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Abstract

Recently Alon Faraggi and Marco Matone showed in [1] that the postulate of physical
states being equivalent under coordinate transformation leads to the Quantum Stationary
Hamilton-Jacobi Equation (QSHJE) in one dimension. This leads to the Schrödinger
equation, noting that h̄ plays the part of a covariantizing parameter. The purpose of this
paper is to give incite into this development and finally to consider the application of this
formalism to the textbook case of the hydrogen atom.

1 Introduction

General relativity and quantum mechanics are central to twentieth century physics, both are
unchallenged descriptions of their respective domains. Unfortunately, these two theories have
not been successfully meshed together, despite many attempts. General relativity is founded
upon two geometric postulates, whilst the text book approach to quantum mechanics relies upon
an axiomatic interpretation of the wave function. Thus the difficulties in joining these two very
successful theories into a single description is most likely due to their different foundations. The
Equivalence Postulate (EP) as formulated by Faraggi and Matone is somewhat reminiscent of
Einstein’s EP. Whilst the postulated EP cannot be implemented in Classical Mechanics (CM)
in a consistent fashion, the EP does lead to a quantum version of the Classical Stationary
Hamilton-Jacobi Equation (CSHJE), and then to the familiar Schrödinger equation.

2 Classical Hamilton - Jacobi Theory

The analogue of the CSHJE, the Quantum Stationary Hamilton-Jacobi Equation (QSHJE) is
a third-order differential equation, the solution of which defines S0, the quantum analogue of
the classical reduced action Scl

0 . It is therefore useful to investigate the properties of canonical
transformations in CM, considering that the formulation displays manifest p–q duality. It will
be seen that this duality is related to the Möbius symmetry which underlies the EP which fixes
the QSHJE.

Canonical transformations (i.e. the equations of motion remain in Hamiltonian form) may
be used to give a general method for solving mechanical problems. In the classical theory,
generalised coordinates q and momenta p are regarded as being independent quantities. The
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more general procedure consists of seeking a canonical transformation from coordinates and
momenta (p, q) at time t, to a set of 2n initial values, for example (p0, q0) at time t0. Thus the
equations of transformation are the required solutions of the mechanical problem,

q = q(q0, p0, t), (1)

p = p(q0, p0, t). (2)

But how can such a transformation be found? We may automatically ensure that the trans-
formed variables (Pi, Qi) are constant in time by making the transformed Hamiltonian K equal
to zero. Hence the equations of motion are

∂K

∂Pi
= Q̇i = 0, (3)

− ∂K
∂Qi

= Ṗi = 0. (4)

Now, K is related to the original Hamiltonian H and to the generating function of the trans-
formation F [2] by the equation

K = H +
∂F

∂t
, (5)

which from (3) becomes

H(q, p, t) +
∂F

∂t
= 0. (6)

We may write this as a function of the same variables as the generating function F = F (q, P, t)
using

pi =
∂F

∂qi
. (7)

Note that F results from the condition that the dynamics of the systems in both frames must
be equivalent, that is

pq̇ −H = PQ̇−K +
∂F

∂t
, (8)

hence choosing F = F (q, P, t) gives (7).
Now we may write (6) as

H

(

qi, . . . , qn,
∂Scl

∂q1
, . . . ,

∂Scl

∂qn
; t

)

+
∂Scl

∂t
= 0. (9)

This is the classical Hamilton-Jacobi (HJ) equation noting that Scl≡F where Scl is known as
Hamilton’s principle function. For a Hamiltonian of the form

H =
p2

2m
+ V (q) (10)

the decomposition for a time independent potential

Scl(q, Q, t) = Scl
0 (q, Q)− Et (11)
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leads to (withW (q) ≡ Scl
0 (q, Q)− Et) the classical stationary Hamilton-Jacobi equation (CSHJE)

1

2m

(

∂Scl
0 (q)

∂q

)2

+W (q) = 0. (12)

