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Abstract

The success of the standard model serves as a guide to any ex-
tentions beyond the model in that it should arrive at the same phe-
nomenology at appropriate energy scales. We study in this thesis
the phenomenological aspects of realistic string models under the free
fermionic construction.

Starting from a brief review of the standard model, we introduce
string theory, concentrating on the necessary tools to construct a re-
alistic free fermionic model. We then develop a model producing the
observable SU(3)C × SU(2)L × U(1)y symmetries. This is free of the
custodial nonabelian SU(2)c gauge group, a common feature of a class
of realistic string models in which only the leptons or quarks transform.
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1 Introduction

In the Standard Model the fermion masses are treated as free parameters.
The values are obtained by confronting experiments. One important aspect
of the superstring derived standard-like models in the free fermionic formu-
lation is its potential ability to calculate fermion masses. In particular, it
offers a possible explanation to the top quark mass hierarchy problem [1].
Certain models were even successful in predicting the top quark mass before
its experimental observation [2].

For the purpose of calculating the top quark mass, realistic string models
are constructed. In this thesis we discuss development of an existing model,
which has an observable gauge group of SU(3)C × SU(2)L × SU(2)c. The
SU(2)c is a non-Abelian custodial gauge symmetry in which only the leptons
tranform. It is enhanced from a U(1) symmetry as a consequence of two
extra spacetime bosons in the model. The aim of this thesis is to remove
this extra symmetry to recover the standard model gauge group SU(3)C ×
SU(2)L × U(1)y .

The thesis begins by introducing the idea of gauge symmetry in particle
physics. We relate the standard model gauge group to three forces observed
in nature. In chapter 3 the basic idea of bosonic string theory is introduced.
Conformal anomaly, which airses as a result of the quantizaition of classical
strings, is described. We explain how the anomaly can be removed by in-
troducing extra degrees of freedom. Superstrings, a theory which describe
fermions by incorporating supersymmetry to the bosonic string theory, is in-
troduced. Then in chapter 4 the free fermionic formulation is discussed. In
this formulation the extra degrees of freedom are interpreted as free fermions
propagating on the string worldsheet. By specifying the boundary condi-
tions of these free fermions, subject to certain consistency constraints, a
model is defined. In chapter 5 we present a set of rules which encompass
these consistency constraints. It serves as our primary tool to extract the
physical states of a model. A model which possesses the standard model
gauge group is then defined. The fermion mass texture of the model is
discussed, and an explanation to the missing of the custodial symmetry is
suggested.



2 THE STANDARD MODEL 5

2 The Standard Model

The success of the standard model in describing three fundamental forces
of nature: the electromagnetic, weak and strong forces, is a major triumph
of the 20th century physics. So far no experimental observations shows
contradiction to the predictions of the standard model.

Its theoretical description rests on the principle of local non-Abelian
gauge invariance. This is the invariance under change of fields that does not
change the corresponding observables. Tensor equations are used to main-
tain such invariance and connection coefficients are introduced for parallel
transport, in a way analogues to Einstein’s theory of gravitation. Any de-
parture from zero connection coefficients are interpreted as a force observed
in nature.

Associated with every force is a particular symmetry and hence a sym-
metry group. It is possible to turn it around, that is to identify a symmetry
group and then investigate the effects of the corresponding symmetry trans-
formation in the internal space. The form of the covariant derivative and the
gauge field are determined by the symmetry. This in turn gives the coupling
of the field to material particles.

A generic precription to how this is done is as follows. Consider the
action for a free particle:

Sfree =

∫
d4xψ̄(iγµ∂µ −m)ψ (1)

We subject the particle wavefunction to a certain symmetry transfor-
mation. In order to maintain gauge invariance, instead of ∂µ, a covariant
derivative Dµ, which includes the field associated with the symmetry is used.
Once this is determined, the transformation of the field is determined by the
requirement of the invariance of the lagrangian. An action associated with
the energy density of the field can then be constructed.

A brief introduction to the symmetry groups and the gauge transfor-
mations of the strong and electroweak interactions are given below. Other
important aspects of particle theory such as renormalization are spared.

2.1 Strong Interaction

The quark model suggests baryons are composed of three quarks. However
there exists several problems, one of which being the violation of the Pauli
exclusion priciple in structures like ∆++. In this example, ∆++ is made up
of 3 u quarks, and has intrinsic angular momentum 3/2, so the spins of the
three quarks are parallel. The product of the space, spin and flavour part
of the wavefunction is therefore totally symmetric.

Antisymmetry of the total wavefunction is restored if a fourth term,
ψcolour is introduced and be anitsymmetric under quark exchange. Since
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three quarks constitute a baryon the simplest choice for the colour symmetry
group is SU(3).

The total wavefunction now becomes:

ψ = ψspace × ψspin × ψflavour × ψcolour. (2)

This solves a well-known problem involving the electron-positron annihi-
lation to generate quark-antiquark pairs which subsequently fragment into
hadrons. The ratio of the probabilities for forming hadrons or muons is
given by the well known equality:

R =
σ(e+e− −→ hadrons)

σ(e+e− −→ µ+µ−)
= Nc

∑

f

Q2
f , (3)

where the sum is over all quark species with mass below the available en-
ergy. Put the number of colour species, Nc, equal to 3, together with the
electric charges of the quarks involve, we find the prediction agrees well with
experiments.

Since the colour force is characterised by the SU(3) group, an infinites-
imal local colour transformation takes the form:

ψ → exp[igsFanaθ(x)]ψ = (1 + igsFanaθ(x))ψ, (4)

where θ(x) is the rotation angle in colour space at a point x in spacetime
and gs is the strength of the colour charge. Fa’s are the generators of SU(3)
and summation over a is implied. The covariant derivative is given by:

Dµ = ∂µ + igsFaGaµ(x), (5)

where Gaµ(x) is the gauge field and carries colour. It can be shown that the
lagrangian is invariant if the colour field transforms as:

Gaµ(x) → Gaµ − na∂µθ(x) − gsfabcnbGcµ(x)θ(x). (6)

The energy density of the gauge field is known to be:

GaµνG
µν
a , (7)

where Gaµν = ∂µGaν − ∂νGaµ − gsfabcGaµGcν .
The lagrangian so constructed is the starting point of the theory of quan-

tum chromodynamics (QCD).
One observation from the above equations is that there are cubic and

quartic terms in the gauge field, which correspond to interactions between
the gauge bosons, gluons in this case. Interactions between gauge bosons
is a unique property of non-Abelian gauge theories such as SU(3) and is
related to colour confinement and asymptotic freedom. This is out of the
scope of our present study and interested readers are referred to [3][4]. We
note that the above foundation serves as a powerful tool in anaylsing strong
interactions and its theoretical predictions agree well with experimental ob-
servations.
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2.2 Electroweak Interaction

Particle colliding experiments reveal the leptons and quarks undergo weak
interactions and they appear to form pairs, in which one fermion transforms
to its partner in the same doublet. Therefore the natural choice for the
underlying symmetry for weak interaction is SU(2), also known as the weak
isospin symmetry. It is responsible for reactions such as beta decay. Ex-
periements show that at sufficiently high energy only left-handed particles
or their right-handed antiparticles feel the weak force, and so the symme-
try is restricted to SU(2)L. Right-handed fermions are singlets and do not
transform under weak interaction. Electromagnetic force [5] is assumed to
be familiar to readers and we do not go into details.

The Fermi theory of weak interactions, while successful at low energy
scales, poses problems when momentum transfer is large. In particular the
cross sections grow indefinitely as the energy of the colliding particles in-
creases. As a result the theory is non-renormalizable. In the 1960s Glashow,
Weinberg and Salam proposed a gauge theory which is fully renormalizable
and it describes both weak and electromagnetic forces within one single con-
struct. This is known as the electroweak unification. It is characterized by
the group SU(2)L × U(1)y , where the U(1) is known as weak hypercharge
symmetry. The electromagnetic charge (Q) is related to the weak hyper-
charge (y) and weak isospin by [6]:

Q = t3 +
y

2
. (8)

Under the given group structure, there are three SU(2) generators and
one U(1) generators. Thus an infinitesimal transformation in the weak-
hypercharge space is given by:

ψ →
(
1 + igαi(x)t

L
i + i

1

2
g′yθ(x)

)
ψ. (9)

Again summation over i from 1 to 3 is implied. The covariant derivative in
this case is:

Dµ = ∂µ + igtLi Wiµ(x) + i
1

2
g′yBµ(x). (10)

Here the W and B are gauge fields corresponding to the SU(2)L and the
U(1) repectively. They transform as:

Wiµ →Wiµ − ∂µαi(x) − gεijkαj(x)Wkµ, (11)

Bµ → Bµ − ∂µθ(x). (12)

The energy dessity is given by terms proportional to:

WiµνW
µν
i and FµνF

µν , (13)
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where they take the forms:

Wiµν = ∂µWiν − ∂νWiµ − gεijkWjµWkν and (14)

Fµν = ∂µBν − ∂νBµ. (15)

We note here that in all gauge theories the gauge bosons are massless if
there is only one gauge field presents. In order for the weak bosons to acquire
mass, which is what we observe experimentally, there must exist additional
gauge field. This is accomplished by the Higgs mechanism in which the Higgs
field has a non-vanishing vaccum field. It generates spontaneous symmetry
breaking and the weak bosons acquire mass as a consequence. This is out
of the scope of this thesis and readers who are interested may consult [7].

