MATH423 String Theory Solutions 3
la.

T)\/u/ = a)\F;w + a,qu/)\ + aI/F)\p,'

where

F.—0,A, —0,A,.
Toij = 0o k35 + 0iFjo + 05 Fu;.
For time independent fields 0y F;; = 0, so Tp;; = 0 implies
8Z»F0j — 8jF0Z- =0— &E] — 8]EZ =0. (1)
E = —V® says E; = —8,®, so condition (1) is satisfied since
b

With d spatial dimensions and a point charge ¢ at ¥ = 0, the magnitude
E(r) of the electric field is

E(r)= l;fi) % (derived in lectures) (2)
Since E(r) = —%(r). )
o(r) = - (5) 1 ¢ 3)

- 27r% d— 2rd-2

Setting ® = 0 at r = oo for d > 2. Using I'(x + 1) = 2I'(z),

-l )

so we get



2a.
The standard Bohr radius
K2 e?

> =529 x 10 %cm,  arises from the potential V = ——. (6)
mee ,

ag —
In the gravitational case, the potential is
V =—-Gmem,/r,

so the gravitational Bohr radius af is obtained by replacing e? with Gm,.m,:

af — h _h < e ) )

me(Gmemy,)  mee> Gmem,,

The ratio between the “gravitational” and the conventional Bohr radius is
therefore

g 2 —10\2
% _ ¢ (4.8 % 1077) ~ 2.97 x 10%.
a  Gmem,  (6.67 x 10-5)(0.911 x 10-27)(1.672 x 1024
(8)

aj = 1.2 x 10> cm (9)

This gives

Since 1 light year ~ 9.5 x 107cm, af = 1.3 x 10*3 light years!! The universe
is about 1010 years old, so this distance is quite large.

b.
We introduce factors of GG, ¢ and & into the formula, with exponents «,
£ and v to be determined:

1 GoPRY
— :
8t M 8w M
Since [kT] = [E] = ML*/T?, using [G] = L’M~'T2% [¢] = LT!, and
[h] = ML?*T~!, we find

ET =

(10)

MIL?

T2 L3tB+2y pp-aty—lp-20-f—y (11)

This gives three equations for three unknowns
Ja+0+2v=2, —a+y—-1=1, —-2a—-0F—y=-2 . (12)
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The solution is « = —1, § =3 and 7 = 1. As a result

hed he\ 2 m3c?
kT = == =L 13
STGM (G) STM STtM’ (13)

where mp = 2.17 x 10~ gr is the Planck mass. For a mass with million solar
masses M = 10°M,,, ~ 2 x 10¥gr,

(2.17 x 107°)%(3 x 10%°)?

kT = =843 x107%%V = T =~~6.1x 10 "K.
812 x 1039

(14)

For a room temperature black hole, 7' &~ 300K, and we find M = 81x10- Koy

300K
10%%gr &~ 4.1 x 10?°kg, which is approximately 6.8 x 107> Mearin-

3.
Py 2
do2 +T0wy1($)20 for 0<=z<a,
Pys | p2
F+?wy2(x):0 for a <z <2a.
X 0

Here y,(z) = y(x) for z € [0,a] and ys(x) = y(z) for = € [a, 2a]. We let

A= ';—;wQ and \5 = ';—sz. (15)
with this notation, the two equations take similar form
d*y; 2 Hi .
T2 + Ny(z) =0, N\ = Tow, i=1,2. (16)
Since y(x = 0) = y(xr = 2a) = 0 we write
y1(z) = Asin(A\z), and yo(z) = Bsin(A2(2a — x)), (17)

which satisfy the differential equation and the boundary conditions at x = 0
and z = 2a.

a.



Since the string does not break at x = a, we must have y;(a) = ya(a).
Since there is no mass at the joining point the slopes must agree too: yj(a) =

ys(a).

b.
Applying the boundary conditions in (a) we find

Asin \ja = Bsin\a
AXjcosAia = —BAycos Asa

These two equations can be written as

< sin \ja —sin)\ga> (g) —0. (18)

A1 COSA1a Ay COS Naa

Since we need solutions where both A and B are not zero, the determinant
of the above matrix must vanish:

Ao sin Aja cos Aga + Aj cos Adjasin \ga = 0 . (19)

This equation can be used to find the oscillations frequencies. As a check
assume [, = g = o, in which case A\; = Ay = A. The condition becomes
sin(2Aa) = 0, which gives A(2a) = nm. This gives the familiar frequencies

c.
With py = po and pe = 29 we write

Ho 2fto
M\ ’/Tow A oand )\ o V2

Eq (19) then gives
V2 sin Aa cos V2 a + cos Aasin V2 a = 0 .

