singlet,U(1)weak hypercharge -4/3 (left-handed up-type antiquark singlets)=right handed up quark singletsUR
SU(3)triplet,SU(2)singlet,U(1)weak hypercharge 2/3 (left-handed down-type antiquark singlets)=right handed down quark singletsDR

The inclusion of a generation index i reproduces the 3 families of fermions
where i = 1,2,3.

There is only one spin 0 field, the higgs field.

SU(2) doublet H with U(1) weak hyper-charge -1

1.2 Grand Unified Theories

The three gauge groups of the standard model can be combined into a the-
ory with a single renormalizable gauge group. These theories are known as
Grand Unified Theories or G.U.T’s. The group symmetry allows the parti-
cles of the standard model to be represented as different states of a single
particle field.

the simplest G.U.T is labelled SU(5),

SU(5)⊃SU(3)XSU(2)XU(1)

The two smallest representations of SU(5) are 5 and 10,

5 = (3, 1)x + (1, 2)y

Which contains 3 (left-handed down-type antiquark singlets) = right handed
down quark singlets DR and the left-handed lepton doublet (left-handed
lepton doublets) (VL, eL) = Lil

10 = (3, 1)x + (3, 2)y + (1, 1)z

Which contains the 6 up-type quarks, 3 (left-handed up-type antiquark sin-
glets) = right handed up quark singlets UR and 3 (left-handed up-type quark
singlets). Then 3 (left-handed down-type quark singlets) plus a right handed
electron.

This is repeated for each generation of matter and as in the standard
model right handed neutrino’s are not included.
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The next group which contains the standard model is labelled SO(10),

SO(10)⊃SU(5)⊃SU(3)XSU(2)XU(1)

The S0(10) model produces 16 spinors which contain the 5 and 10 of SU(5)
plus a right handed neutrino. This is the complete particle content of the
standard model unified in a single group.

1.3 Summary

Defining the standard model as three gauge groups we have shown that
it is a strong representation of particles and their interactions. We then
improved on the model by unifying the three gauge groups into a single
group known as a G.U.T namely SU(5). However SU(5) had no quantum
field representation for a right-handed neutrino. This problem was solved
by embedding SU(5) into the SO(10) group which allowed a definition of
a right-handed neutrino, completing the contents of all known matter and
their interactions.

However, in this framework it still is not possible to incorporate the
gravitational interaction into the model.

The gauge models previously discussed are so powerful and accurate be-
cause they utilise renormalizable quantum fields. This means that inherent
infinities can be dealt with by absorbing them into a finite number of mea-
surable parameters. Since gravity is nonrenormalizable it cannot be dealt
with in the same way and its infinities go untamed.

If we think of the fundamental particles of SO(10) as different manifesta-
tions of a fundamental, finite string then it is possible to describe the grav-
itational interaction as a gauge theory. We can then unify the gravitational
gauge group into the SO(10) group and produce a complete fundamental
model of particle physics.
We will now look more closely at string theory with the ultimate aim of
reproducing the requirements of the SO(10) model.
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Chapter 2

Non-relativistic strings

To understand String Phenomenology we must first understand the mechan-
ics of a non-relativistic string. The strings we will use have both mass and
tension and are able to vibrate longitudinally and transversely. From these
first principles and applied boundary conditions we will develop an equation
of motion. Utilising the Lagrangian equation the action of the string as a
function of time can then be calculated.

2.1 Equations of motion of a transverse oscillation

Consider a string in the (x,y) plane with one of its endpoints at the origin
and the other at (a,o). As transverse movement is perpendicular to the
direction along the string, the transverse oscillations will take place in the
y direction (Describing transverse oscillations in higher dimensions can be
easily ascertained from this example).

Our first principles are that the string has both mass and tension, the
mass per unit length is denoted by µ0 and the tension is denoted by T0. The
mass total of the string is then given by the mass per unit length multiplied
by the length in question or M = µ0a.

Consider a small element of the string from (x,y) to (x+dx,y). Now at
time t the transverse oscillation of the string will have the spacetime coor-
dinates y(t,x,y) at (x,y) and y(t,x+dx,y) at (x+dx,y) (remember transverse
oscillations are only in the y direction). If we assume that the oscillations
at these points are small compared to the strings length then it follows that
the tension will remain constant. However as there is a different gradient at
these two points the tension changes direction, generating a net force on the
string. This net force can be calculated by finding the difference between
the tension gradient product at both points.

dFv = T0
∂y

∂x
|x+dx − T0

∂y

∂x
|x
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As dx is arbitrarily small this reduces to,

dFv = T0
∂2y

∂x2
dx

Using Newton’s law of motion F = ma (were the mass is found by
dm = µ0dx) we can calculate the net force to be

T0
∂2y

∂x2
dx = (µ0dx)

∂2y

∂t2

The dx on each side cancels and then a small rearrangement leaves

∂2y

∂x2
− µ0
T0

∂2y

∂t2
= 0 (2.1)

This should look familiar as it is in fact the wave equation of motion.

∂2y

∂x2
− 1

v20

∂2y

∂t2
= 0

Were v0 is the velocity of the waves, implying that

v0 =

√
T0
µ0

is the velocity of the vertical displacement on our non-relativistic string.

The First principles of tension and mass have led to an equation of
motion in which the velocity of displacement is proportional to the tension
and mass of the string. This leads to the conclusion that the lighter and
more tensile the string, the faster the waves will pervade through it.

2.2 Boundary conditions, Initial conditions and
acquiring a solution

The wave equation derived (2.1) contains partial derivatives so in order to
produce a solution we need to set boundary and initial conditions.

There are two types of boundary conditions that can be used to model
the movement of strings, these are known as Dirichlet and Neumann bound-
ary conditions.

The Dirichlet boundary condition is defined as

y(t, x = 0) = y(t, x = a) = 0 (2.2)
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This fixes both ends of the string to a definite point, namely 0 and a.

The Neumann boundary condition is defined as

∂y

∂x
(t, x = 0) =

∂y

∂x
(t, x = a) = 0 (2.3)

This allows both ends of the string to slide along the y axis at designated
points, namely 0 and a. (We will use both of these Boundary conditions to
acquire a solution to highlight the properties of each).