2.3 Extensions Beyond the Standard Model

We have seen that all known fundamental forces of nature, except gravity,
are captured by the gauge group SU(3)C ×SU(2)L×U(1)y, which underlie
the symmetry of strong and electroweak interactions. The U(1)y charge is
defined in (8). We could now group all the known particles in each generation
according to the way they transform under the standard model gauge group.
This is summarized in the table below:

SU(3) SU(2) U(1)

left handed quarks Q 3 2 1
6

right handed up quarks ū 3̄ 1 -2
3

right handed down quarks d̄ 3̄ 1 1
3

left handed leptons L 1 2 - 1
2

charge conjugate of LH electron ecL 1 1 1

Together with the two other generations of particles having the same
group structure, they constitute the foundation of the standard model.

It is possible to extend the standard model gauge group to larger groups
which contain SU(3) × SU(2) × U(1) [8]. In particular, SU(5) is the mim-
imal extension. Further enlargement can be made if we extend the group
structure to say, SO(10). A point worthwhile to note is the addtion of a
singlet to the existing particles, which may be identified as the right handed
neutrino, makes the whole family fits into 16 of SO(10). The larger group
structure has new generators in addition to those in the standard model.
They correspond to bosons that mediate quarks and leptons and therefore
all unified theories predict physical process such as proton decay. Again our
emphasis is on the excellent agreement between experimental results and
theoretic predictions based on the standard gauge group. It is thus impor-
tant to have a mechanism for a unified theory to reveal the same group
structure in the low energy limit. We will show later that this is the case for
a class of realistic free fermionic model in string theory we consider later.
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3 Introduction to String Theory

The standard model, while proved to be extremely successful as a working
theory, leaves nevertheless many problems unanswered. A partial list in-
cludes the large number of free parameters, such as particle masses, which
we choose to fit with experiments, and also the exclusion of gravity.

String theory attempts to solve the above problems by supposing higher
dimensional objects, instead of point particles, as fundamental constituents
of nature. As the theory is relevant only at extremely high energy scale, the
theory is at present not testable by experiments. Demand of mathematical
consistencies is the primary tool in investigating the theory.

As string theory is a vast and extremely technical subject it is not pos-
sible to give a full account of it here. What is intended is to address two
key ideas, in which the free fermionic model we will discuss later rely on,
through a lightest sketch of the free bosonic string. The same ideas can be
applied to the case of supersymmetric strings but is out of the scope of this
text, so only the results will be quoted. The key ideas are:

i Various particle species might be identified
as different vibrational states of the string

ii Extra dimensions, or degrees of freedom, are
required for mathematical consistency

3.1 Classical Bosonic Strings

When a point particle moves in spacetime its trajectory is described by a
worldline. Similarly for a string to travel in spacetime, its trajectory is
described by a worldsheet. A string can be open or closed. We will only
concentrate on closed strings but the treatment for open strings is analogues.

The world sheet coordinates can be specified by Xµ(τ, σ), where a curve
of constant τ , whose points are labelled by σ, runs along the length of the
string.

The string action which is known to be mathematically consistent is the
Polyakov action [9], and is given by:

S = − 1

4πα′

∫
∞

−∞

dτ

∫ l

0
dσ(−γ) 1

2γab∂aXµ∂bX
µ. (16)

The indices of the worldsheet metric ,γab, run from 0 to 1, with σ0 = τ ,
σ1 = σ. The string tension is given by 1/2πα′.

The Euler-Lagrange equation, obtained by varying Xµ is:

γab∇a∇bX
µ = 0, (17)

and the energy-momentum (EM) tensor is obtained by varying the metric.
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The EM tensor is defined by:

T ab = −4π(−γ)− 1

2

δS

δγab
= − 1

α′
[∂aXµ∂

bXµ − 1

2
γab∂cXµ∂

cXµ]. (18)

It can be shown that it obeys:

∇aT
ab = 0. (19)

The conjugate momentum Πµ(τ, σ) of the field Xµ(τ, σ) is defined by:

Πµ = − δS

δẊµ

=
1

2πα′
(−γ) 1

2 γ0a∂aX
µ. (20)

Because the Polyakov action does not depend explicitly on Xµ, we obtain
a version of conservation of spacetime momentum carried by the string, in
which the momentum is given by:

P µ =

∫ l

0
dσΠµ(τ, σ). (21)

It can be shown that a Weyl transformation [7] on the worldsheet metric,
defined by:

γ′ab(τ, σ) = exp[ω(τ, σ)]γab(τ, σ), (22)

where ω(τ, σ) is a position dependent arbitrary function, leaves the action
invariant. It is also true that reparametrizing the worldsheet coordinates
by:

τ → τ ′(τ, σ) σ → σ′(τ, σ), (23)

does not change the Polyakov action. Since the worldsheet metric is two
dimensional, it has 3 degrees of freedom. The three degrees of freedom
given by the above transformation thus allow us to fix the gauge to obtain
a Minkowskian metric. From this (17) becomes:

(∂2
τ − ∂2

σ)X
µ = 0, (24)

and we obtain a standard wave equation which can be decomposed into
Fourier components.

Conformal invariance

The idea of conformal invariance is too important in string theory to be
overlooked. We will show shortly that it can be looked upon as a combination
of reparametrization and Weyl transformations.

First of all we replace the Minkowskian metric on the worldsheet with a
Euclidean one by complexifying τ . Write τ = −iσ2, we define:

ω ≡ σ1 + iσ2 = σ − τ, ω̄ ≡ σ1 − iσ2 = σ + τ. (25)
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It is straightforward to show that:

∂ ≡ ∂

∂ω
=

1

2

( ∂
∂σ

− ∂

∂τ

)
, and ∂̄ ≡ ∂

∂ω
=

1

2

( ∂
∂σ

+
∂

∂τ

)
. (26)

The worldsheet metric, in terms of the new coordinates, becomes:

(
γωω γωω̄
γω̄ω γω̄ω̄

)
= −1

2

(
0 1
1 0

)
, (27)

while the EM tensor is calculated to be:
(
Tωω Tωω̄
Tω̄ω Tω̄ω̄

)
=

(
− 1
α′∂Xµ∂X

µ 0
0 − 1

α′ ∂̄Xµ∂̄X
µ

)
. (28)

The proper worldsheet distance now becomes:

ds2 = −dτ2
WS = −dτ2 + dσ2 = dωdω̄. (29)

The string action can be shown to equal:

S = − 1

2πα′

∫
dωdω̄∂Xµ∂̄Xµ. (30)

Reparametrizing the fields Xµ(ω, ω̄) by Xµ(ω, ω̄) → X ′µ(f(ω), f̄(ω̄)) leaves
the action invariant. This is known as the conformal invariance. The proper
distance is changed but can be fixed by a Weyl transformation, thus con-
firming the claim that conformal invariance is a special combination of repa-
rameterization and Weyl transformation.

It is useful to calculate the Poisson brackets of Xµ, Πµ and the EM
tensors. Using the standard definition of the Poisson braket, it is easy to
show that:

{Xµ(τ, σ),Πν(τ, σ′)} = −ηµνδ(σ − σ′), (31)

{Xµ(τ, σ), T (τ, σ′)} = −2πδ(σ − σ′)∂Xµ(ω, ω′), (32)

{Xµ(τ, σ), T̃ (τ, σ′)} = −2πδ(σ − σ′)∂̄Xµ(ω, ω′). (33)

Mode expansions

The gauge-fixed equation in (24) can be expanded in Fourier modes:

Xµ(τ, σ) = xµ + α′pµτ + i
(α′

2

) 1

2

∞∑

n=−∞
n6=0

1

n

[
αµne

−in(τ−σ) + α̃µne
−in(τ+σ)

]
. (34)

Since Xµ(τ, σ) is real, we have two relations between α and α̃, namely:

αµ∗n = αµ−n and α̃µ∗n = α̃µ−n. (35)
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By integrating (34) over the space-like coordinate σ, we find that xµ +
α′pµτ can be thought as the centre of mass of the string. Using (31), and
integrating over σ and σ′, we obtain:

{xµ, pν} = −ηµν . (36)

At this point the relation between Xµ and Πµ can be used to obtain equa-
tions for αµm and α̃µm in terms of these two quantities. We can then make
use of these equations and also (31) to obtain the Poisson brackets between
the mode operators. They are found to be:

{αµm, ανn} = {α̃µm, α̃νn} = imηµνδm,−n and {αµm, α̃νn} = 0. (37)

We now rewrite the mode expansion in the Euclidean coordinates ω and
ω̄:

Xµ(ω, ω̄) = xµ +
1

2
α′pµ(ω − ω̄) + i

(α′

2

) 1

2

∞∑

n=−∞
n6=0

1

n

[
αµne

inω + α̃µne
−inω̄

]
. (38)

Evidently it is a sum of a function of ω and a function of ω̄. We can simplify
the EM tensor and put it into a compact form. If we define:

αµ0 = α̃µ0 =
(α′

2

) 1

2 pµ, (39)

then the components of the EM tensor take the forms:

Tωω ≡ T (ω) =
∞∑

n=−∞

Lne
inω, Tω̄ω̄ ≡ T̃ (ω̄) =

∞∑

n=−∞

L̃ne
−inω̄, (40)

where Ln and L̃n are the generators of conformal transformations. They are
given by:

Ln = −1

2

∞∑

m=−∞

αmµα
µ
n−m and L̃n = −1

2

∞∑

m=−∞

α̃mµα̃
µ
n−m. (41)

The Poission brackets of the conformal generators are evaluated to be:

{Lm, Ln} = −i(m− n)Lm+n, (42)

{L̃m, L̃n} = −i(m− n)L̃m+n and (43)

{Lm, L̃n} = 0. (44)

These relations are known as the Virasoro algebra.
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3.2 String Quantization

The standard quantization procedure is followed here, namely the cooeffi-
cients in the mode expansion are promoted to operators. The commutation
relations correspond to (37) are:

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = −mηµνδm,−n and [αµm, α̃

ν
n] = 0. (45)

It would make sense for the quantized version of the theory to maintain
conformal invariance and also the commutation relations as in the classical
theory. This proves to be non-trivial because in all quantized theories the
order of field operators matters. A way to get over the problem is outlined
as follows.

First of all we identify the creation and annihilation operators by look-
ing at the commutation relations between αµn and the hamiltonian. The
hamiltonian is given by:

H = −
∫ 2π

0
dσΠµ(τ, σ)∂τX

µ(τ, σ) − L

= L0 + L̃0. (46)

Using this we obtain:
[αµn,H] = nαµn, (47)

which shows that αµn are annihilation operators when n > 0, and creation
operators when n < 0.

It can also be shown easily that the momentum takes the form:

P = L0 − L̃0. (48)

Quantum Virasoro algebra

We would also like to maintain the commutation relation:

[Lm, Ln] = (m− n)Lm+n, (49)

but as they are dependent on αµn’s care is needed to be taken. We see from
(45) and (41) that only L0 has ordering problem. Using (39), we can write
it as:

L0 = −α
′

4
pµp

µ −
∞∑

m=1

α−m µα
µ
m + a. (50)

This expression is in normal ordering, in the sense that the creation operators
are on the left of the annihilation operators. Using this, together with (41),
we obtain:

[Lm, Ln] = (m− n)Lm+n, (51)



3 INTRODUCTION TO STRING THEORY 14

for m 6= n, and:

[Lm, L−m] = 2m(L0 − a) +mδµµ

∞∑

r=1

r, (52)

where δµµ is the dimensionality of spacetime and is denoted by d from now on.
This is not sensible as we have an infinite value. However, careful analysis
on the effect of [Lm, L−m]−2m(L0−a) on the ground state of the oscillators,
which are the normal modes of string vibrations, reveals:

[Lm, L−m] − 2m(L0 − a) =
d

12
m(m2 − 1). (53)

Together with (51) and (52) we obtain the following relation:

[Lm, Ln] = (m− n)Lm+n +
[ d
12
m(m2 − 1) − 2ma

]
δm,−n. (54)

The Fadeev-Popov method

We have seen that by quantizing the bosonic string, an extra term is obtained
in the commutation relation of the conformal generators. This anomaly can
be removed by the Fadeev-Popov method, in which ghost fields are intro-
duced in addition to the original fields Xµ. This involves lots of technical-
ities, and is very hard to give an adequate justification to it in the short
space here. Rather a few important results are quoted [10].

The ghost action associated with the ghost fields (b, c) can be expressed
in the form:

Sg(b, c) =
1

4π

∫
dτdσ(−γ) 1

2 bab
[
∇acb + ∇bca − γab∇cc

c
]
. (55)

¿From this the EM tensor of the ghost fields can be calculated using the
same definition of the EM tensor for Xµ. Indeed the previous procedure
used to calculate various commutation relations can be applied here. The
conformal generators can be shown to be:

L(g)
n =

∞∑

m=−∞

(sn−m) : bmcn−m : −δn,0. (56)

The combined result is given by:

[Lm, Ln] =
[ 1

12
m(m2 − 1)(c(X) + c(g)) − 2m(a(X) + a(g))

]
δm,−n

+(m− n)Lm+n , (57)

where Ln = L
(X)
n + L

(g)
n . The ghost charge c(g) is known to be −26. We

see that the anomalous term vanishes if we take c(X) + c(g) and a(X) + a(g)

both equal zero. The first term means that we take c(X) = 26, while the
second term can be set zero by a suitable definition.
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The mass spectrum

There is a constraint which states that for any physical states in the Hilbert
space, (L0−a)|ψ〉 = 0, where L0 is the Virasoro generators for the combined
Xµ and the ghost fields [11]. Armed with this relation, together with (50)
and (56), we obtain:

L0 = −α
′

4
pµp

µ +
∞∑

n=1

n
(
b−ncn + c−nbn − n−1α−n µα

α
n

)
− 1 + a, or (58)

M2 =
4

α′
(N − 1), (59)

where N is the terms in the summation. The ground state, where N = 0,
gives a negative value and therefore violate causality. It is known as the
tachyon and is required to be projected out of the mass spectrum of any
realistic string model.

3.3 Superstrings

We saw that tachyon is present in bosonic strings. Also all degrees of freedom
are bosonic and so the theory does not describe fermions. It turns out that
fermionic fields can be inserted into the bosonic string action, and if the
fermionic and bosonic fields are related by supersymmetry a lot of amazing
results come out naturally.

The generalized action which includes fermionic fields on a Minkowskian
worldsheet is given by [10]:

S =
1

2π

∫
∞

−∞

dτ

∫ l

0

[ 2

α′
∂Xµ∂̄X

µ + iψµ∂̄ψ
µ − iψ̃µ∂ψ̃

µ
]

(60)

where Xµ(τ, σ) are identified as spacetime coordinates of the worldsheet,
and the fermionic fields are components of D-Majorana spinors. The con-
dition of the Majorana spinor forces ψµ and ψ̃µ, its left- and right-moving
components, to be real.

To maintain the commutation relations in this supersymmetric version
of string theory, we introduce fermionic ghosts. The fermionic ghost charge

turns out to be c
(g)
f = 11, while each Majorana fermion gives c

(X)
f =

c(X)/2. We obtain the following relation:

ctotal = c(g) + c
(g)
f + c(X) + c

(X)
f = −15 +

3

2
c(X), (61)

which gives spacetime dimension 10 for ctotal = 0.
We demand the value of the Lagrangian density to be unique at each

spacetime point. This transpires into the internal degrees of freedom, ψµ

and ψ̃µ, to be either periodic or antiperiodic for a closed string:

ψµ(τ, σ + l) = ±ψµ(τ, σ) (62)
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and similarly for ψ̃µ. We therefore arrive at two boundary conditions [12][13].
The Ramaond (R) boundary condition is periodic, while the antiperiodic
boundary condition is termed Neveu-Schwarz (NS) boundary condition.

GSO projection

A consequence of these different boundary conditions is that the full Hilbert
space of the superstring contains several topological sectors [3]. It turns out
that there are consistency requirements such that only certain combinations
of sectors appear in the physical Hilbert space. The extraction of the phys-
ical states is realized by the GSO projection, which is an important idea in
constructing realistic string models. We will come back to this later.

Summary

This is by no means an adequate account of string theory. It is hoped
that through this rather hand-waiving introduction, it becomes clear how
extra degrees of freedom and mass spectrum come about as consequences
of requiring mathematical consistencies. Readers are referred to other texts
[14][15][16] for further information.

It is worthy to note some incredible results for superstring theory [14].
First of all, it is completely anomaly free if the theory is goverened by groups
SO(32) or E8 × E8 [17]. The theory is finite to all orders in perturbation
theory, and therefore no renormalization is required [18]. Also spin-2 bosons
always appear in the theory which we interpret as graviton and so it leads
to quantum gravity naturally. Perhaps the most appealing of all is that the
theory is so tightly constrained that it is free of adjustable parameters. This
is compared with the standard model.

Another important point is that the large groups of SO(32) or E8 ×E8

makes phenomenology possible [3] because we may break the large group
sturcture into smaller groups and hope to recover the standard model gauge
group SU(3)C×SU(2)L×U(1)y in the process. This is the goal of the thesis
and we will continue to develop the idea in subsequent chapters.
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4 The Free Fermionic Model

In the last chapter some basic ideas in string theory were introduced. Now
we turn to the construction of realistic string models.