Solving this equation numerically we find that to the lowest root is \a =~
1.26567. This gives the lowest frequency

15 1.26567 Ty 2.53134
wyi, = — = —_— .
Ve a Vo 2a

Note that wy, is bounded as
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The lower and upper bounds are the lowest frequencies of strings of contant

mass density 2/ and g respectively (m/v/2 ~ 2.22144).

4.
a.
The Planck mass is given by

mp =GR (20)

where GG is Newton’s gravitational constant; ¢ is the speed of light; and 7 is
Planck constant. The dimensions of GG, ¢ and h are

6 - 14
il
4 =
7]
Do

where [L], [M] and [T] are the dimensions of length, time and mass, respec-
tively. Since mp has the dimension of mass we have

mi=on = (gt () () e

Hence we obtain the equations

Ja+p8+2y = 0
—a+vy =1
2a—f—v = 0
which are solved with # =~ =1/2 and o = —1/2. Hence

ch
The numerical values of GG, ¢ and h are
3
G = 6.674x 105"
g-s
c = 3x1002
s

h = 1.054 x 107 erg - s

>



hence we get
mp = 2.17 x 107°g. (23)

b.
Since tp has the dimension of time we have

w=m (i) (1) () @

Hence we obtain the equations

Ja+p/B+2y = 0
—2a0—-0—v =1

—a+vy = 0
which are solved with a =y =1/2 and § = —5/2. Hence
Gh
Inserting the numerical values of GG, ¢ and h we get
tp =5.38 x 107*s. (26)
c.
In the formula
lyac = pstachﬁc’Y (27)

The units on both sides must agree:

- () () by

This gives three equations for matching powers of M, L and T

a+fB=0, —3a+28+y=1, —B-7=0 . (29)
The solution is « = —1/4, f = 1/4 and v = —1/4. This means that (27)
gives
Bo\1
e (1) "
CpVaC

Taking peac = 7.7 x 107% kg /m? gives
leac = 8.22 x 10™°m = 82.2um



S5a.
Under a variation d¢;(t) of the coordinate, the variation of the velocity is
. Since the Lagrangian L depends on ¢; and ¢; the full variation is

65:/dt{aL + aLdéqz’}. (31)

ddq;
dt

il 79
Jq; 4 dg; dt

The second term in the brackets is rewritten in terms of a total derivative
and a term proportional to d¢;

oL d (0L d (0L
0S5 = /dt {0—q-6qi + 7 (@5%) T <8q'4> 5%} . (32)

The total time derivative vanishes when we set the variations to vanish at
the initial and final times. The variation 4.5 is therefore

oL d (0L
dS = [ dtdg;(t - = . 33
Jasao 5~ (57} ®
If this variation is to vanish for all d¢;(¢) we must have
d (0L oL
- — =0. 4

These are the Euler-Lagrange equations of motion for the coordinates g;.

5b.
Considering the Lagrangian

L(q(t),q(t),t)
and the variation

q(t) — q(t) + (q(t)) = qt) + eh(q(t),t)
d

i =+ 5 0a)

Variation of the action gives rise to the Euler-Lagrange equation of motion

S(t) = /dtL(q(t),q(t),t) N % @—g’) _ g—g’ —0



since L is invariant under the variation

d oL oL d
L 0q, g+ —d0q,t) =L+ —9 ——0 e
(¢ + ¢dq+— q,t) +0q q+8thq+
oL oL d
— a—q(sq—i-a—q.%(SQ—O

Now take

dQ d oL d oL OL dd oL OL d
et =% (5000) = 5 (%) 00+ 50 = Seoa+ G5oa = 0
dQ
_ — :0
dt ’

where we have used the Euler-Lagrange equation to go from the second to

third equality. Therefore, we have that

Qt) = g—gh<q<t>,t>

is conserved.



