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1a.

Tλµν = ∂λFµν + ∂µFνλ + ∂νFλµ.

where
Fµν − ∂µAν − ∂νAµ.

T0ij = ∂0Fij + ∂iFj0 + ∂jF0i.

For time independent fields ∂0Fij = 0, so T0ij = 0 implies

∂iF0j − ∂jF0i = 0 → ∂iEj − ∂jEi = 0 . (1)

~E = −~∇Φ says Ei = −∂iΦ, so condition (1) is satisfied since

∂i∂jΦ = ∂j∂iΦ.

b.

With d spatial dimensions and a point charge q at ~x = 0, the magnitude
E(r) of the electric field is

E(r) =
Γ(d

2
)

2π
d

2

q

rd−1
(derived in lectures) (2)

Since E(r) = −dΦ

dr
(r).

Φ(r) =
Γ(d

2
)

2π
d

2

1

d − 2

q

rd−2
(3)

Setting Φ = 0 at r = ∞ for d > 2. Using Γ(x + 1) = xΓ(x),

Γ

(

d

2

)

=

(

d

2
− 1

)

Γ

(

d

2
− 1

)

=
1

2
(d − 2)Γ

(

d

2
− 1

)

(4)

so we get

Φ(r) =
Γ(d

2
− 1)

4π
d

2

q

rd−2
d > 2. (5)

1



2a.
The standard Bohr radius

a0 =
h̄2

mee2
= 5.29 × 10−9cm, arises from the potential V = −e2

r
. (6)

In the gravitational case, the potential is

V = −Gmemp/r,

so the gravitational Bohr radius ag
0 is obtained by replacing e2 with Gmemp:

ag
0 =

h̄2

me(Gmemp)
=

h̄2

mee2

(

e2

Gmemp

)

. (7)

The ratio between the “gravitational” and the conventional Bohr radius is
therefore

ag
0

a0

=
e2

Gmemp

=
(4.8 × 10−10)2

(6.67 × 10−8)(0.911 × 10−27)(1.672 × 10−24)
≈ 2.27 × 1039.

(8)
This gives

ag
0 = 1.2 × 1031cm (9)

Since 1 light year ≈ 9.5× 1017cm, ag
0 = 1.3× 1013 light years!! The universe

is about 1010 years old, so this distance is quite large.

b.
We introduce factors of G, c and h̄ into the formula, with exponents α,

β and γ to be determined:

kT =
1

8πM
→ Gαcβh̄γ

8πM
. (10)

Since [kT ] = [E] = ML2/T 2, using [G] = L3M−1T−2, [c] = LT−1, and
[h̄] = ML2T−1, we find

ML2

T 2
= L3α+β+2γM−α+γ−1T−2α−β−γ (11)

This gives three equations for three unknowns

3α + β + 2γ = 2, − α + γ − 1 = 1, − 2α − β − γ = −2 . (12)
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The solution is α = −1, β = 3 and γ = 1. As a result

kT =
h̄c3

8πGM
=

(

h̄c

G

)

c2

8πM
=

m2
P c2

8πM
, (13)

where mP = 2.17× 10−5gr is the Planck mass. For a mass with million solar
masses M = 106Msun ≈ 2 × 1039gr,

kT =
(2.17 × 10−5)2(3 × 1010)2

8π2 × 1039
= 8.43 × 10−30eV ⇒ T ≈ 6.1 × 10−14K.

(14)
For a room temperature black hole, T ≈ 300K, and we find M = 6.1×10−14K

300K
2×

1039gr ≈ 4.1 × 1020kg, which is approximately 6.8 × 10−5Mearth.
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

3.

d2y1

dx2
+

µ1

T0

w2y1(x) = 0 for 0 ≤ x ≤ a,

d2y2

dx2
+

µ2

T0

w2y2(x) = 0 for a ≤ x ≤ 2a.

Here y1(x) = y(x) for x ∈ [0, a] and y2(x) = y(x) for x ∈ [a, 2a]. We let

λ2
1 =

µ1

T0

w2 and λ2
2 =

µ2

T0

w2. (15)

with this notation, the two equations take similar form

d2yi

dx2
+ λ2

i yi(x) = 0, λi =

√

µi

T0

w, i = 1, 2. (16)

Since y(x = 0) = y(x = 2a) = 0 we write

y1(x) = A sin(λ1x), and y2(x) = B sin(λ2(2a − x)), (17)

which satisfy the differential equation and the boundary conditions at x = 0
and x = 2a.

a.
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Since the string does not break at x = a, we must have y1(a) = y2(a).
Since there is no mass at the joining point the slopes must agree too: y′

1(a) =
y′

2(a).

b.
Applying the boundary conditions in (a) we find

A sin λ1a = B sin λ2a

Aλ1 cos λ1a = −Bλ2 cos λ2a

These two equations can be written as

(

sin λ1a − sin λ2a
λ1 cos λ1a λ2 cos λ2a

)(

A
B

)

= 0 . (18)

Since we need solutions where both A and B are not zero, the determinant
of the above matrix must vanish:

λ2 sin λ1a cos λ2a + λ1 cos λ1a sin λ2a = 0 . (19)

This equation can be used to find the oscillations frequencies. As a check
assume µ1 = µ2 = µ0, in which case λ1 = λ2 ≡ λ. The condition becomes
sin(2λa) = 0, which gives λ(2a) = nπ. This gives the familiar frequencies

c.
With µ1 = µ0 and µ2 = 2µ0 we write

λ1 =

√

µ0

T0

w ≡ λ and λ2 =

√

2µ0

T0

w =
√

2λ .