This has the surprising property of giving the functional relationship between q and p. Note
that unlike with canonical transformations which pass from one pair of independent variables
(q, p) to another (Q,P ), using Hamilton’s principle function as the generating function has the
result of collapsing q and p to be dependant variables. If we consider a similar question to that
producing the CSHJE, but instead considering

p =
∂Scl

0 (q)

∂q
, (13)

i.e. looking for the coordinate transformation

Scl
0 (q)→S̃cl

0 (q̃), (14)

if we denote the reduced action of the system with zero Hamiltonian by S̃cl
0 (q̃). Since S̃cl

0 (q̃) =cnst
this is a degenerate transformation- the existence of with is somewhat odd. In CM it is only
possible to connect systems by coordinate transformation if neither system is described by a
constant reduced action. Thus there is a distinguished frame in the CSHJE description.

3 The v-transformation

Consider the transformation
q→qv = v(q) (15)

which induces the functional transformation

S0(q)→Sv
0 (qv) = S0(q)◦v−1 (16)

assuming v is locally invertible i.e., setting

Sv
0 (qv) = S0(q(q

v)) (17)

defining a new reduced action associated to these transformations. Note that in general one
could define

S0(q)→Sv
0 (qv) = S0(q)◦v−1 + f (18)

for a function f , however one can always find a map of the form of (16), which in any case is a
more convenient form since with this form as pv = ∂qvSv

0 (qv) gives

p→pv =

(

∂qv

∂q

)−1

p (19)

i.e., the resulting formalism is covariant, p transforms like ∂q.
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4 Duality

Considering canonical transformations in CM it is evident that there is a formal p–q duality,
which is in general broken in the full solution of the equations of motion. Classical duality is
determined by the functional dependance the structure of the relevant equations might have
on the canonical variables in the cases that these variables are dependant or independent. The
concern over wether the variables are dependant or otherwise is clearly important to us, due
to the well known fact that in QM exact position and momentum cannot be simultaneously
known. The p–q duality restriction inherent in the classical Hamiltonian formulation hints that
a manifest duality demands an alternative description of the physical problem.

There is a structure with such manifest duality, which is a consequence of the involutive
character of the Legendre transform. This duality, which may not feature in CM is a direct
result of considering positions and momenta as similar coordinates. Thus let us define the dual
reduced action, T0(p) as

T0 = q∂qS0 − S0, S0 = p∂pT0 − T0, (20)

p = ∂qS0, q = ∂pT0 (21)

and than consider the same definition but for the Legendre transform of S

T = q∂qS − S, S = p∂pT − T , (22)

p = ∂qS, q = ∂pT . (23)

Note that as before the decomposition for the stationary case is

S(q, y) = S0 −Et, T (p, t) = T0 + Et. (24)

Now let us consider:

dS =
∂S
∂q
dq +

∂S
∂t
dt = pdq +

∂S
∂t
dt (25)

and

dT =
∂T
∂p

dp+
∂T
∂t
dt = qdp+

∂T
∂t
dt, (26)

from which we see that

dS = d(pq − T ) = pdq − ∂T
∂t
dt (27)

i.e.,
∂S
∂t

= −∂T
∂t

(28)

which connects the equivalent S and T descriptions through progress of time. Also, Tcl will
satisfy the dual of the classical HJ equation.

5 Möbius Symmetry

The construction of Faraggi and Matone is strongly linked to the recently discovered GL (2,C)-
symmetry of the second order differential equation obtained from the Legendre transformation.
It is this symmetry that, in the case of the quantum version of the Hamilton’s principle function,
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picks out distinguished self-dual states which guarantee the existence of this principle function
for any given physical system.

Taking the second derivative of the Legendre transform (20) with respect to s = S0(q) using
the fact that

S0 = p
∂T0
∂q
− T0 =

1

2

√
p
∂T0
∂
√
q
− T0 (29)

gives the canonical equation,

(∂s
2 + U(s))q

√
p = 0 = (∂s

2 + U(s))
√
p, (30)

where U(s) = {q, s}/2 and where the Schwarzian derivative is denoted by {f(x), x} = f ′′′/f ′−
(3/2)(f ′′/f ′)2. Note that again the involutivity of (20) and the duality

S0←→T0, q←→p, (31)

indicate a dual version of (30),

(∂t
2 + V(t))q

√
p = 0 = (∂t

2 + V(t))
√
p (32)

with V(t) = {p, t}/2
It is evident that U is Möbius invariant, i.e.