With the boundary conditions defined we can now look at the initial
conditions.

The solution to this wave equation will be of the standard form

y(t, x) = h+(x− v0t) + h−(x+ v0t)

with h+, h− defining arbitrary single variable functions. The h+ function
plots the right moving wave and the h− function plots the left moving wave.
The superposition of the two gives the complete solution. Initial conditions
at t=o can then be used to acquire a definitive solution to the wave equation.

If the string is oscillating sinusoidally then the solution will be

y(t, x) = y(x)sin(ωt+ φ) (2.4)

where ω is the angular frequency and φ is the phase difference. Substi-
tuting this solution (2.4) back into the acquired wave equation (2.1) gives

∂2y(x)

∂x2
+ ω2µ0

T0
y(x) = 0 (2.5)

The general solution of which, will be

yn(x) = Ansin(lnx) +Bncos(lnx) (2.6)

Now we will solve this equation using both Boundary conditions.

Using the Dirichlet boundary conditions (2.2) it follows that

yn(0) = yn(a) = 0

yn(0) = Bn→Bn = 0

yn(a) = Ansin(lna) = 0→lna = nπ→ln =
nπ

a

This gives the solution
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yn(x) = Ansin
nπx

a
n = 1, 2, 3...

(Note how n 6= 0 as this would correspnd to a stationary string). The
allowed frequencies of oscillation for a Dirichlet string can now be found by
inserting these solutions into the wave equation (2.5) giving,

ωn =

√
T0
µ0

(nπ
a

)
(2.7)

To use the Neumann boundary conditions (2.3) we have to differentiate
the general solution (2.6) with respect to x. The general solution then
becomes,

∂yn(x)

∂x
= Anlncos(lnx)−Bnlnsin(lnx)

Following that,

∂yn(0)

∂x
= An→An = 0

∂yn(0)

∂x
= −Bnlnsin(lna) = 0→ln =

nπ

a

This gives the solution

yn(x) = Bncos
nπx

a
n = 0, 1, 2, 3...

(Note how n = 0 is now allowed. The string doesn’t oscillate but is rigidly
translated. This is due to the allowance of movement at the endpoints
inherent with the Neumann boundary condition.)

The allowed frequencies of oscillation for a Neumann string can now be
found by inserting these solutions into the wave equation (2.5) giving,

ωn =

√
T0
µ0

(nπ
a

)
(2.8)

As you can see the allowed frequencies of oscillation are the same for
both the Dirichlet and Neumann strings with the Neumann string having
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one extra solution due to the mobility of its endpoints.

To further understand the mechanics of a non-relativistic string we will
use the Lagrangian equation.

2.3 Lagrangian dynamics and its application to a
non-relativistic string

The Lagrangian is a function that summarizes the dynamics of a system.
Its definition is the kinetic energy T of a system minus its potential energy
V .

L = T − V

If the Lagrangian of a system is known then the systems equations of motion
can be calculated by substituting the Lagrangian into the Euler-Lagrange
equations. We will construct the Lagrangian of a non-relativistic particle
then extend this to a string, finally using the Euler-Lagrange equations to
calculate the equations of motion

The Lagrangian for a non-relativistic particle is given by,

L(t) =
1

2
m

(
dx(t)

dt

)2

− V (x(t))

The Lagrangian is a function of time but it has no explicit time dependance.
Its time dependence originates from the position x(t).

The action S can then be defined as,

S =

∫
ρ
L(t)dt

where ρ is the path of x(t) from (ti, xi) to (tf , xf ). So the action for any
path can be calculated using,

S(x) =

∫ tf

ti

1

2
m(ẋ(t))2 − V (x(t))dt

The action can be calculated for any path and adheres to what is known
as the Hamilton Principle in that the path of a system is one in which the
action is stationary. This means that if the path is changed an infintesimal
amount the action will not change. If we fix the endpoints at δx(ti) =
δx(tf ) = 0 and then change the path from x(t) to x(t)+δx(t). The resulting
action of the varied path will be,
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S(x+ δx) =

∫ tf

ti

{
m

2

(
d

dt
(x(t) + δx(t))

)2

− V (x(t) + δx(t))

}
dt

S(x+ δx) = S(x) +

∫ tf

ti

{
(mẍ2 − V́ (x))δx(t)

}
dt+ %(δx2) + ...

The Hamilton principle only concerns the first order so the δx2 terms and
higher can be disregarded. The action of the varied path can now be written
as S + δS implying that,

δS =

∫ tf

ti

{
(−mẍ2 − V (x))δx(t)

}
dt

The action will only be stationary δS = 0 if the integrand is 0 and this can
only happen if

mẍ2 = −V (x)

By introducing the constraint that the action be stationary under variations
we have derived an equation of motion which we know to be correct. What
we have derived here is Newtons second law of motion.

We will now apply the Lagrangian equation to a non-relativistic string.

Recall that the mass of a segment is dm = µ0dx so the kinetic energy
of an infintesimal segment will be dT = 1

2(µ0dx)(∂y∂t )
2. The total kinetic

energy can then be calculated as the sum of the kinetic energy of all these
segments along the string.