Eq (19) then gives
√

2 sin λa cos
√

2λa + cos λa sin
√

2λa = 0 .

Solving this equation numerically we find that to the lowest root is λa ≈
1.26567. This gives the lowest frequency

wL =

√

T0

µ0

1.26567

a
=

√

T0

µ0

2.53134

2a
.

Note that wL is bounded as
√

T0

µ0

π/
√

2

(2a)
< wL <

√

T0

µ0

π

(2a)
.
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The lower and upper bounds are the lowest frequencies of strings of contant
mass density 2µ0 and µ0 respectively (π/

√
2 ≈ 2.22144).

4.

a.
The Planck mass is given by

mP = Gαcβh̄γ (20)

where G is Newton’s gravitational constant; c is the speed of light; and h̄ is
Planck constant. The dimensions of G, c and h̄ are

[G] =
[L]3

[M ] [T ]2

[c] =
[L]

[T ]

[h̄] =
[M ] [L]2

[T ]

where [L], [M ] and [T ] are the dimensions of length, time and mass, respec-
tively. Since mP has the dimension of mass we have

[mP ] = [M ]1 =

(

[L]3

[M ] [T ]2

)α (

[L]

[T ]

)β (

[M ] [L]2

[T ]

)γ

(21)

Hence we obtain the equations

3α + β + 2γ = 0

−α + γ = 1

−2α − β − γ = 0

which are solved with β = γ = 1/2 and α = −1/2. Hence

mP =

√

ch̄

G
(22)

The numerical values of G, c and h̄ are

G = 6.674 × 10−8 cm3

g · s2

c = 3 × 1010 cm

s
h̄ = 1.054 × 10−27erg · s
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hence we get
mP = 2.17 × 10−5g. (23)

b.
Since tP has the dimension of time we have

[tP ] = [T ]1 =

(

[L]3

[M ] [T ]2

)α (

[L]

[T ]

)β (

[M ] [L]2

[T ]

)γ

(24)

Hence we obtain the equations

3α + β + 2γ = 0

−2α − β − γ = 1

−α + γ = 0

which are solved with α = γ = 1/2 and β = −5/2. Hence

tP =

√

Gh̄

c5
(25)

Inserting the numerical values of G, c and h̄ we get

tP = 5.38 × 10−44s. (26)

c.
In the formula

ℓvac = ρα
vach̄

βcγ (27)

The units on both sides must agree:

L =
(

M

L3

)α
(

ML2

T

)β (
L

T

)γ

(28)

This gives three equations for matching powers of M , L and T :

α + β = 0, − 3α + 2β + γ = 1, − β − γ = 0 . (29)

The solution is α = −1/4, β = 1/4 and γ = −1/4. This means that (27)
gives

ℓvac =

(

h̄

cρvac

)
1

4

(30)

Taking ρvac = 7.7 × 10−27kg/m3 gives

ℓvac = 8.22 × 10−5m = 82.2µm
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5a.

Under a variation δqi(t) of the coordinate, the variation of the velocity is
dδqi

dt
. Since the Lagrangian L depends on qi and q̇i the full variation is

δS =
∫

dt

{

∂L

∂qi

δqi +
∂L

∂q̇i

dδqi

dt

}

. (31)

The second term in the brackets is rewritten in terms of a total derivative
and a term proportional to δqi

δS =
∫

dt

{

∂L

∂qi

δqi +
d

dt

(

∂L

∂q̇i

δqi

)

− d

dt

(

∂L

∂q̇i

)

δqi

}

. (32)

The total time derivative vanishes when we set the variations to vanish at
the initial and final times. The variation δS is therefore

δS =
∫

dtδqi(t)

{

∂L

∂qi

− d

dt

(

∂L

∂q̇i

)}

. (33)

If this variation is to vanish for all δqi(t) we must have

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= 0. (34)

These are the Euler–Lagrange equations of motion for the coordinates qi.

5b.

Considering the Lagrangian

L(q(t), q̇(t), t)

and the variation

q(t) → q(t) + δ(q(t)) = q(t) + ǫh(q(t), t)

q̇(t) → q̇(t) +
d

dt
(δ(q(t)))

Variation of the action gives rise to the Euler-Lagrange equation of motion

S(t) =
∫

dtL(q(t), q̇(t), t) ⇒ d

dt

(

∂L

∂q̇

)

− ∂L

∂q
= 0
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since L is invariant under the variation

L(q + δq, q̇ +
d

dt
δq, t) = L +

∂L

∂q
δq +

∂L

∂q̇

d

dt
δq + · · · = L

=⇒ ∂L

∂q
δq +

∂L

∂q̇

d

dt
δq = 0

Now take

ǫ
dQ

dt
= d

dt

(

∂L
∂q̇

δq
)

= d
dt

(

∂L
∂q̇

)

δq + ∂L
∂q̇

dδq
dt

= ∂L
∂q

δq + ∂L
∂q̇

d
dt

δq = 0

=⇒ dQ

dt
= 0,

where we have used the Euler–Lagrange equation to go from the second to
third equality. Therefore, we have that

Q(t) =
∂L

∂q̇
h(q(t), t)

is conserved.
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