{γ(f), x)} = {f(x), x} (33)

where γ(f) is the Möbius transformation of f ,

γ(f) =
Af + B

Cf +D
. (34)

In fact,
{h, x} = {f, x} (35)

if and only if h = γ(f). Thus, whilst T0 is invariant under any v-transformation, V is invariant
under Möbius transformations of q.

Another property of (30) is that it may be considered as an equation of motion. Let us
consider V(s) given - if y1(s) and y2(s) are linearly independent solutions of (30), the general
solution is given by

q
√
p = Ay1(s) +By2(s),

√
p = Cy1(s) +Dy2(s). (36)

Taking the ratio

q =
Ah(s) +B

Ch(s) +D
(37)

with h(s) = y1(s)/y2(s). Hence the problem is solved by the inversion

S0 = h−1(γ−1(q)). (38)

Note that since q(s) is a ratio of two linearly independent solutions of a second order differential
equation, three initial conditions are required to provide a complete solution. It is also evident
that the canonical equation is clearly covariant under arbitrary transformations, since T0 is the
Legendre transform of S0.
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6 Self-Dual States

The S0–T0 duality gives rise to a complete correspondence between v-transforms and the equiv-
alent transform p→pu = u(p) indicating that any physical system with W≡V (q)−E has two
descriptions, one being the S0 picture, the other being the T0 picture, which are equivalent.
Considering the case where both pictures overlap,one would expect the distinguished states, for
which S0 and T0 have the same functional form, to display slightly odd properties. Considering
the interchange of the two pictures by the transformation

q→q̃ = αp, p→p̃ = βq, (39)

Which implies

∂T̃0
∂p̃

= α
∂S0

∂q
,

∂S̃0

∂q̃
= β

∂T0
∂p

, (40)

i.e.,

∂T̃0
∂q

= αβ
∂S0

∂q
,

∂S̃0

∂p
= αβ

∂T0
∂p

, (41)

which when integrated gives

S̃0(q̃) = αβT0(p) + cnst, T̃0(p̃) = αβS0(q) + cnst. (42)

These are essentially Legendre transforms. Swapping q and p twice should have no effect upon
the relationship between q and p, then we have the following (to plus a constant).

˜̃S0 = S0,
˜̃T 0 = T0, (43)

hence
(αβ)2 = 1. (44)

The distinguished states are therefore those that are invariant under the transformation (39).
Thus,

S̃0(q̃) = S0(q), T̃0(p̃) = T0(p), (45)

again, up to plus a constant. Recalling that S = S0 − Et and that T = T0 + Et, these states
mesh to

S = ±T + cnst. (46)

The relation (28) fixes the above sign, ensuring stability under time evolution. Thus

αβ = −1 (47)

and the distinguished W states mesh to

S = −T + cnst. (48)
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Recalling the Legendre transformation S = pq − T we have that

pq = γ, (49)

where γ is a constant. In this case the solutions of the canonical and dual canonical equations
coincide. Such states are referred to as self-dual, and correspond to

S0(q) = γlog γqq, T0(p) = γlog γpp (50)

and

U(s) = V(t) = − 1

4γ2
. (51)

Using symmetry arguments only, we have arrived at the statement that α = β = ±i, the
imaginary factor being a consequence of the relation connecting time evolution of the S and T
descriptions. The relation between imaginary factor and time evolution leads to an imaginary
factor appearing in the relation between S0 and the solutions of the Schrödinger Equation (SE)
The imaginary factor also hints that the evolution of time in QM is related to the presence of
imaginary numbers.

7 The Equivalence Principle

Note that since q and p are not considered as being independent variables transformations
to new coordinates will not be canonical. In classical mechanics we search for a canonical
transformation which takes one to a system with vanishing Hamiltonian thus leading to the
Hamilton-Jacobi equation. Likewise, we may search for the analogous equation found by deter-
mining the transformation of q (which induces the transformation of the dependant p), which
reduces to the free system with zero energy.