T =

∫ a

0

1

2
(µ0dx)(

∂y

∂t
)2

The other half of the Lagrangian is the potential energy which emerges from
the work applied to stretch the string. If an infintesimal segment of string
lies between (x, 0) and (x + dx, 0) and is stretched from its (x, y) position
to (x+ dx, y + dy) its change in length is calculated by,

∆l =
√

(dx)2 + (dy)2 − dx = dx

(√
1 + (

∂y

∂x
)2 − 1

)
≈ dx1

2

(
∂y

∂x

)2

The work done in strectching a segment is T0∆l. The total potential en-
ergy can then be calculated as the work required to stretch an infintesimal
segment, summed across the whole length of string,

V =

∫ a

0

1

2
(T0)(

∂y

∂x
)2dx
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The Lagrangian for a non-relativistic string can then be written as,

L(t) =

∫ a

0

[
1

2
µ0

(
∂y

∂t

)2

− 1

2
T0

(
∂y

∂x

)2
]
dx =

∫ a

0
L̄dx

Where L̄ is known as the Lagrangian density defined as,

L̄

(
∂y

∂t
,
∂y

∂x

)
=

1

2
µ0

(
∂y

∂t

)2

− 1

2
T0

(
∂y

∂x

)2

The action for a non-relativistic string can then be calculated,

S =

∫ tf

ti

L(t)dt =

∫ tf

ti

dt

∫ a

0
dx

[
1

2
µ0

(
∂y

∂t

)2

− 1

2
T0

(
∂y

∂x

)2
]

The path is given by the field y(t, x) which is defined across the region
of space (t, x). To find the equations of motion we must introduce the
constraint that the action is stationary under variations as was shown in the
previous example.

Changing the path from y(t, x) to y(t, x) + δy(t, x) the resulting action
of this varied path will be,

S(y + δy) =

∫ tf

ti

dt

∫ a

0
dx

(
1

2
µ0

(
∂(y + δy)

∂t

)2

− 1

2
T0

(
∂(y + δy)

∂x

)2
)

S(y + δy) =

∫ tf

ti

dt

∫ a

0
dx

(
1

2
µ0

(
∂y

∂t

)2

+
∂y

∂t

∂

∂t
∂y − 1

2
T0

(
∂y

∂x

)2

− T0
∂y

∂x

∂

∂x
δy

)
+ %(δ2) + ...

Again δ2 terms and higher can be disregarded. The action of the varied
path can now be written as S(y + δy)− S(y) implying that,

δS =

∫ tf

ti

dt

∫ a

0
dx

(
µ0
∂y

∂t

∂δy

∂t
− T0

∂y

∂x

∂δy

∂x

)
Integrating by parts gives,

δS =

∫ tf

ti

dt

∫ a

0
dx

[
∂

∂t

(
µ0
∂y

∂t
δy

)
− µ0

∂2y

∂t2
δy +

∂

∂x

(
−T0

∂y

∂x
δy

)
+ T0

∂2y

∂x2
δy

]
δS =

∫ a

0

[
µ0
∂y

∂t
δy

]tf
ti

dx+

∫ tf

ti

[
−T0

∂y

∂x
δy

]x=a
x=0

dt−
∫ tf

ti

dt

∫ a

0
dx

(
µ0
∂2y

∂t2
− T0

∂2y

∂x2

)
δy

For the variation to vanish each of the above three terms must cancel
independently. The first term concerns the string at ti and tf . These can be
easily fixed at zero without any effect on the underlying mechanism of the
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string. The third term concerns the strings motion were δy is not constrained
by boundary or initial conditions. If we set δy to zero we retrieve the wave
equation (2.1) we derived in the first part of this chapter. The second term
can then be written as,∫ tf

ti

[
∂y

∂x
(t, a)δy(t, a) +

∂y

∂x
(t, 0)δy(t, 0)

]
dt

In order for this term to vanish either,

δy(t, a) = δy(t, 0) = 0

which can be rewritten as

∂y

∂t
(t, a) =

∂y

∂t
(t, 0) = 0 (2.9)

or

∂y

∂x
(t, a) =

∂y

∂x
(t, 0) = 0 (2.10)

As you can see, these are the Dirichlet boundary condition (2.9) and the
Neumann boundary condition (2.10) in their respective orders.

2.4 Summary

Starting from the first principles of mass and tension we developed a wave
equation relating these values to the velocity of the transverse oscillations.
From here, two types of boundary conditions and an initial condition were
used to acquire a solution to the wave equation and calculate the allowed
frequencies of oscillation. Developing a Lagrangian for the system allowed us
to plot the action of the string. Then utilising the Euler-Lagrange equations
and the Hamilton principle we retrieved the expected equations of motion.

Having gained an understanding of the mechanics of string motion we
can now continue into a relativistic environment.
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Chapter 3

Relativisitic string

Following on from the ground gained in the previous chapter we will now look
at relativistic string. To do this we will take a detailed look at relativistic
point-particles. If we calculate the action for a relativistic point-particle
we can easily generalize the results and implicate them into a model of a
relativistic string.

3.1 Relativistic point particles

The action of a free non-relativistic particle is easily calculated by summing
its kinetic energy over a time,

S =

∫
Ldt =

∫
1

2
mv2(t)dt (3.1)

Its equation of motion is then calculable by varying the path and using
Hamiltons principle to constrain the action under variation.

d

dt

∂L

∂v
− ∂L

∂x
= 0

So the equation of motion is,

dv

dt
= 0

As the particle is ’free’ no forces are acting on it. It’s acceleration is zero
so it is travelling at a constant velocity. This is fine for a free non-relativistic
particle but it cannot be true for a free relativistic particle. There is no ve-
locity limit inherent to the equation so the constant velocity described could
be greater than c which is obviously incorrect.

A new relativistic action needs to constructed
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The stage relativistic physics is played out on is spacetime and the path
traced out by a particle is known as the world-line of the particle. The
equations of motion derived from the action must be Lorentz invariant in
that any and all Lorentz observers must calculate the same action when
observing the particle. The action for a relativistic particle can be calculated
by integrating over its world-line and multiplying it by the relativistic factor
−mc,

[S = −mc
∫
ρ
ds (3.2)

The action can be rearranged to be an integral over time by making a
substitution for ds with the Lorentz transformation,

ds = cdt

√
1− v2

c2

The action now becomes,

S = −mc2
∫ tf

ti

√
1− v2

c2
dt

As you can see the relativistic Lagrangian is now,

L = −mc2
√

1− v2

c2

The problem that we had with the action for a free non-relativistic par-
ticle is overcome. There is a velocity limit inherent in the equation which
doesn’t allow velocities greater than c.

Aside from being the correct Lagrangian at high velocities the Lagrangian
must produce the correct physics at low velocities. To investigate this we
can expand the square root for low velocities,

L ≈ −mc2
(

1− 1

2

v2

c2

)
=

1

2
mv2

−mc2 can be ignored as it is a constant. As you can see the expanded low
velocity Lagrangian agrees with the non-relativistic Lagrangian that can be
seen in (3.1).