In this chapter we introduce the heterotic string, which is regarded as the
most promising [19] among all string theories to be relevant to the nature
we are living in. Then we turn to the free fermionic formulation [20], in
which we interpret the degrees of freedom required to cancel the conformal
anomaly as internal degrees of freedom on the worldsheet. We will introduce
a string partition function, and sketch how the implementation of modular
invariance to the partition function will lead to a set of rules related to the
GSO projection which we will rely on in our actual development of a realistic
string model.

Most substance in this chapter follows the lecture notes on string phe-
nomenology by Dr. A. Faraggi [11].

4.1 Heterotic Strings

¿From (60) we see that the two components of the Majorana spinor are de-
coupled. This means that the left- and right-moving modes of the string are
independent. We can therefore impose supersymmetry on the left-moving
modes only, while the right-moving modes remain purely bosonic. In this
case, the conformal anomalies cancel seperately.

Now we have the left-moving modes living in 10-dimensions, while the
right-moving modes living in 26-dimensions. The latter can be labelled
by Xµ which has been compactified to 10 dimensions, leaving a compact
16-dimensional space. Each compactified coordinate generates a vertex op-
erator for a U(1) spacetime current. As it turns out, there are only two
group structures possible in this construction, namely the SO(32) and the
E8 ×E8.

4.2 The Fermionic Construction

In the free fermionic formulation, instead of interpreting the degrees of free-
dom required for conformal anomaly cancellations as spacetime dimensions,
they are interpreted as internal degrees of freedom, and can be thought of as
free internal fermions propagating on the worldsheet. The theory can then
be formulated on a 4-dimensional spacetime.

In this context, anomaly cancellations give:

CL = 0 = −26 + 11 +D +
D

2
+ nbL +

nfL

2
and (63)

CR = 0 = −26 +D + nbR . (64)

In supersymmetry, there is a one-to-one correspondence between bosons
and their fermionic superpartners, so we have nbL = nfL

. Also there is a
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mechanism which allows bosons to transform into fermions in 2 dimensions,
defined by:

expiX = y + iw and exp−iX = y − iw. (65)

Together with D = 4, and the two superpartners of the left-moving world-
sheet coordinates, we obtain:

20 left-moving real fermions
44 right-moving real fermions.

Qualitatively we can explain this result as follows: In the free-fermionic
construction, the extra degrees of freedom are interpreted as internal de-
grees of freedom. Therefore for the right-moving bosonic part there are 22
extra bosonic degrees of freedom. The mechanism to transform bosons into
fermions is employed to generate the 44 real fermions. For the left-moving
supersymmetric part, there are 6 extra dimensions, giving rise to 6 bosons
and 6 fermions. The same mechanism is applied here to transform the 6
bosons into 12 real fermions. On top of the 18 left-moving real fermions, we
also include the 2 superpartners of the worldsheet coordinates, thus generat-
ing 20 left-moving fermions in total. One expects a correspondence between
12 left-moving fermions and 12 right-moving fermions from the construction
of the heterotic string.

4.3 Partition function

The partition function is defined as the one loop vacuum-to-vacuum-to-
vacuum amplitude. It is clear that by a suitable conformal transformation,
an one-loop can be transformed into a torus. The partition function is then
the sum over all physically inequivalent tori.

It is easy to see that in a torus there are two non-contractible loops. As
a world-sheet fermion propagates around these loops it picks up a phase,
defined by:

f → −e−iπα(f)f. (66)

The 64 α(f)’s specify the boundary conditions of the free fermions and can
be represented by a basis vector with 64 entries. A set of basis vectors then
generates worldsheet fermions.

When we calculate the partition fuction, we sum over all the physically
inequivalent tori. The partition function is given by:

Zi

[
θ
β

]
=
∑

s∈H

〈s|eiθP e−sπβH |s〉 (67)

where H represents the Hilbert space, eiθP represents spatial propagation,
and e−2πβH represents time propagation of the states |s〉. It can be shown
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to be equal to:

Zi

[
θ
β

]
= TrH(eiθP e−2πβH) (68)

It was shown in (46) and (48) that classically the Hamiltonian and the
momentum generator can be expressed in terms of L0 and L̃0. We state
without proof that the quantum-mechanical versions are given by:

H = L0 + L̃0 −
1

24
and (69)

P = L0 − L̃0. (70)

The 1/24 arises from the conformal anomaly when we quantize the theory.
If we write τ = iβ− θ

2π and g = ei2πτ , the partition function can be rewritten
as:

Zi(τ) = g−
1

48 g̃−
1

48 Tr(gL0 g̃L̃0). (71)

The total partition function is then the product of partition functions
for the worldsheet fermions. The form of the total partition function is
therefore:

ZF (τ) =
64∏

i=1

Zi

[
θ
β

]
(τ). (72)

By convention, θ and β represent the ’spatial’ and ’time’ boundary condi-
tions repectively.

4.4 Modular Invariance

A torus can be mapped onto a complex plane by cutting along its two non-
contractible loops. Define a complex parameter z = σ1 + iσ2 where the two
coordinates are periodic with lengths λ1 and λ2 respectively. We then see
that z + n1λ1 + in2λ2 is equivalent to z, if ni are integers. Also, the same
torus is obtained by substituting λ

′

1 = aλ1 and λ
′

2 = aλ2.
We define a parameter which specifies inequivalent tori by:

κ =
λ2

λ1
. (73)

Now make a linear transformation on the λ′s:
(
λ

′

2

λ
′

1

)
=

(
a b
c d

)(
λ2

λ1

)
(74)

where a, b, c and d are arbitrary. We then obtain:

κ→ κ′ =
aκ+ b

cκ+ d
. (75)
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The new torus is now given by z + n
′

1 λ
′

1 + n
′

2 λ
′

2 where n
′

i ∈ Z. This is
equal to z + (n

′

1 d+ n
′

2 b)λ1 + (n
′

1 c+ n
′

2 a)λ2, and so we get back the same
torus if the following relation is satisfied:

(
n2

n1

)
=

(
a c
b d

)(
n

′

2

n
′

1

)
, (76)

where again ni ∈ Z.
Therefore we have an unambiguous way to determine the physically in-

equivalent states. In other words modular invariance can be seen as a pro-
cedure to identify physically equivalent tori.

Next we require the partition function be invariant under modular trans-
formations. The partition function is also reparametrization invariant as the
string worldsheet is invariant under reparametrization. The result of the two
invariances is that we demand the partition function to be invariant under:

κ→ −1

κ
and (77)

κ→ κ+ 1. (78)

By requiring invariance under the above transformations a set of rules goven-
ing the allowed boundary conditions is obtained. This set of rules is the
primary tool for our construction of a realistic string model.

Spin structures

The boundary conditions of real fermions around the two non-contractible
loops can be periodic (R) or anti-periodic (NS). The four possibilities are:

Zf

[
0
0

]
Zf

[
0
1

]
Zf

[
1
0

]
and Zf

[
1
1

]
, (79)

where the phase is defined in (66), and so:

0 ↔ NS 1 ↔ R. (80)

These are called the spin-structures of the fermions on the torus.
A complex fermion can be built from two real fermions. It takes the

form:

f =
1√
2
(f1 + if2) f̄ =

1√
2
(f1 − if2), (81)

so we expect α(f) for complex fermions may take values between ±1.
The spin structures can be expressed in the form:

Zf

[
0
0

]
=
θ
1/2
3

η1/2
, Zf

[
0
1

]
=
θ
1/2
4

η1/2
, Zf

[
1
0

]
=
θ
1/2
2

η1/2
, Zf

[
1
1

]
=
θ
1/2
1

η1/2
.

(82)
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We state without proof that upon modular transformation κ → κ + 1
the spin structures transform according to:

η → ei
π
12 η, θ1 → ei

π
4 θ1, θ2 → ei

π
4 θ2, θ3 ↔ θ4, (83)

and upon κ→ − 1
κ the functions transform as:

η → (−iκ) 1

2 η,
θ1
η

→ e−i
π
2

θ1
η
,

θ2
η

↔ θ4
η
,

θ3
η

→ θ3
η
. (84)

In this formulation, the partition function is a product of left and right
moving theta functions. It can be generated by specifying a set of boundary
condition basis vectors:

B = {~b1,~b2 · · ·~bn}. (85)

The one-loop fermionic partition function is then given by:

Z =
∑

spin
structure

C

(
~α
~β

)
ZF

[
~α
~β

]
, (86)

where

~α =
n∑

i=1

αi~bi ~β =
n∑

i=1

βi~bi. (87)

The sum is over all spin structures allowed by modular invariance. Evidently,
the phases C

(~α
~β

)
related by modular transformation have to be the same

in order to maintain the invariance of the partition function. All these
constraints culminate in a set of rules derived by Antoniadis, Bachas and
Kounnas, and is known as the ABK [20] rules. It specifies the conditions
between different basis vectors and also the rules on the one-loop phases.
We will state the rules explicitly at the beginning of the next chapter.