Recalling that under any arbitrary transformation Ũ(s̃) 6=U(s) unless one considers a Möbius
transformation. Thus different U ’s may be related by a coordinate transformation, as we have
seen that two systems may be related by q→q̃(q) as defined by S̃0(q̃) = S0(q((̃q))). To find the
transformation relating S̃0 to S0 then amounts to the solution of the inversion

q→S̃−1

0 ◦S0(q). (52)

This suggests the equivalence principle of Faraggi and Matone:

For each pair W a, W b there is a coordinate transformation such that W a→W̃ a(q̃) =
W b(q̃)

Thus there will also always be a transformation going to W = 0 meshing to the zero energy
free system.
Let us consider the (classical) transformation

W (q)→W v(qv) (53)

as caused by
Scl

0 (q)→Sclv
0 (qv) = Scl

0 (q(qv)). (54)
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Both reduced actions should satisfy their respective CSHJE

1

2m

(

∂Scl
0 (q)

∂q

)2

+W (q) = 0 (55)

and
1

2m

(

∂Sclv
0 (qv)

∂qv

)2

+W v(qv) = 0. (56)

Taking Sclv
0 (qv) = Scl

0 (q) the definition leading to the classical v-transformation q→qv = v(q)
along with a comparison of the above two CSHJE’s it is evident that

W v(qv)(dqv)2 = W (q)(dq)2. (57)

Hence, in CM consistency insists that W lies within Qcl, the space of functions transforming
as quadratic differentials with respect to the classical v-transformations. Let us consider the
state of vanishing energy, W 0. We see that

W 0(q0)→W v(qv) = (∂qv)2W 0(q0) = 0 (58)

ie, W 0 is a fixed point in the space H of all possible W . In CM the space H cannot be mapped
to a point on factorization by the classical v-transformations - the EP may not be implemented
consistently within CM.

A differential equation for S0 must be covariant under v-transformations, it must reduce to
the CSHJE in the applicable limit and all the states W ∈ H have equivalency under under the
said v-transformations. Covariance is simply a consistency condition and the reduction in a
suitable limit is simply due to the existence of CM. However we must address the latter point
with more care. The equation we wish will have the form

1

2m

(

∂S0(q)

∂q

)2

+W (q) +Q(q) = 0. (59)

LetQ be the space of functions transforming as quadratic differentials under the v-transformations.
Since we have by consistency

1

2m

(

∂S̃cl
0 (q̃)

∂q̃

)2

+ W̃ (q̃) + Q̃(q̃) = 0 (60)

this implies that (W +Q) ∈ Q. But (58) and the fact that all states W ∈ H show that W /∈ Q
and hence it follows that Q /∈ Q. The term with the classical limit Q→ 0 may thus be regarded
as a term lending the property of covariance. In the case of the vanishing energy free system
(59) becomes

1

2m

(

∂Scl
0 (q)

∂q

)2

+Q(q) = 0 (61)

since (∂qS0)
2 ∈ Q and Q /∈ Q the requirement of covariance indicates that Q = 0 such that S0.

In this case, S̃0(q̃) = S0(q) would in all cases give S̃0 = 0. This would mean that S0 = cnst would
comprise a fixed point in the space K of all possible S0, in contradiction with the requirement
that all states W ∈ H be equivalent under v-transformation. This is related to the fact that
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the S0–T0 Legendre duality holds unless S0 = cnst or S0∝ q. Thus the formalism breaks down
in the case of the system corresponding to W = 0.