To calculate the Canonical momentum of the relativistic Lagrangian we
just have to differentiate it with respect to velocity.

Π =
∂L

∂v
=

mv√
1− v2

c2

This produces the relativistic momentum of the particle.
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We can now calculate the Hamiltonian,

H = (Π)(v)− L =
mc2√
1− v2

c2

This also agrees with the relativistic energy of the point particle showing
that the action (3.2) is correct.

3.2 Reparameterization invariance

A usefull property would be for the action to be reparameterization invarient.
This means that if a different observer parametizes the particle world-line
the action still yields the same result. The world-line can be assigned the
parameter τ (proper time) to describe the motion of the particle, making
the spacetime coordinates xµ functions of τ .

xµ = xµ(τ)

xµi = xµ(τi)

xµf = xµ(τf )

The action of the particle can now be wrote in terms of its proper time,
τ as,

S = −mc
∫ tf

ti

√
−ηµv

dxµ

dτ

dxv

dτ
dτ

This action is now reparametization invarient. If a different observer
chose a different paramterization then the action wouldn’t differ.

3.3 Equations of motion of a relativistic point par-
ticle

Again we acquire the equations of motion by utilising the Hamilton principle.
Setting δS = 0 and varying the path from xµ(τ) to xµ(τ) + δxµ(τ). The
alteration of the path is given by,

δS = −mc
∫
δ(ds) = −mc

∫ τf

τi

ηµv
dδxµ

dτ

dxv

ds
dτ

Integrating this by parts,

δS = −mc
∫ τf

τi

dτ
d

dτ

(
ηµvδ(x

µ(τ))
dxv

dS

)
+

∫ τf

τi

dτδ

(
xµ(τ)

(
mcηµv

d

dτ

(
dxv

dS

)))
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Setting δ(xµ(τi)) = δ(xµ(τf )) = 0 removes the first term leaving,

δS =

∫ τf

τi

dτδ(xµ(τ))mcηµv
d

dτ

(
dxv

dS

)
subbing in mcdx

v

ds = ρv yields,

δS =

∫ τf

τi

dτδ(xµ(τ))ηµv
dρv

dτ

then using ηµv to lower the index of dρv.

δS =

∫ τf

τi

dτδ(xµ(τ))ηµv
dρµ
dτ

We know δ(xµ(τ)) is arbitrarily small so δS = 0. This also implies

that
dρµ
dτ = 0 as well, which states that the momentum of the particle is

constant along the world-line which is also referred to as the conservation
of momentum.

3.4 Relativistic string

We have found that the relativistic point particle is characterised by the
world-line that it traces out in space-time. The action can be derived from
integrating over δS and assigning one parameter known as ’proper time’ τ .

It follows that a relavtivistic string is characterised by the world-sheet
that it traces out in space-time. The action can be derived from integrating
over δA and assigning two parameters known as known as ’proper time’ τ
and ’proper area’ σ. The action derived is known as the Nambu-Goto action
and to find this we first have to calculate δA.

We start by looking at the two-dimensional surface in space that a string
pervades. As it is two-dimensional it is dependant on two parameters η1 and
η2, these parameters can be plotted and are described as parameter space.
The three spatial dimensions the surface exists in is known as target-space.
The parametiszed surface is now descrbed by the functions

x(η1, η2) = (x1(η1, η2), x2(η1, η2), x3(η1, η2))

This can now be used as a map to transfer parameters in parameter
space to co-ordinates in target space and vice-versa.

To determine δA of target space we can calculate an arbitrarily small
parallelogram of parameter space with sides
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dv1 =
∂x

∂η1
∂η1dv2 =

∂x

∂η2
∂η2 (3.3)

The area would then be,

dA = |dv1||dv2||sinθ| = |dv1||dv2|
√

1− cos2θ =
√
|dv1|2|dv2|2 − |dv1|2|dv2|2cos2θ

θ is the angle between dv1 and dv2 so the whole equation can be rewritten
in terms of dot products.

dA =
√

(dv1·dv1)(dv2·dv2)− (dv1·dv2)2

Substituting equations(3.3) into this equation yields the small element
of the target space,

dA = dη1dη2

√(
∂x

∂η1
· ∂x
∂η1

)(
∂x

∂η2
· ∂x
∂η2

)
−
(
∂x

∂η2
· ∂x
∂η2

)2

The area functional is then just,

A =

∫
dη1dη2

√(
∂x

∂η1
· ∂x
∂η1

)(
∂x

∂η2
· ∂x
∂η2

)
−
(
∂x

∂η2
· ∂x
∂η2

)2

Introducing the new parameter σ (proper area) we can describe the
world-sheet by the mapping functions,

Xµ(τ, σ)

This can now be included into the area functional which can be arranged to
be reparameterization invarient,

A =

∫
dτdσ

√(
∂X

∂τ
·∂X
∂σ

)2

−
(
∂X

∂τ

)2(∂X
∂σ

)2

(3.4)

3.5 Nambu-Goto relativistic string action

As S has units ML2

T and the area functional (3.4) has units L2 we must
multiply the area by a quantity which has the units M

T . We know the string
tension T0 has the dimension of force and force divided by velocity will leave
the correct units M

T . Hence the area must be multiplied by a factor of T0
c .

The string action is now,

S = −T0
c

∫ τf

τ i

dτ

∫ σ1

0
dσ

√
(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 (3.5)
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where σ1 > 0 is constant, Ẋ = ∂X
∂τ and X ′ = ∂X

∂σ This is known as the
Nambu-Goto action for a relativistic string.