4.5 Other Key Ideas

Constraint on worldsheet supersymmetry

Recall that in our constructuion supersymmetry is imposed on the left-
moving modes. The associated supercurrent is given by:

TF = ψµ∂Xµ + fabcψ
aψbψc. (88)

Here a, b and c runs from 1 to 18 and correspond to the 18 free fermions in
the 6 compactified dimensions.

If the 18 fermions are grouped into six SU(2) groups, then the supercur-
rent takes the form:

TF = ψµ∂Xµ +
6∑

i=1

χiyiwi. (89)
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Evidently the transformation of χiyiwi must be the same as ψµ in or-
der the supercurrent is well-defined. Therefore if we have ψµ → −ψµ, i.e.
α(ψµ) = 0, we need:

(
α(χ), α(y), α(w)

)
: (0, 0, 0) (0, 1, 1) (1, 1, 0) (1, 0, 1). (90)

Similarly if we have ψµ → ψµ, ie α(ψµ) = 1, then we require:
(
α(χ), α(y), α(w)

)
: (0, 0, 1) (0, 1, 0) (1, 0, 0) (1, 1, 1). (91)

Worldsheet current

Each complex fermions generates a worldsheet current. The charge corre-
sponds to each current is defined by:

Q(f) =
1

2
α(f) + F (f), (92)

where α(f) is the boundary condition of a complex fermion and F (f) is the
fermion number.

For the non-degenerate NS vacuum, the fermion number is given by +1,
and it is −1 if its complex conjugate acts on the NS vacuum.

For the R vacua there are two degenerate vacua, denoted by |±〉. The
fermion numbers for complex fermions acting on these vacua are given by:

F |+〉 = (0)|+〉,
F |−〉 = (−1)|−〉. (93)

Ising operators

An Ising operator is obtained by combining a real left-moving fermion and
a real right-moving fermion. The Ising operators define the Ising model in
statistical mechanics. The idea is beyond the scope of this thesis. We only
note that such combinations are important in constructing a realistic string
model.

Summary

In this chapter, we introduce the free fermionic model which formulates
string theory on a four dimensional spacetime, and interpret the extra de-
grees of freedom as free fermions propagating on the worldsheet. We outline
that by demanding modular invariance [21] of the string partition function,
a set of rules emerges naturally. It governs the possible boundary condi-
tions of the worldsheet fermions, and also the phases between different spin
sturctures. The constraint on supercurrent is also described, and the charges
associated with complex fermion currents are defined. The Ising operator is
introduced. These ideas will be implemented in the next chapter when we
build a realistic string model.



5 REALISTIC STRING MODEL 23

5 Realistic String Model

In the previous chapters some ideas behind the free fermionic formulation
were introduced. Constraints arise from various mathematical consistencies
were also described. In this chapter we apply these constraints to construct
a realistic string model.

From the previous chapter we know that a model is defined by specifying:

1) A set of boundary condition basis vectors ~bi.

2) The one-loop phases C
(bi
bj

)
for all intersections of basis vectors.

We will show that with the choice of basis vectors and phases decribed
below the model constructed possesses the observable SU(3)C × SU(2)L ×
U(1)y gauge symmetries. We then compare with a class of model which has
a non-Abelian custodial SU(2)c symmetry, in which only leptons transform
[22], and explain how this extra symmetry is absent in our model.

5.1 The ABK Rules

The constraints imposed by modular invariance on the partition function is
realized as a set of rules derived by Antoniadis, Bachas and Kounnas [20].
The rules are stated below.

1) The basis vectors, bk, span a finite additive group
Ξ =

∑
k nkbk where nk = 0, · · · , Nk − 1, and

Nkbk = 0 mod 2.

2) Rules on basis vectors
i)

∑
mibi = 0 iff ∀mi = 0 mod Ni

ii) Nijbi · bj = 0 mod 4 Nij is the LCM of bi and bj
iii) Nibi · bi = 0 mod 8
iv) Even no. of real fermions

v) b1 = ~1

3) Rules on one-loop phases

i) C
(bi
bj

)
= δbie

i
i2πni

Nj = δbje
i
2πnj
Ni ei

πbi·bj
2

ii) C
(bi
bi

)
= −ei

πbi·bj
4 C

(bi
1

)

iii) C
(bi
bj

)
= ei

πbi·bj
2 C

(bj
bi

)∗

iv) C
( bi
bj+bk

)
= δbiC

(bi
bj

)
C
(bi
bk

)

In the above notations, bi · bj is the Lorentzian product given by:

bi · bj =

{(
∑

complex

left

+
1

2

∑

real
left

)
−
(

∑

complex

right

+
1

2

∑

real
right

)}
bi(f)bj(f). (94)
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The δbi is defined as:

δbi = eibi(ψ
µ)π =

{
−1 bi(ψ

µ) = 1
+1 bi(ψ

µ) = 0
(95)

5.2 Basis Vectors and Phase Choices

A realistic model in the free fermionic formulation is generated by a basis
of boundary condition vectors for all worldsheet fermions [2, 22, 23, 24, 25,
26, 27].

Notations

In section 4.2, it is shown that there are 20 left-moving and 44 right-moving
real fermions. We also recall that two real fermions can be combined to form
a complex fermion. With the benefit from hindsight we denote the 64 real
fermions with different symbols and complexify certain combinations.

In our convention, the left- and right-moving fermions are distinguished
by bars on top of the latter modes. The 2 real superpartners of the world-
sheet coordinates are denoted by {ψµ1,2}. {y1,···,6} and {w1,···,6} reresent the
12 real fermions arising from the 6 compactified dimensions, and their su-
perpartners are expressed as {χ1,···,6}.

For the right-moving modes, we denote {ȳ1,···,6, w̄1,···,6} as the 12 real
fermions correspond to {y1,···,6, w1,···,6}. The observable gauge group is repre-
sented by 5 complex fermions {ψ̄1,···,5}. {η̄1,2,3} are three complex fermions,
and generate U(1) currents. Finally, we write {φ̄1,···,8}, another 8 complex
fermions correspond to the hidden gauge group.

The real fermions then pair up to form complex fermions or Ising oper-
ators. In our model the pairings are defined by:

1) w2w4 w1w̄1 w3w̄3 w̄2w̄4

2) y1w5 y2ȳ2 w6w̄6 ȳ1w̄5

3) y3y6 y4ȳ4 y5ȳ5 ȳ3ȳ6

Note that the pairings are divided into 3 groups, each consists of 2 U(1)
currents and 2 Ising operators. The division is related to the 3 generations
of particles we observe, which will become clear later.

Using the above notations we now define the 8 basis vectors used in
the model. They are denoted by B = {1, S, b1, b2, b3, α, β, γ}. The explicit
values of the vectors are given in appendix A. It can be shown that the basis
vectors conform to the ABK rules as well as the symmetry of the worldsheet
supercurrents.
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Phase choices

¿From the ABK rules on phase choices, it can be seen that the phase choices
are related to one another. In particular it can be shown that if we set
up a matrix specifying the phases C

(α
β

)
, we can choose to assign values

to half of the off-diagonal elements. The values of the remaining phases
are then uniquely determined by the basis vectors. A table showing the
general structure of phases with our choice of basis vectors, together with
the particular choice of phases we use in the realistic model are shown in
appendix B.

5.3 Model Building

Having chosen the basis vectors and phase choices, the resulting mass spec-
trum is determined. The basis vectors defines all sectors of the mass spec-
trum. The mass of a string in a given sector is related to its boundary
conditions and also the number of oscillators that acts on the vacuum. Af-
ter choosing a string mass, GSO projection is applied which serves to extract
all the physical states in the Hilbert space defined in that sector.

Virasoro condition

As we are investigating the low energy limit of string theory only the massless
states are studied in our model. The mass of a string is given by:

M2
L = −1

2
+
αL · αL

8
+NL = −1 +

αR · αR
8

+NR = M2
R. (96)

The NL and NR are the sum of left-moving and right-moving oscillators
acting on the vacuum, which take the values NL =

∑
νL and NR =

∑
νR

respectively. The value attached to an oscillator is defined by:

νf =
1 + α(f)

2
νf∗ =

1 − α(f)

2
. (97)

Fermion number +1 is assigned to each fermion (f), and −1 is assigned to
its complex conjugate (f ∗). The fermion number of the vacua is given in
page 22.

GSO projection

The GSO projection is defined by :

eiπbj ·Fξ |s〉ξ = δξC

(
ξ

bj

)∗

|s〉ξ, (98)

where ξ belongs to the additive group Ξ, and bj belongs to B. Fξ represents
the fermion numbers of the sector ξ. Here |s〉ξ is a state in the sector ξ. The
dot product bj · Fξ is defined the same way as (94).
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The GSO projection is to perform over all the basis vectors. The projec-
tion rule is a result of the modular invariance applied to the string partition
function. Its purpose is to take care of cancellations that appear in the sum
over all spin structures. Interested readers are referred to [11]. From the
form of (98), it is clear that the states that survive all GSO projections,
and hence the final mass spectrum, are uniquely determined by the choice
of basis vectors and phases.