Now, let us consider the identity

(

∂S0(q)

∂q

)2

=
β2

2
({exp

2i

β
S0, q} − {S0, q}), (62)

where β is an as yet undetermined dimensional constant. Using this identity along with (59)
we see

W (q) =
β2

4m
({S0, q} − {exp

2i

β
S0, q})−Q(q), (63)

This implies that

Q(q) =
β2

4m
{S0, q} (64)

(noting that another term within Q would fail to satisfy the conditions required for the analogue
of the CSHJE) and from (59) that

W (q) = − β2

4m
{exp

2i

β
S0, q}, (65)

(a potential not having this form is inadmissable) which is equivalent to

1

2m

(

∂S0(q)

∂q

)2

+ V (q) + E +
β2

4m
{S0, q} = 0, (66)

which becomes the CSHJE in the limit β→ 0. (65) with the identity

∂xh
′−1/2

= 0 = ∂xh
′−1
∂xh

′1/2
h′

−1/2
h (67)

and the identity

h′
1/2
∂xh

′−1
∂xh

′1/2
= ∂x

2 + {h, x}/2, (68)

with h = exp 2i
β
S0 imply [1] that,

exp
2i

β
S0 =

AψD +Bψ

CψD +Dψ
, (69)

AD −BC 6= 0, where ψD and ψ are two linearly independent solutions of the Schrödinger
Equation (SE)

[

− β2

2m

∂2

∂q2
+ V (q)

]

ψ = Eψ. (70)

Note that β = h̄. The solutions to the SE may therefore be used to solve the non-linear QSHJE.
Since S0 = cnst,S0 ∝ q /∈ K, K being the space of all possible S0, the formulation has clear
duality. The Möbius invarience of the Schwarzchild derivative allows one to choose constants
such that S0 ∝ q does not occur. From (69) we see that the general solution of the Schrödinger
equation is given by

ψ =
1√
S ′

0

(

Aexp− i
h̄
S0 +Bexp

i

h̄
S0

)

. (71)
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The origin of the 1√
S′

0

factor is revealed upon substitution of the general solution

ψ = R(S0)
(

Aexp− i
h̄
S0 +Bexp

i

h̄
S0

)

(72)

into the SE. The presence of the self-dual state allows one to find in all physical cases a
coordinate q̃ in which W ∈ H becomes W̃ (q̃) = 0, in complete analogy with the classical case of
the trivializing coordinates defined by a certain canonical transformation implying the CSHJE.

8 Comparison with the Copenhagen Interpretation

Two phenomena intrinsic to QM, namely tunnelling and quantization are direct consequences of
the EP. The usual approach to these effects is an axiomatic interpretation of the wavefunction
as a probability amplitude, requiring that the wavefunction is a member of L2(R). It turns out
[1] that if the SE has an L2(R) solution, any other linearly independent solution may not belong
to L2(R). Thus, although each distinguished level in a system has a unique wavefunction, this
does not mean that the approach derived from the EP will fail to lend physical meaning to the
divergent solution to the SE.

Let us label the solutions of the SE corresponding to the energy level E as ΣE , and let σE be
the associated physical discrete spectrum. The statement of the Copenhagen interpretation is
that the wavefunction belongs to L2(R). The physical part of this not involving the axiomatic
concept of a wavefunction is as follows:

The SE admits an L2(R) solution,

which automatically leads to the existence of a quantised spectrum E ∈ σE ⇔ ψ∈ L2(R) for
a given ψ ∈ ΣE . In the picture of a quantised energy spectrum, the wave function serves to
impose the condition that the SE gives a L2(R) solution, leading to the standard interpretation.
It would seem that the Copenhagen interpretation is good enough to over shadow the full nature
of QM - it will be observed that the physical result follows from the EP. The fact that both ψ
and ψD appear in the present formalism is due to the under pinning Legendre duality resulting
from the EP.

Quantum Tunnelling arises as a consequence of the EP by the action of the term Q(q) in
the QSHJE. This modification of the CSHJE allows the trajectory of a particle to penetrate
classically forbidden regions. In fact the only exception to p ∈ R, ∀q ∈ R where in the case

of the QSHJE p = ±
√

2m(−V −Q+ E) occurs for the infinitely deep potential well, and of
course, similarly for q̇.