In order for this to be reparametization invarient the integral must van-
ish,

−dS2 = dXµdXµ = ηµvdX
µdXµ = ηµv

∂Xµ

∂ηα
∂Xv

∂ηβ
dηαdηβ

Where ηµv is the Minkowski space metric and ηα and ηβ run over τ and
σ. We can also define an induced metric on the world-sheet,

γαβ = ηµv
∂Xµ

∂ηα
∂Xv

∂ηβ
=
∂X

∂ηα
∂X

∂ηβ

in matrix form,

γαβ =

∣∣∣∣ (Ẋ)2 Ẋ ·X ′
Ẋ ·X ′ (X ′)2

∣∣∣∣
As you can see the determinant of this matrix is equal to minus the

square root in equation (3.5) so the Nambu-Goto action can now be written
in reparametization invarient form,

S = −T0
c

∫
dτdσ

√
−γ

Where
γ = det(γαβ)

3.6 Equations of motion

Again we will acquire the equations of motion by introducing the constraint
that the action is stationary under variations. We vary the path from x to
x+ δx and rewrite the Nambu-Goto action (3.5) as a double integral of the
lagrangian density.

S =

∫ τf

τi

dτL =

∫ τf

τi

dτ

∫ σ1

0
dσL(Ẋµ, X ′µ)

Where the lagrangian density is

L = −T0
c

√
−γ

For the action to be stationary the variation must vanish.
The variation is,

δS =

∫ τf

τi

dτ

∫ σ1

0
dσ

[
∂L

∂Ẋµ

∂(δXµ)

∂τ
+

∂L

∂X ′µ
∂(δXµ)

∂σ

]
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where δẊµ = δ
(
∂Xµ

∂τ

)
= ∂δXµ

∂τ and likewise for δẊµ.
We can also define

ρτµ =
∂L

∂Ẋµ

ρσµ =
∂L

∂X ′µ

The variation then becomes,

δS =

∫ τf

τi

dτ

∫ σ1

0
dσ

[
∂

∂τ
(δXµρτµ)

∂

∂σ
(δXµρσµ)− δXµ

(
∂ρτµ
∂τ

+
∂ρσµ
∂σ

)]
(3.6)

The first term on the right is a full derivative of τ . The flow of τ cor-
responds to the flow of time so if we set the initial and final conditions to
equal zero then this term will vanish. The variation is then,

δS =

∫ τf

τi

dτ
[
δXµρσµ

]σ1
0
−
∫ τf

τi

dτ

∫ σ1

0
dσδXµ

(
∂ρτµ
∂τ

+
∂ρσµ
∂σ

)
(3.7)

The second term also vanishes for all variations δXµ leaving us with last
term which must be set to equal zero.

∂ρτµ
∂τ

+
∂ρσµ
∂σ

= 0

This is the equation of motion for a relativistic string, either open or
closed.

3.7 The Polyakov action and boundary conditions

Although the Nambu-Goto action is usefull it is still burdened with a square
root in its integrand. An equivalent formulation of the action which proves
to be much more convenient is the polyakov action. We will again introduce
fields that correspond to the actions parameters and as in the Nambu-Goto
action define a world sheet metric hαβ(τ, σ) where,

hαβ = h−1αβ

h = det(hαβ)

The action is now,

S = −T0
c

∫
d2σ(
√
−h)hαβ∂αXµ∂βX

µ
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Classically this is analogous to the Nambu-Gotto action but it is more suit-
able for quantisation. The equation of motion retrieved from the Polyakov
action is,

∂2

∂τ2
Xµ(σ, τ)− ∂2

∂σ2
Xµ(σ, τ) = 0

This is just a two-dimensional wave equation which has the general form
of solution,

Xµ(σ, τ) = Xµ
left(σ + τ) +Xµ

right(σ − τ)

A superposition of left moving and right moving waves. For ease this
solution can be rewritten using light-cone co-ordinates,

Xµ(σ, τ) = Xµ
L(σ+) +Xµ

R(σ−)

Let us now take a closer look at the boundary conditions.

These solutions depend on the boundary conditions of which there are
three possibilities,

• One is that the boundary conditions are periodic X(σ, 0) = X(σ, 0+π)
which results in a closed string and an unbounded world-sheet. The
solutions to the wave equation then becomes,

Xµ = Xµ
L+Xµ

R = xµ+`2sp
µτ+

i

2
`s
∑
n6=0

1

n
αµne

−2in(σ+τ)+
i

2
`s
∑
n6=0

1

n
αµne

−2in(σ−τ)

where,

xµ : is the centre of mass of the string

pµ : is the total momentum of the string

`s : is the string length

Classically αµn and αµn would represent the amplitude of the n’th os-
cillation mode. However quantum mechanically they represent the
creation and annihilation operators of string states.
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The centre of mass of the string moves along a straight line and the
momentum is always conserved. This is anologous to the behaviour
of a relativistic particle. In fact we can think of the closed string as a
relativistic particle which has inherent left and right moving harmonic
oscillations produced by the creation and annihilation operators.

If we don’t impose periodic boundary conditions then there are two
other constraints available which will make the variation of action
vanish.

• One is that the string has Neuman boundaries
[

∂L
∂X′µ

]
0,σ

= 0. This

means that the string is open and can move freely through space-time,
the momentum at its ends is conserved.

• The final possible boundary condition is the dirichlet boundary condi-
tion δ(X)µ(τ, 0) = δXµ(τ, σ) = 0, µ 6= 0 meaning dirichlet boundary
conditions are only possible for space dimensions. When µ = 0 we
must have ρσ0 (τ, 0) = ρσ0 (τ, σ) = 0. We can allow neumann boundary
conditions in the time dimension and dirichlet boundary conditions in
the space dimensions denoted by p. The ends of the string are fixed
on p dimensional surfaces known as dirichlet-p branes or D-branes.

A D-brane can pervade all of space and since the end points of a string
are free to move across it then they too can percade all of space. A D-
brane isn’t a theoretical surface and isn’t introduced into the equations
of motion. They are an inherent, physical requirement of the equations
of motion for a relativistic string.

As we are only interested in the closed string we will only concern our-
selves with the periodic boundary conditions and the creation and annihila-
tion operators of string states.

3.8 Summary

We investigated a relativistic point particle and discovered that the action
is not the same as that of a non-relativistic particle. A lorentz factor needed
to be introduced and therefore the action had to be lorentz invarient. We
plotted the particle as it swept out a world-line and introduced a proper time
parameter, making the action reparameterization invarient. The hamilton
principle was then used to retrieve the equations of motion from the action.