5.4 Results

All the necessary tools and the initial conditions are in place to construct a
realistic string model. The model building is divided into 2 levels. At the
first level the NAHE set [25] is discussed, which is a starting point of all
realistic string models. The second level extend the NAHE set to include
three more basis vectors {α, β, γ}. They are reponsible for the breaking
down of the SO(10) group into the standard model gauge group.

Appendix D gives an example of how the extraction of physical states is
performed.

The NAHE set

The NAHE set consists of B = {1, S, b1, b2, b3}. The vector 1 is required by
consistency. From the values of the boundary conditions of S, it is easy to see
that it is the supersymmetry generator, therefore the superpartner of some
sector α is given by S +α. The NS (0) sector produces, on top of gravitons
and dilatons [14], gauge bosons correspond to the group SO(10)×SO(6)3 ×
SO(16). The SO(10) correspond to the observable gauge group {ψ̄1···5},
the three SO(6)’s correspond to the groupings {η̄1, ȳ3,···,6}, {η̄2, ȳ1,2w̄5,6},
{η̄3, w̄1,···,4}, and the SO(16) corresponds to the hidden symmetry. The
sector 1 + b1 + b2 + b3 produces a spinorial 128 in the hidden gauge group
and thus the hidden symmetry is enhanced to E8 [28].

The sectors b1, b2, and b3 each produces 16 spinorial 16 representations of
SO(10). The η̄1, η̄2 and η̄3 produces three U(1) symmetrires. Corresponding
to these are the three U(1) supercurrents {χ12, χ34, χ56}. Also the {y3,···,6},
{y1,2w5,6}, {w1,···,4} are the left-moving counterparts of {ȳ3,···,6}, {ȳ1,2w̄5,6},
{w̄1,···,4}, a reflection of the left-right symmetric conformal field theory of
the heterotic string [22].

The additional vectors

The three additional basis vectors {α, β, γ} reduce the number of generations
of particles to three, one from each sector b1, b2, b3. The vector γ contains
half integral boundary conditions, and are required to reduce SO(2n) to
SU(n)×U(1). The symmetry of the observable gauge group is broken down
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by α and β:
SO(10) → SO(6) × SO(4) (99)

The vector γ breaks down the group futher into:

SO(6) → SU(3) × U(1), SO(4) → SU(2) × U(1) (100)

thus producing the standard model gauge symmetry.
The hidden symmetry is reduced to SO(8) × SO(8) by α and β. It is

further reduced by γ into U(1)3 × SO(4) × SU(3) × U(1)φ̄567 . The three
horizontal SO(6) symmetries are broken into U(1) symmetries.

The NS sector produces the following generators:

SU(3)C × SU(2)L × U(1)B−L × U(1)t3 ×
U(1)η̄1 ,η̄2,η̄3 × U(1)ȳ1w̄5,w̄2w̄4,ȳ3ȳ6 × (101)

U(1)φ̄1 ,φ̄2,φ̄8 × SO(4)φ̄34 × SU(3)φ̄567 × U(1)φ̄567 .

The first four terms are the observable gauge groups, the second six are
the horizontal U(1) currents, while the remaining terms correspond to the
hidden symmetry. The subscripts of the obersvable gauge group take their
conventional meaning, where in particular B − L is the difference between
baryon and lepton number. This will be justified shortly. The subscripts of
the remaining groups signify the free fermions responsible for the particular
symmetries.

Group enhancement

Apart from the NS sector, the sector 1 + b1 + b2 + b3 also produces space-
time vector bosons. We note the isomorphism of SO(4) ∼ SU(2) × SU(2).
The vector bosons produces the following representations in SU(3)φ̄567 ×
SU(2)φ̄34 :

(3, 2) (3̄, 2) (1, 2) (1, 2). (102)

Therefore 1 + b1 + b2 + b3 gives rise to 6, 6̄, 2 and 2 representations in
the hidden gauge group. Together with the spacetime bosons in the NS
sector, which have representations 8 in the SU(3),two 3’s in the SO(4) ∼
SU(2) × SU(2), and four 1’s in the U(1)’s, we find that the hidden gauge
group is enhanced to:

SU(5) × SU(3) × U(1)2 (103)

where the 24 of SU(5) arises from:

24 = 8 + 6 + 6̄ + 3 + 1, (104)

and the 8 of SU(3) arises from:

8 = 3 + 2 + 2 + 1 (105)
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according to [29]. The U(1) in SU(3) is given by:

U(1)h3 = U(1)φ̄1 + U(1)φ̄2 + U(1)φ̄567 + U(1)φ̄8 , (106)

and the U(1) in the SU(5) is given by:

U(1)h5 = −3U(1)φ̄1 + 3U(1)φ̄2 + U(1)φ̄567 − 3U(1)φ̄8 . (107)

The remaining two U(1)’s are given by the orthogonal combinations to
U(1)h3 and U(1)h5. One possibility is:

U7 = U(1)φ̄1 − U(1)φ̄8 (108)

U8 = U(1)φ̄1 + 4U(1)φ̄2 − 2U(1)φ̄567 + U(1)φ̄8 . (109)

The fermion mass spectrum

In this model, the following sectors give rise to fermionic states:

b1, b2, b3, b1 + 2γ, b2 + 2γ, b3 + 2γ, 1 + α+ 2γ, (110)

1 + b1 + b2 + 2γ, 1 + b2 + b3 + 2γ, 1 + b1 + b3 + 2γ. (111)

The sectors that transform under the hidden gauge group are merged
according to:

ξ ⊕ ξ + (1 + b1 + b2 + b3), (112)

since the hidden symmetry is enhanced by 1+b1+b2+b3. Thus the following
pairs of sectors are merged:

b1 + 2γ ⊕ 1 + b2 + b3 + 2γ, (113)

b2 + 2γ ⊕ 1 + b1 + b3 + 2γ, (114)

b3 + 2γ ⊕ 1 + b1 + b2 + 2γ. (115)

All states of these three pairs transform as singlets under the observable
gauge symmetry.

Of all the sectors, only b1, b2 and b3 give rise to spinorial 16 in the
observable gauge group. The sector γ contains 8 states. They transform as
3, 3̄, and two singlets under SU(3)C .

All U(1) currents carry charges. For convenience the charges are rede-
fined in appendix E. If we further define:

Qy =
1

2

(
QB−L +QT3Y

)
, (116)

we find that Qy’s of the spinorial 16 of the observable gauge group matches
exactly to those in the standard model.

The full fermion mass spectrum is given in appendix F.
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Anomalous U(1) symmetries

The model contains three anomalous U(1) symmetries. This means that
the sum of charges over all sectors are found to be non-zero for the U(1)
currents of η̄1, η̄2 and η̄3. In particular the values are found to be:

∑

sectors

Q(η̄1) =
∑

sectors

Q(η̄2) =
∑

sectors

Q(η̄3) = 24. (117)

Two of the three anomalous U(1)’s may be rotated away, but not all
three simultaneously.

The custodial SU(2)c symmetries

In this model, three spinorial 16 arise from the sectors b1, b2 and b3. In
a class of models, however, the observable gauge group is enhanced to
SU(3)C × SU(2)L × SU(2)c. This is due to the sector 1 + S + α + 2γ.
It produces two additional spacetime vector bosons, which are singlets of
the nonabelian group but carry U(1) charges. It was shown in [22] that
only the lepton supermultiplets, {L, ecL, N c

L} transform as doublets under
the custodial SU(2)c, while the quarks are singlets. In our model these two
vector bosons are projected out. The remaining states in this sector are
scalars.

The GSO coefficient for ξ = 1 + S + α+ 2γ is given by:

δξC

(
ξ

j

)∗

= e−iξ·j
π
2 (δj)

4C

(
j

1

)
C

(
j

S

)
C

(
j

α

)
C

(
j

γ

)2

, (118)

where j represents all the basis vectors. A general method to calculate GSO
coefficients is given in appendix C.

In the current model, the GSO coefficient in this sector for j = β is +1.
I show that if the initial phase choice is altered in such a way to change
this particular coefficient from +1 to −1, the sector produces two spacetime
vector bosons in addition to six scalars. These bosons carry charges of the
currents U(1)ȳ1w̄5 , U(1)w̄2w̄4 , U(1)ȳ3 ȳ6 , U(1)B−L, U(1)φ̄1 and U(1)φ̄8 . The
spinorial 16 of b1, b2 and b3 are not affected by this particular phase change.
The U(1) symmetry in the observable gauge group is enhanced to SU(2)c
as a result of these additional spacetime vector bosons.
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6 Conclusion

In this thesis a realistic string model based on the free fermionic formulation
was investigated. It was free of the anomalous custodial SU(2)c symmetry in
which only the leptons transform. We trace the origin of this extra symmetry
as group enhancement of the U(1)y in the observable gauge group.