9 Quantisation from the EP

To consider the conditions required for the existence of the QSHJE it is useful to consider the
form (65) where w = ψD/ψ which is equivalent to

{w, q} = −4m

h̄
W (q) (73)

by Möbius symmetry. This is the consequence of the EP, hence the EP forces conditions upon
w: the condition being the existence of the QSHJE, or the condition that {w, q} exists such
that
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w 6= cnst, w ∈ C2(R), ∂2
qw is differentiable on R.

However, these conditions are not complete. Let us consider the chain rule of the Schwarzian
derivative

{h(x), x(y)} =

(

∂y

∂x

)2

({h(x), y} − {x, y}). (74)

Therefore there is a duality of sorts relating the entries of the Schwarzian derivative

{w, q} =

(

∂w

∂q

)2

({w,w} − {q, w}) = −
(

∂w

∂q

)2

{q, w} (75)

We see from the above chain rule that {w, q−1} = q4{w, q} hence (73) may be written

{w, q−1} = −4m

h̄
q4W (q), (76)

hence the EP leads us too either (73) or (76). Since

q → 1

q
(77)

causes 0± to map to ±∞, the conditions on w should extend to infinity, i.e., should hold for
the extended real line R̂ = R

⋃ {∞} and not R alone. Thus we should extend our conditions
to

w 6= cnst, w ∈ C2(R̂), ∂2
qw is differentiable on R̂.

(76) also forces us to extend the property of local univalence to R̂, thus giving rise [1] to the
joining conditions

w(−∞) =

{

w(+∞), w(−∞) 6= ±∞,
−w(+∞), w(−∞) = ±∞. (78)

Thus the conditions for use of the EP reduce to conditions S0 must satisfy for to satisfy the
QSHJE. The derivation of such conditions leads to quantization of energy without the need for
any axiomatic concept of a wave function.
The formalism easily extend to systems in which

V (q) =
n
∑

k=1

Vk(qk), (79)

since the Legendre transform

S0 =
n
∑

k=1

pk
∂T0
∂pk
− T0 (80)

is defined for any such physical system, with its involutivity giving S0–T0 duality. Thus in
n dimensions for such potentials one is required to construct an equation equivalent to the
decoupled one-dimensional SEs.
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10 The Central Potential

Our method of solving this physical problem will therefore consist of deriving the equivalent of
three Schrödinger equations and then applying the aforementioned conditions to determine the
physical L2(R) solution which admits the correct energy spectrum.

The corresponding ratio w may then be placed into the form of the reduced action proposed
by Bouda [3]:

S0 = h̄arctan

(

σψ + νψD

µψ + γψD

)

+ h̄ς (81)

this may be shown to be a solution of the QSHJE and as shown in [3] leads easily to the form
of the wavefunction (71). (µ, ν, σ, γ, ς) are arbitrary real constants such that µν 6=σγ. Since
the SE is linear, by a rescaling of its solutions either the pair (µ, ν) or the pair (σ, γ) may be
absorbed. Thus we may set for example σ = γ = 1 then consider µ, ν and ς (µν 6= 1) as
constants of integration. Note than ς is a hidden variable attributed to so-called microstates.

The hydrogenic potential is clearly spherically symmetric. Let us therefore consider the
stationary SE written in the guise of spherical coordinates

∂2Ψ

∂r2
+

2

r

∂Ψ

∂r
+

1

r2

∂2Ψ

∂θ2
+

cot θ

r2

∂Ψ

∂θ
+

1

r2sin2θ

∂2Ψ

∂φ2
+

2m

h̄2
[E − V (r)]Ψ = 0, (82)

in the case that the potential is central. Let us assume a separable wavefunction of the form

Ψ = R(r)S(θ)T (φ), (83)

R being the radial wavefunction , S and T being the angular wavefunctions. Substituting this
form of the wavefunction into (82) leads to

r2

R

d2R

dr2
+

2r

R

dR

dr
+

2mr2

h̄2
(E − V (r)) = λ (84)

with λ = l(1 + l) the eigenvalue of L2, L denoting the angular momentum operator, such that
l ≥ 0,

d2S

dθ2
+ cot θ

dS

dθ
+

(

λ− m2
l

sin2θ

)