We then repeated this process with a relativistic string but because the
string is two-dimensional we added another parameter, proper area. Instead
of sweeping out a world-line we saw that the string sweeps out a world sheet.
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This resulted in a different action being calculated known as the nambu-goto
action which was subsequently improved to what is known as the polyakov
action. After retrieving the equations of motion we examined three types
of boundary conditions; one resulting in free open strings, one resulting in
open strings connected to a D-brane and one resulting in a closed string.

We will now proceed with the quantization of relativistic strings.
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Chapter 4

Relativistic string
quantisation

We will quantize the relativistic closed string to produce the required bosons,
discovering that another model is needed to produce fermionic data. After
the introduction of relativistic superstrings we will see that their quantiza-
tion results in the required fermionic states and the arrival of a property
known as supersymmetry.

4.1 Quantized bosonic strings

We saw that the solutions to the wave equation obtained by using peri-
odic boundary conditions contained the four parameters xµ, pµ, αµn and
αµn. These can now be thought of as quantum operators with commutation
relations,

[xµ, pµ] = iηµv

[αµm, α
v
n] = mηµvδm+n,0

[αµm, α
v
n] = mηµvδm+n,0

[αµm, α
v
n] = 0

The hermiticity of Xµ results in the relations (xµ)+ = xµ, (pµ)+ = pµ,
(αµn)+ = αµ−n and (αµn)+ = αµ−n

We can now define the operators,

aµm =
1√
m
αµm

aµ+m =
1√
m
αµ−m
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If m > 0 we get creation operators. If m < 0 we get annihilation operators.

Notice if u = v = 0 then [a0n, a
0+
m ] = −1 and the commutator of the time

components become negative. These negative states are known as ghosts

The creation operators construct the space of states in what is known
as Fock space which describes quantum states with an unknown amount of
particles. It is represented as the sum of single-particle Hilbert spaces as
shown below,

|ψ >n= |φ1, φ2, φ3, ...φn >

which describes n particles with wave functions φ1→n. Each φ is a wave-
function from the single particle hilbert space and they can be added and
removed from the fock space by use of the creation and annihilation opera-
tors respectfully.

We will proceed with what is known as light-cone quantisation. Intro-
ducing the light-cone gauge

X+(σ0, σ1) = x+ + 2α′p+σ0

which has space-time coordinates

X+ =
1√
2

(X0 +XD−1)

X− =
1√
2

(X0 −XD−1)

XI , I = 1, 2, 3, ...D − 2

where I is the space-time indice running from 1 to D-2.

To produce the space of states we will start from the ground states |h >
defined by,

h = hI

pI |h > = hI |h >
aIm|h > = aIm|h >= 0

m > 0

ie, eigenstates of the momentum operators with no oscillations. A basis
can now be set up consisting of the space of possible eigenstates produced
by the creation operators,

B = {aIm...aJn|h > |m`, n` > 0}
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Now defining number operators which identify the summation of their
respective barred and unbarred operators,

N =
∞∑
n=1

naI†−nanI

N =

∞∑
n=1

naI†−nanI

where the a and a are constant ambiguities due to the ordering of the
creation and annihilation operators. Due to the constraint of lorentz invari-
ance they adhere to the relation a = a = −1. The constants also have to
satisfy the equation,

a = a = −D − 2

24

resulting in the requirement of 26 space-time dimensions.

Adding another constraint of level matching, where the number of left
moving and right moving oscillations must be equal N = N we can utilise
the euler-lagrange equations dervied from the nambu-goto action to produce
a mass-shell condition.

M2 = −pµpµ =
2

α′
(N + a+N + a)

The most basic states are one-particle states of a quantum scalar field in
which N = N = 0. Meaning there are no oscillations and the mass squared
is M2 = − 4

α′ . These states with negative mass are known as Tachyons,
purely theoretical they are thought to arise from instabilities in space-time.

The first excited states must satisfy the relation N = N meaning that
two oscillators in the lowest possible mode act on the ground state from the
left and right regions. This results in the mass squared reducing to zero and
a possibility of (D − 2)2 states. These massless states are described by,∑

1≤I,J≤(D−2)

RI,Ja
I†
−1a

J†
−1|h > (4.1)

where RI,J are elements of an arbitrary square matrix of size (D-2) which
can be seperated into three components.

RI,J = SIJ +AIJ + S′IJ
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A symmetric-traceless component, an antisymmetric component and a trace
component respectively. This means that the states described in (4.1) can
be split into three linearly independent groups.

• ∑
1≤I,J≤D−2

SIJa
I†
−1a

J†
−1|h >

The symetric-traceless component produces states that coincide with
the one-particle graviton states that are found in the quantum gravi-
tational theory.

• ∑
1≤I,J≤D−2

AIJa
I†
−1a

J†
−1|h >

The antisymmetric component produces states that coincide with the
one-particle Kalib-Ramond states. This is an antisymmetric tensor
field Bµv which can be seen as a tensor generalization of the Maxwell
gauge field Aµ. The Bµv field couples to strings in a similar way that
Aµ couples to particles, resulting in strings carrying a Kalib-Ramond
charge.

•
SaI†−1a

I†
−1|h >

The trace component is summed over I so there are no free indices,
so it only represents one state. This one-particle state of a massless
scalar field is known as the Dilaton field.

Having examined the massless closed strings we have seen that all of
their quantum states coincide with the bosonic particle states. We have
seen that the bosons require 26 space-time dimensions, that the theorised
graviton is an intrinsic part of this model and with a little more working we
would see that the non-abelian gauge bosons would appear from this bosonic
string theory.

Having acquired the bosons we now need to retrieve the fermions from
the model. To do this we need superstring theories.

4.2 Relativistic superstrings

The classical bosonic string theory was characterised by the use of coor-
dinates Xµ(τ, σ) where the space-time variables commute. Leading into
quantum bosonic string theory we saw that the coordinates became opera-
tors which were no longer commutable.
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The fundamental characteristic of superstring theory is that the world-
sheet variables used ψµα(τ, σ), α = 1, 2 are anticommuting dynamic variables.