In the class of model that contains this SU(2)c symmetry, the NS sector
gives rise to gauge bosons of the SU(3)C × SU(2)L × U(1)y group, while
the sector 1 + S + α+ 2γ produces two additional spacetime vector bosons
which are singlets but carry U(1) charges. These bosons enhance the U(1)
symmetries to SU(2)c. In our model, these additional vector bosons are
projected out by GSO projection, thus leaving the standard model gauge
group intact.

It was shown that these extra spacetime bosons may be recovered by a
suitable change of phase in the sector 1 + S + α + 2γ. While this is not
a direction one wish to proceed, there is currently no mechanism to forbid
this. In other words, different models are equivalent in the sense that there
is no way to select particular models over the others, apart from appealing
to phenomenology.

In this study, a way was found to construct a realisitc string model that
possesses the group structure of the standard model. It could serve as a
guide to future research in devising a mechanism which selects particular
models. It would be a triumph of string theory if the standard model gauge
symmetry comes out inevitably in the low energy limit.

In this thesis the stated results were verified as much as possible. It was
tried to be clear whenever results were adopted from other sources. All the
results in chapter 2 and the section on bosonic strings in chapter 3 were
verified. For the latter, verifications follow the line of [10]. The ideas in
chapter 4 follows [11] closely. All the results related to the realistic string
model presented were verified by the author.
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A Basis Vector

The basis vectors are stated below. The first five vectors {1, S, b1, b2, b3}
constitute the NAHE set and is the basis of the realistic string model. The
three additional basis vectors are responsible for symmetry breaking and
reduction to 3 generations of spinorial 16 in the observable gauge group.
The notations of the fermions are described in section 5.2.

ψµ χ12, χ34, χ56 ψ̄1, ψ̄2, ψ̄3, ψ̄4, ψ̄5, η̄1, η̄2, η̄3

1 1 1, 1, 1 1, 1, 1, 1, 1, 1, 1, 1
S 1 1, 1, 1 0, 0, 0, 0, 0, 0, 0, 0
b1 1 1, 0, 0 1, 1, 1, 1, 1, 1, 0, 0
b2 1 0, 1, 0 1, 1, 1, 1, 1, 0, 1, 0
b3 1 0, 0, 1 1, 1, 1, 1, 1, 0, 0, 1

α 0 0, 0, 0 1, 1, 1, 0, 0, 0, 0, 0
β 0 0, 0, 0 1, 1, 1, 0, 0, 0, 0, 0
γ 0 0, 0, 0 1

2 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

φ̄1, φ̄2, φ̄3, φ̄4, φ̄5, φ̄6, φ̄7, φ̄8

1 1, 1, 1, 1, 1, 1, 1, 1
S 0, 0, 0, 0, 0, 0, 0, 0
b1 0, 0, 0, 0, 0, 0, 0, 0
b2 0, 0, 0, 0, 0, 0, 0, 0
b3 0, 0, 0, 0, 0, 0, 0, 0

α 1, 1, 1, 1, 0, 0, 0, 0
β 1, 1, 1, 1, 0, 0, 0, 0
γ 1

2 , 0, 1, 1, 1
2 ,

1
2 ,

1
2 , 0

y3y6, y4ȳ4, y5ȳ5, ȳ3ȳ6 y1w5, y2ȳ2, w6w̄6, ȳ1w̄5 w2w4, w1w̄1, w3w̄3, w̄2w̄4

1 1, 1, 1, 1 1, 1, 1, 1 1, 1, 1, 1
S 0, 0, 0, 0 0, 0, 0, 0 0, 0, 0, 0
b1 1, 1, 1, 1 0, 0, 0, 0 0, 0, 0, 0
b2 0, 0, 0, 0 1, 1, 1, 1 0, 0, 0, 0
b1 0, 0, 0, 0 0, 0, 0, 0 1, 1, 1, 1

α 1, 1, 1, 0 1, 1, 1, 0 1, 1, 1, 0
β 0, 1, 0, 1 0, 1, 0, 1 0, 1, 0, 0
γ 0, 0, 1, 1 1, 0, 0, 0 0, 1, 0, 1
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B Phase Tables

The following tables show the values of phase C
(a
b

)
.

General Structure

b = 1 S b1 b2 b3 α β γ

a = 1 ±1 ±1 ±1 ±1 ±1 ±1 ±1 ±i
S C

(1
S

)
C
(1
S

)
±1 ±1 ±1 ±1 ±1 ±1

b1 C
( 1
b1

)
−C

(S
b1

)
C
( 1
b1

)
±1 ±1 ±1 ±1 ±1

b2 C
( 1
b2

)
−C

(S
b2

)
C
(b1
b2

)
C
( 1
b2

)
±1 ±1 ±1 ±1

b3 C
( 1
b3

)
−C

(S
b3

)
C
(b1
b3

)
C
(b2
b3

)
C
( 1
b3

)
±1 ±1 ±1

α C
(1
α

)
C
(S
α

)
−C

(b1
α

)
−C

(b2
α

)
−C

(b3
α

)
C
(1
α

)
±1 ±i

β C
(1
β

)
C
(S
β

)
C
(b1
β

)
C
(b2
β

)
−C

(b3
β

)
−C

(α
β

)
−C

(1
β

)
±i

γ −iC
(1
γ

)∗
C
(S
γ

)∗
C
(b1
γ

)∗ −C
(b2
γ

)∗
C
(b3
γ

)∗
iC
(α
γ

)∗ −iC
(β
γ

)∗ −C
(1
γ

)∗

The Phase of the SU(3)C × SU(2)L × U(1)y String Model

b = 1 S b1 b2 b3 α β γ

a = 1 1 1 1 −1 −1 1 1 −i
S 1 1 1 1 1 −1 −1 −1
b1 1 −1 1 −1 −1 −1 −1 −1
b2 −1 −1 −1 −1 −1 −1 −1 −1
b3 −1 −1 −1 −1 −1 −1 −1 −1
α 1 −1 1 1 1 1 1 −i
β 1 −1 −1 −1 1 −1 −1 i
γ 1 −1 −1 1 −1 −1 −1 −i

C Calculation of Phase

In general, a vector ζ ∈ Ξ may be expressed as ζ =
∑
jmjbj, where bj ∈ B.

Similarly we may also have % =
∑
imibi, where mj, ni are all integers. The

phase of spin structure Z

[
ζ
%

]
can be determined using the ABK rules:

C

(
ζ

%

)
= C

(
ζ∑
i nibi

)
= δ

(
∑

i
ni)−1

ζ

n∏

i

C

(
ζ

bi

)ni

.

It is possible to express C
( ζ
bi

)
as:

C

(
ζ

bi

)
= eiπζ·bi/2C

(
bi
ζ

)∗
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= eiπζ·bi/2δ
(
∑

j
mj)−1

bi

m∏

j

C

(
bi
bj

)∗mj

. (119)

Hence we obtain:

C

(
ζ

%

)
= C

(∑
jmjbj∑
i nibi

)

= δ
(
∑

i
ni)−1

ζ

n∏

i

einiπζ·bi/2δ
ni[(
∑

j
mj)−1]

bi

m∏

j

C

(
bi
bj

)∗mjni

. (120)

D The States of the b1 Sector

In this appendix, the GSO projection of the sector b1 is shown. This should
serve as an example of how the states in different sectors are obtained in
general.

The GSO coefficients, defined in (98), in this sector are calculated to be:

bj 1 S b1 b2 b3 α β γ

δb1C
(b1
bj

)∗ −1 1 −1 1 1 1 1 1

In this sector, αL · αL = 4 and αR · αR = 8, so from (96) there are no
oscillators. The 12 periodic complex fermions need to be specified by either
|+〉 or |−〉, as they live in the R vacua. The following representation is used:

(m
n

)
denotes n among the m complex fermions are in states |−〉,
while the rest are in states |+〉.

Recall (98), the coefficient on the two sides of the equation can be
matched by choosing suitable combinations of |−〉, since the fermion number
associated with this state is −1, from (93).

The 12 complex fermions in the R vacua are:

ψ12, ξ12, y36, y4ȳ4, y5ȳ5, ȳ36, ψ̄1···5, η̄1.