S = 0 (85)

with ml the eigenvalue of Lz the component operator of L in the z axis, such that −l ≤ ml ≤ l
and

d2T

dφ2
+m2

l T = 0. (86)

Now, (86) clearly has the correct form, however, for the other two we must find a suitable
substitution such that they take the form equivalent to the one dimensional SE. Considering
(84) we find that the textbook substitution

R(r) =
X(r)

r
, (87)

leads to the correct form,

−h̄2

2m

d2X

dr2
+

[

V (r) +
λh̄2

2mr2

]

X = EX. (88)
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Similarly, we see that considering (85) the substitution

Y (θ) = sin
1

2S(θ), (89)

leads to the correct form
d2Y

dθ2
+ (λ+

1

4
)Y +

(1

4
−m2

l )

sin2θ
Y = 0. (90)

Thus we may write the functions R(r), S(θ) and T (φ) may be written in the form

X(r) = A(r)(α exp− i
h̄
L(r) + β exp

i

h̄
L(r)), (91)

along with

Y (θ) = B(θ)(γ exp− i
h̄
M(θ) + ǫ exp

i

h̄
M(θ)) (92)

and

T (φ) = C(φ)(σ exp− i
h̄
N(φ) + ω exp

i

h̄
N(φ)). (93)

By replacing (91), (92) and (93) respectively in (88), (90) and (86) we may obtain

1

2m

(

dL

dr

)2

− h̄2

4m
{L, r}+ V (r) +

λh̄2

2mr2
= E, (94)

(

dM

dθ

)2

− h̄2

2
{M, θ}+

(1

4
−m2

l )

sin2θ
h̄2 =

(

λ+
1

4

)

h̄2, (95)

and
(

dN

dφ

)2

− h̄2

2
{N, φ} = m2

l h̄
2. (96)

Substituting the value of λ and ml deduced from (95) and (96) into (94) leads to

1

2m





(

dL

dr

)2

+
1

r2

(

dM

dθ

)2

+
1

r2sin2θ

(

dN

dφ

)2




− h̄2

4m

[

{L, r}+
1

r2
{M, θ}+

1

r2sin2θ
{N, φ}

]

+V (r)− h̄2

8mr2
− h̄2

8mr2sin2θ
= E. (97)

It is therefore convenient to define the reduced action as

S0(r, θ, φ) = L(r) +M(θ) +N(φ), (98)

the substitution of which into (97) leads to the representation of the QSHJE in three dimensions
for a central potential

1

2m
∇2

r,θ,φS0−
h̄2

4m

[

{S0, r}+
1

r2
{S0, θ}+

1

r2sin2θ
{S0, φ}

]

+V (r)− h̄2

8mr2
− h̄2

8mr2sin2θ
= E. (99)
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Note that only by taking the classical limit (h̄ → 0) in the above equation (and not in (94),
(95) and (96)) one may reduce to the CSHJE

1

2m
∇2

r,θ,φS0 + V (r) = E. (100)

(94), (95) and (96) are trivial when (84), (85) and (86) are solvable. In this case we may use
the notation (81)giving

L(r) = h̄arctan

(

R(r) + νrR(r)D

µrR(r) +R(r)D

)

, (101)

along with

M(θ) = h̄arctan

(

S(θ) + νθS(θ)D

µθS(θ) + S(θ)D

)

(102)

and

N(r) = h̄arctan

(

sin(mlφ) + νφcos(mlφ)

µφsin(mlφ) + cos(mlφ)

)

. (103)

Here the solutions to (94), (95) and (96) are written in terms of the two independent solutions
to (84), (85) and (86) respectively.