For each value of µ these two variables describe a world-sheet fermion
which after quantizing produces the particle states of spacetime fermions.

The action of a superstring is known as the Dirac action,

sψ =
1

2π

∫
dτ

∫ π

0
dσ
[
ψI1(∂τ + ∂σ)ψI1 + ψI2(∂τ − ∂σ)ψI2

]
To obtain the equations of motion we again vary the field,

δsψ =
1

2π

∫
dτ

∫ π

0
dσ
[
δψI1(∂τ + ∂σ)δψI1 + δψI1(∂τ + ∂σ)δψI1 + δψI2(∂τ − ∂σ)δψI2 + δψI2(∂τ − ∂σ)δψI2

]
rearranging to,

δsψ =
1

π

∫
dτ

∫ π

0
dσ
[
δψI1(∂τ + ∂σ)δψI1 + δψI2(∂τ − ∂σ)δψI2

]
+

1

2π

∫
dτ [ψI1δψ

I
1−ψI2δψI2]σ=πσ=0

The equations of motion and boundary terms can clearly be seen,

(∂τ + ∂σ)ψI1 = 0

(∂τ − ∂σ)ψI1 = 0

ψI1(τ, σ∗)δψ
I
1(τ, σ∗)− ψI2(τ, σ∗)δψ

I
2(τ, σ∗)

The equations of motion also imply that ψI1 and ψI2 represent right-
moving and left-moving world-sheet fields respectively. These can be rewrit-
ten,

ψI1(τ, σ) = ψI1(τ − σ)

ψI2(τ, σ) = ψI2(τ + σ)

The condition that the boundary terms must vanish under variation re-
sults in two types of boundary conditions, the Ramond boundary condition
and the Neveu-Schwarz boundary condition.
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• The ramond boundary condition concerns periodic fermions as shown
below,

ψI(τ, σ) = +ψI(τ,−π)

If we apply this condition to the periodic fermion field we can expand
its equation of motion,

ψI =
∑
n∈Z

dIne
−2in(τ−σ)

There is also a similar formulation to represent right-moving periodic

fermions (τ + σ) resulting in the mode-oscillator d
I
n.

Here the oscillators with negative modes are creation operators dI−1,−2,−3...
and the oscillators with positive modes are annihilation operators
dI1,2,3...

These ramond oscillators also comply with the anticommutation rela-
tion,

[dIm, d
J
n] = δm+n, 0δ

IJ

this means that the ramond creation operators can appear only once
on a given state.

• The neveu-schwarz boundary condition concerns anti-periodic fermions
as shown below,

ψI(τ, σ) = −ψI(τ,−π)

If we apply this condition to the anti-periodic fermion field we can
expand its equation of motion,

ψI =
∑

r∈Z+ 1
2

bIre
−2in(τ−σ)

There is also a similar formulation to represent right-moving anti-

periodic fermions (τ + σ) resulting in the mode-oscillator b
I
n.

Here the oscillators with negative modes are creation operators bI−1,−2,−3...
and the oscillators with positive modes are annihilation operators
bI1,2,3...

These neveu-schwarz oscillators also comply with the anticommutation
relation,

[bIr , b
J
s ] = δr+s, 0δ

IJ

this means that the neveu-schwarz creation operators can appear only
once on a given state.
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As with the bosonic model a basis can now be set up in the light cone
gauge consisting of the space of possible eigenstates produced by the creation
operators,

B = {(aI−n), (dI−m)or(bI−m), (d
I
n)or(d

I
n)|h > |m,n, r > 0, I = 1, 2, ..., D − 2}

We can now define number operators which identify the summation of
their respective barred and unbarred operators for both ramond and neveu-
schwarz boundary conditions respectively,

N =
∞∑
n=1

naI†−nanI +
∑

r∈N+ 1
2

rbI†−rbrI

N =

∞∑
n=1

naI†−nanI +
∑

r∈N+ 1
2

rb
I†
−rbnI

N =
∞∑
n=1

naI†−nanI +
∑

r∈N+ 1
2

rdI†−rdrI

N =

∞∑
n=1

naI†−nanI +
∑

r∈N+ 1
2

rd
I†
−rdnI

where the a and a are constant ambiguities due to the ordering of the
creation and annihilation operators given by,

a = −D − 2

24
+ aψ+

a = −D − 2

24
+ aψ−

Using ramond boundary conditions results in,

aψ± =
D − 2

24

and using neveu-schwarz boundary conditions results in,

aψ± = −D − 2

48

Due to the constraint of lorentz invariance we have to set D = 10. The
constant ambiguities then become,

a = −1

3
+ aψ+
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a = −1

3
+ aψ−

Using ramond boundary conditions results in,

aψ± =
1

3

and using neveu-schwarz boundary conditions results in,

aψ± = −1

6

Again adding the constraint of level matching, where the number of left
moving and right moving oscillations must be equal N + a = N + a we can
utilise the euler-lagrange equations dervied from the nambu-goto action to
produce a mass-shell condition.

M2 = −pµpµ =
2

α′
(N + a+N + a)

This mass-shell condition can now be used to acquire the particle states
arising from each sector.

• The particle states retrieved by applying the neveu-schwarz boundary
condition are,

Neveu-Schwarz sector particle states

N Mass squared Number of states particle state type

0 -1/2 1 tachyon

1/2 0 8 boson

1 1/2 36 fermion

3/2 1 ? boson

With the general rule that applying an integer N results in a fermionic
state and applying a half integer N results in a bosonic state.

• The particle states retrieved by applying the ramond boundary con-
dition are slightly more complex. Only integer masses are allowed
resulting in sixteen allowed ground states which are split evenly at
mass levels between bosonic and fermionic states.