In the presentation below the above order of the 12 fermions will be followed.

bj Possible Combinations

1
( 12
odd

)

S
(2
0

)( 10
odd

)

b1
(2
0

)( 10
odd

)

b2
(2
0

)( 4
odd

)( 5
even

)(1
0

)
⊕
(2
0

)( 4
even

)( 5
even

)(1
1

)

b3
(2
0

)( 4
odd

)( 5
even

)(1
0

)
⊕
(2
0

)( 4
even

)( 5
even

)(1
1

)
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α
(2
0

)[(3
1

)(1
0

)
+
(3
3

)(1
0

)][(3
1

)(2
1

)
+
(3
3

)(2
1

)](1
0

)

⊕
(2
0

)[(3
1

)(1
1

)
+
(3
3

)(1
1

)][(3
1

)(2
1

)
+
(3
3

)(2
1

)](1
1

)

⊕
(2
0

)[(3
0

)(1
0

)
+
(3
2

)(1
0

)][(3
0

)(2
0

)
+
(3
0

)(2
2

)
+
(3
2

)(2
0

)
+
(3
2

)(2
2

)](1
1

)

⊕
(2
0

)[(3
0

)(1
1

)
+
(3
2

)(1
1

)][(3
0

)(2
0

)
+
(3
0

)(2
2

)
+
(3
2

)(2
0

)
+
(3
2

)(2
2

)](1
0

)

β
(2
0

)[(1
0

)(1
1

)(1
0

)(1
0

)
+
(1
1

)(1
1

)(1
1

)(1
0

)][(3
1

)(2
1

)
+
(3
3

)(2
1

)](1
0

)

⊕
(2
0

)[(1
1

)(1
0

)(1
0

)(1
1

)
+
(1
0

)(1
0

)(1
1

)(1
1

)][(3
1

)(2
1

)
+
(3
3

)(2
1

)](1
1

)

⊕
(2
0

)[(1
0

)(1
0

)(1
0

)(1
0

)
+
(1
1

)(1
0

)(1
1

)(1
0

)][(3
0

)(2
0

)
+
(3
0

)(2
2

)
+
(3
2

)(2
0

)
+
(3
2

)(2
2

)](1
1

)

⊕
(2
0

)[(1
0

)(1
1

)(1
1

)(1
1

)
+
(1
1

)(1
1

)(1
0

)(1
1

)][(3
0

)(2
0

)
+
(3
0

)(2
2

)
+
(3
2

)(2
0

)
+
(3
2

)(2
2

)](1
0

)

γ
(2
0

)[(1
0

)(1
1

)(1
0

)(1
0

)][(3
3

)(2
1

)](1
0

)
⊕
(2
0

)[(1
1

)(1
1

)(1
1

)(1
0

)][(3
1

)(2
1

)](1
0

)

⊕
(2
0

)[(1
0

)(1
1

)(1
1

)(1
1

)][(3
0

)(2
0

)
+
(3
2

)(2
2

)](1
0

)

⊕
(2
0

)[(1
1

)(1
1

)(1
0

)(1
1

)][(3
0

)(2
2

)
+
(3
2

)(2
0

)](1
0

)

By the end of the projection, 16 states remain. These states are naturally
grouped into six batches, correspond to one generation of particles in the
standard model. For clarity, the CTP partners of the states are not shown.

E Definition of Charges

The charges of the fermion mass specturm are defined as follows. Certain
charges are re-scaled to match the U(1) charges appear in the standard
model.

QB−L =
2

3

3∑

i=1

Q(ψ̄i).

QT3Y =
5∑

i=4

Q(ψ̄i).

Qi = Q(η̄i), where i = 1, 2, 3.

Q4 = Q(ȳ3ȳ6).

Q5 = Q(ȳ1w̄5).

Q6 = Q(w̄2w̄4).

Qh3 = Q(φ̄1) +Q(φ̄2) +Q(φ̄567) +Q(φ̄8).

Qh5 = −3Q(φ̄1) + 3Q(φ̄2) +Q(φ̄567) − 3Q(φ̄8).

Q7 = Q(φ̄1) −Q(φ̄8).

Q8 = Q(φ̄1) + 4Q(φ̄2) − 2Q(φ̄567) +Q(φ̄8),

where Q(φ̄567) =
∑7
i=5Q(φ̄i).
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F The Fermion Mass Spectrum

The 3 generations of spinorial 16 derived from SO(10).

F SEC SU(3)C × SU(2)L Qy QC QL Q1 Q2 Q3 Q4 Q5 Q6

Q1 b1 (3, 2) 1
6

1
3 0 1

2 0 0 1
2 0 0

ū1 (3̄, 1) −2
3 −1

3 −1 1
2 0 0 −1

2 0 0

d̄1 (3̄, 1) 1
3 −1

3 1 1
2 0 0 −1

2 0 0

L1 (1, 2) − 1
2 −1 0 1

2 0 0 1
2 0 0

e1 (1, 1) 1 1 1 1
2 0 0 −1

2 0 0

n1 (1, 1) 0 1 −1 1
2 0 0 −1

2 0 0

Q2 b2 (3, 2) 1
6

1
3 0 0 1

2 0 0 −1
2 0

ū2 (3̄, 1) −2
3 −1

3 −1 0 1
2 0 0 1

2 0

d̄2 (3̄, 1) 1
3 −1

3 1 0 1
2 0 0 1

2 0

L2 (1, 2) − 1
2 −1 0 0 1

2 0 0 −1
2 0

e2 (1, 1) 1 1 1 0 1
2 0 0 1

2 0

n2 (1, 1) 0 1 −1 0 1
2 0 0 1

2 0

Q3 b3 (3, 2) 1
6

1
3 0 0 0 1

2 0 0 −1
2

ū3 (3̄, 1) −2
3 −1

3 −1 0 0 1
2 0 0 1

2

d̄3 (3̄, 1) 1
3 −1

3 1 0 0 1
2 0 0 1

2

L3 (1, 2) − 1
2 −1 0 0 0 1

2 0 0 −1
2

e3 (1, 1) 1 1 1 0 0 1
2 0 0 1

2

n3 (1, 1) 0 1 −1 0 0 1
2 0 0 1

2

F SEC SU(5) × SU(3) Q7 Q8

Q1 b1 (1, 1) 0 0
ū1 (1, 1) 0 0
d̄1 (1, 1) 0 0
L1 (1, 1) 0 0
e1 (1, 1) 0 0
n1 (1, 1) 0 0

Q2 b2 (1, 1) 0 0
ū2 (1, 1) 0 0
d̄2 (1, 1) 0 0
L2 (1, 1) 0 0
e2 (1, 1) 0 0
n2 (1, 1) 0 0

Q3 b3 (1, 1) 0 0
ū3 (1, 1) 0 0
d̄3 (1, 1) 0 0
L3 (1, 1) 0 0
e3 (1, 1) 0 0
n3 (1, 1) 0 0
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The additional fermionic states.

F SEC SU(3)C × SU(2)L Qy QC QL Q1 Q2 Q3 Q4 Q5 Q6

V1 b1 + 2γ ⊕ (1, 1) 0 0 0 0 1
2

1
2 −1

2 0 0

V̄1 1 + b2 + b3 + 2γ (1, 1) 0 0 0 0 1
2

1
2

1
2 0 0

T1 (1, 1) 0 0 0 0 1
2

1
2 −1

2 0 0

T̄1 (1, 1) 0 0 0 0 1
2

1
2

1
2 0 0

V2 b2 + 2γ ⊕ (1, 1) 0 0 0 1
2 0 1

2 0 1
2 0

V̄2 1 + b1 + b3 + 2γ (1, 1) 0 0 0 1
2 0 1

2 0 1
2 0

T2 (1, 1) 0 0 0 1
2 0 1

2 0 1
2 0

T̄2 (1, 1) 0 0 0 1
2 0 1

2 0 1
2 0

V3 b3 + 2γ ⊕ (1, 1) 0 0 0 1
2

1
2 0 0 0 1

2

V̄3 1 + b1 + b2 + 2γ (1, 1) 0 0 0 1
2

1
2 0 0 0 −1

2

T3 (1, 1) 0 0 0 1
2

1
2 0 0 0 1

2

T̄3 (1, 1) 0 0 0 1
2

1
2 0 0 0 −1

2

K 1 + α+ 2γ (1, 1) 1
2 1 0 0 0 0 1

2
1
2 −1

2

K ′ (1, 1) − 1
2 −1 0 0 0 0 − 1

2 −1
2

1
2

M (3, 1) 1
6

1
3 0 0 0 0 1

2
1
2

1
2

M̄ (3̄, 1) −1
6 −1

3 0 0 0 0 −1
2 −1

2 −1
2

F SEC SU(5) × SU(3) Q7 Q8

V1 b1 + 2γ ⊕ (1, 3) − 1
2

5
2

V̄1 1 + b2 + b3 + 2γ (1, 3̄) 1
2 −5

2

T1 (5, 1) − 1
2 −3

2

T̄1 (5̄, 1) 1
2

3
2

V2 b2 + 2γ ⊕ (1, 3) − 1
2

5
2

V̄2 1 + b1 + b3 + 2γ (1, 3̄) 1
2 −5

2

T2 (5, 1) − 1
2 −3

2

T̄2 (5̄, 1) 1
2

3
2

V3 b3 + 2γ ⊕ (1, 3) − 1
2

5
2

V̄3 1 + b1 + b2 + 2γ (1, 3̄) 1
2 −5

2

T3 (5, 1) − 1
2 −3

2

T̄3 (5̄, 1) 1
2

3
2

K 1 + α+ 2γ (1, 1) 1 0

K ′ (1, 1) −1 0

M (1, 1) 1 0

M̄ (1, 1) −1 0

In the tables above, QC and QL are equivalent to QB−L and QT3Y ,
defined in appendix E, respectively.
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