11 The Hydrogenic Potential

For the hydrogenic case we insert the well known potential

V (r) = − Ze2

4πε0r
. (104)

Thus we may write (84) as

1

ρ2

d

dρ

(

ρ2
dR

dρ

)

+

[

λ̃

ρ
− 1

4
− l(l + 1)

ρ2

]

R = 0 (105)

with the convenient change of variables

ρ = αr, (106)

α2 =
8m|E|
h̄2

, (107)

λ̃ =
2mZe2

4πε0αh̄
2

=
Ze2

4πε0h̄

(

m

2|E|

)
1

2

. (108)

Considering the dominant behavior R(ρ) in the asymptotic region ρ → ∞, we find that for
large enough ρ, it is evident that as far as leading order terms are concerned R(ρ) = ρnexp±1

2
ρ

is a solution of (105) for finite n. This implies we look for solutions of the form

R(ρ) = F (ρ)exp (±ρ
2
), (109)
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F (ρ) being a polynomial of finite order in ρ. Substitution of this into (105) leads to

d2F

dρ2
+

(

2

ρ
± 1

)

dF

dρ
+

(

λ̃± 1

ρ
− (1± 1)

4
− l(l + 1)

ρ2

)

F = 0. (110)

This may be solved by application of the method of Froebinius [4].
Substitution of the series solution

F =
∞
∑

n=0

anρ
s+n (111)

into (110) leads (by assumption) to the relation

a0 6=0, (112)

a1{(s+ 1)s+ 2(s+ 1)− l(l + 1)}+ a0{(λ̃± 1)± s} = 0 (113)

and the recursion relation

an+2{(s+n+2)(s+n+1)+2(s+n+2)−l(l+1)}+an+1{(λ̃±1)±(s+n+1)}−1

4
(1±1)an = 0. (114)

This method leads to the conclusion that four independant solutions exist:

F = F−, (115)

such that the initial exponent of the series is l,

F = FD
− , (116)

such that the initial exponent of the series is −l − 1,

F = F+, (117)

such that the initial exponent of the series is l,

F = FD
+ , (118)

such that the initial exponent of the series is −l − 1,
where subscripts denote the sign of the exponent in the substitution (109).
Now since the variable ρ runs from 0 to ∞ we must alter the conditions (78) to

w(0) =

{

w(+∞), w(0) 6= ±∞,
−w(+∞), w(0) = ±∞. (119)

It is evident that the only form of ratio

w =
XD

X
=
RD

R
(120)

that may satisfy the conditions (119) contains the above solution F = F− as denominator
with the condition that this series solution terminates. In textbook fashion [5] this termination
implies the quantisation of energy levels. The functions R(ρ) = F−exp(−ρ

2
) are therefore the

Laguerre polynomials, representing the familiar radial wavefunctions.
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12 Conclusions

It is evident that the familiar spectra of energy levels of the hydrogenic potential does indeed
follow directly from the application of the EP of Faraggi and Matone thus illustrating a test of
the formalism. We have seen that the EP leads to the QSHJE which implies the SE. The SE then
has a clear interpretation in terms of trajectories (see [6]) depending upon initial conditions,
which disappear in the SE. This shows that the Copenhagen interpretation of QM hides some
of its true nature in that the hidden variables we have seen depend upon fundamental constants
(e.g. h̄); which suggests that fundamental interactions could possibly arise within the EP . It
has been shown that this new formulation of QM does reproduce the experimental phenomena
of tunneling and quantisation of energy as one would require, this fact may be considered a
basic test of this formalism.

The fact that QM can be derived from a principle similar to Einstein’s EP implies the
difficulties in quantizing gravity may be inherent in the differences between the fundamental
principles of general relativity and conventional textbook QM. In fact in the formalism of
Faraggi and Matone we see that the quantum potential is never zero - akin to the relativistic
mass energy. Note that in [1] it is shown that one may easily generalise the QSHJE to include
both the time-dependant and relativistic cases, the former leading to the time-dependant SE,
the latter leading to the Klein-Gordon equation.

Thus [1] represents what may be a starting point to the end of a unification of fundamental
interactions. To obtain such unification it will first be required to reconsider our present ideas
regarding the nature of time, the application of trajectories and their use in regarding the
concept of force at a distance. It could be the case that the nature of interaction is related to
quantum potential, which may be considered to be a particles self-energy depending upon the
external potential - in other words, the particle responding to external changes.
Acknowledgements. It is a pleasure to thank A. E. Faraggi for several very useful discussions.
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