Ramond sector particle states

Mass squared Bosonic states Fermionic states

0 1 1

1 2 2

2 5 5

The emergence of equal numbers of fermionic and bosonic states at
every mass level is an indicator of what is known as supersymmetry.
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4.3 Summary

We have now aquired bosons from the quantization of relativistic closed
strings and fermions from the quantization of relativistic superstrings. Af-
ter studying bosonic strings we discovered the requirement of twenty-six
space-time dimensions and then after studying superstrings found that this
reduced to ten space-time dimensions. We also found that the superstrings
came with the constraint of supersymmetry and two boundary conditions.
Utilising both we eventually acquired all the data neccessary to reproduce
the standard model. We can now look to combine these two models into a
viable string theory of particle physics.
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Chapter 5

Viable string theories

We have now studied both bosonic string theories and superstring theories.
Seperately these both contain all the data required by the standard model.
However to reproduce the standard model data in its entirity we have to
look at combining them into one coherent theory.

5.1 Five flavours of ten-dimesional supersymmet-
ric string theories

There are two types of Supersymmetric closed string theories, known as type
IIA and type IIB.

As we saw in the previous chapter, an open superstring has two sectors
due to the two boundary conditions available. These are known as the ra-
mond sector and the neveu-schwarz sector which we will now refer to as R
and NS respectively. The open superstring spacetime bosons appear from
the NS sector and the fermions appear from the R sector. A closed super-
string theory can now be created by joining the left moving sector with the
right moving sector of either R or NS.

This results in four possible closed string sectors (R,R),(NS,NS),(R,NS),(NS,R)

The bosons now appear from the (R,R),(NS,NS) sectors and the fermions
appear from the (R,NS),(NS,R) sectors.

These string sectors must be consistent with supersymmetry and depend-
ing on how we ensure this results in several different theoris. We will start
with labelling the left sector (NS+, R−) and the right sector (NS+, R+)
which results in type IIA superstring theory.
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The four sectors of type IIA superstring theory with their respective
particle state makeup are then,

(NS+, NS+)

which contains 64 bosonic states including the graviton, kalib-ramond field
and the dilaton.

(R−, R+)

which also contains 64 bosonic states including the graviton, kalib-ramond
field and the dilaton.

(NS+, R+), (R−, NS+)

which contains 128 fermionic states.

As you can see the requirement of supersymmetry has been met, there
are 128 fermions and 128 bosons.

If we chose the left and right sectors to be the same then the type IIB
string theory emerges. The left sector becomes (NS+, R−) and the right
sector becomes (NS+, R+).

The four sectors of the type IIB superstring theory with their respective
particle state makeup are then,

(NS+, NS+)

which contains 64 bosonic states including the graviton, kalib-ramond field
and the dilaton.

(R−, R−)

which also contains 64 bosonic states including the graviton, kalib-ramond
field and the dilaton.

(NS+, R−), (R−, NS+)

which contains 128 fermionic states.

Again the requirement of supersymmetry is met as there are equal num-
ber of fermions and bosons.

The only difference between these two superstring theories is in the R-R
massless fields which concerns the stability of the D-branes.

There are several other possible choices for defining the left and right sec-
tor but the resulting theories are non-supersymmetric and lead to tachyons.
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Another two types of ten-dimensional supersymmetric string theories are
the heterotic theories. Instead of combining left and right moving open su-
perstrings as in the type II theories we can combine the left moving open
bosonic string with the right moving open superstring. This results in two
heterotic models. Only ten out of the twenty-six left moving open bosonic
coordinates correlate with the right moving bosonic coordinates of the open
superstring. The consequence of this is that the heterotic superstring exists
in ten space-time dimensions. The two possible heterotic models are the
E8XE8 type and the S0(32) type.

The last possible ten-dimesional supersymmetric string theory is the type
I theory. It combines both open and closed unoriented strings, meaning that
the states that the theory contains are invarient under an operation that flips
the orientation of the string.

We now have a list of five ten-dimesional supersymmetric string theories,

• Type I

• Type IIA

• Type IIB

• E8XE8

• S0(32)

Another theory results when the typeIIA theories string coupling limits
are extended to infinity, a consequence of which is eleven space-time dimen-
sions. This is known as M-theory which is not actually a string theory but
a theory of membranes.

It is believed that the five ten-dimesional supersymmetric string theories
and M-theory are infact manifestations of the same fundamental theory.

5.2 String theories containing the standard model

All the above viable string theories can be used to derive the standard model
and since they are all believed to be related the different avenues available
are also believed to be essentially the same. The most prominent attack is
based from the E8XE8 heterotic supersymmetric string theory.

The theory operates in ten dimensions, one allocated to time, three allo-
cated to visible space and the other six compactified into what is known as
Calabi-Yau space. This is a small six-dimensional space which has discrete
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and continuous parameters. These parameters are what regulate the four
dimensional space-time theory that emerges from this compactification. The
number of generations of chiral matter is dependent on the topology of the
Calabi-Yau space with viable models available that reproduce the three gen-
erations of matter neccessary to the standard model. Also, compactification
is central to string phenomenology in that it allows the symmetry breaking
of the group. Firstly into E6XE8, then E6 can be broken into the grand
unified theory gauge group S0(10).
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Chapter 6

Conclusion

The goal of string phenomenology is to predict the framework and data of
particle physics using string theory. Showing that string theory is consistent
with previous models of particle physics will then allow gravitation to be in-
corporated into a more fundamental framework. To understand how this is
achieved we examined the standard model and showed that it could be im-
proved by incorporating it in into a grand unified theory. We then set about
recreating the framework and data of the standard model using string the-
ory. After studying the mechanics of non-relativistic then relativistic string
we developed equations of motion and boundary conditions. Relativistic
closed strings were then quantized to produce the bosonic states and super-
strings were quantized to produce the fermionic states. We then combined
these and found that we had six models which all reproduced the correct
framework and data. Continually working back towards the standard model
we centered on the E8XE8 heterotic theory eventually finding that with the
aid of Calabi-Yau spaces we could reproduce the grand unified theory S0(10)
framework plus the three generations of chiral matter recquired.

Through string phenomenology we have shown that string theory can
reproduce the data requirement of the standard mdoel but it also improves
the standard model by defining and incorporating quantum gravity.
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