MATH423 String Theory Solutions 3

1 a.

$$
T_{\lambda \mu \nu}=\partial_{\lambda} F_{\mu \nu}+\partial_{\mu} F_{\nu \lambda}+\partial_{\nu} F_{\lambda \mu} .
$$

where

$$
\begin{gathered}
F_{\mu \nu}-\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu} \\
T_{0 i j}=\partial_{0} F_{i j}+\partial_{i} F_{j 0}+\partial_{j} F_{0 i} .
\end{gathered}
$$

For time independent fields $\partial_{0} F_{i j}=0$, so $T_{0 i j}=0$ implies

$$
\begin{equation*}
\partial_{i} F_{0 j}-\partial_{j} F_{0 i}=0 \rightarrow \partial_{i} E_{j}-\partial_{j} E_{i}=0 \tag{1}
\end{equation*}
$$

$\vec{E}=-\vec{\nabla} \Phi$ says $E_{i}=-\partial_{i} \Phi$, so condition (1) is satisfied since

$$
\partial_{i} \partial_{j} \Phi=\partial_{j} \partial_{i} \Phi .
$$

b.

With d spatial dimensions and a point charge q at $\vec{x}=0$, the magnitude $E(r)$ of the electric field is

$$
\begin{equation*}
E(r)=\frac{\Gamma\left(\frac{d}{2}\right)}{2 \pi^{\frac{d}{2}}} \frac{q}{r^{d-1}} \quad \text { (derived in lectures) } \tag{2}
\end{equation*}
$$

Since $E(r)=-\frac{d \Phi}{d r}(r)$.

$$
\begin{equation*}
\Phi(r)=\frac{\Gamma\left(\frac{d}{2}\right)}{2 \pi^{\frac{d}{2}}} \frac{1}{d-2} \frac{q}{r^{d-2}} \tag{3}
\end{equation*}
$$

Setting $\Phi=0$ at $r=\infty$ for $d>2$. Using $\Gamma(x+1)=x \Gamma(x)$,

$$
\begin{equation*}
\Gamma\left(\frac{d}{2}\right)=\left(\frac{d}{2}-1\right) \Gamma\left(\frac{d}{2}-1\right)=\frac{1}{2}(d-2) \Gamma\left(\frac{d}{2}-1\right) \tag{4}
\end{equation*}
$$

so we get

$$
\begin{equation*}
\Phi(r)=\frac{\Gamma\left(\frac{d}{2}-1\right)}{4 \pi^{\frac{d}{2}}} \frac{q}{r^{d-2}} \quad d>2 . \tag{5}
\end{equation*}
$$

$2 a$.
The standard Bohr radius

$$
\begin{equation*}
a_{0}=\frac{\hbar^{2}}{m_{e} e^{2}}=5.29 \times 10^{-9} \mathrm{~cm}, \quad \text { arises from the potential } \quad V=-\frac{e^{2}}{r} \tag{6}
\end{equation*}
$$

In the gravitational case, the potential is

$$
V=-G m_{e} m_{p} / r,
$$

so the gravitational Bohr radius a_{0}^{g} is obtained by replacing e^{2} with $G m_{e} m_{p}$:

$$
\begin{equation*}
a_{0}^{g}=\frac{\hbar^{2}}{m_{e}\left(G m_{e} m_{p}\right)}=\frac{\hbar^{2}}{m_{e} e^{2}}\left(\frac{e^{2}}{G m_{e} m_{p}}\right) \tag{7}
\end{equation*}
$$

The ratio between the "gravitational" and the conventional Bohr radius is therefore

$$
\begin{equation*}
\frac{a_{0}^{g}}{a_{0}}=\frac{e^{2}}{G m_{e} m_{p}}=\frac{\left(4.8 \times 10^{-10}\right)^{2}}{\left(6.67 \times 10^{-8}\right)\left(0.911 \times 10^{-27}\right)\left(1.672 \times 10^{-24}\right)} \approx 2.27 \times 10^{39} . \tag{8}
\end{equation*}
$$

This gives

$$
\begin{equation*}
a_{0}^{g}=1.2 \times 10^{31} \mathrm{~cm} \tag{9}
\end{equation*}
$$

Since 1 light year $\approx 9.5 \times 10^{17} \mathrm{~cm}, a_{0}^{g}=1.3 \times 10^{13}$ light years!! The universe is about 10^{10} years old, so this distance is quite large.
b.

We introduce factors of G, c and \hbar into the formula, with exponents α, β and γ to be determined:

$$
\begin{equation*}
k T=\frac{1}{8 \pi M} \rightarrow \frac{G^{\alpha} c^{\beta} \hbar^{\gamma}}{8 \pi M} \tag{10}
\end{equation*}
$$

Since $[k T]=[E]=M L^{2} / T^{2}$, using $[G]=L^{3} M^{-1} T^{-2},[c]=L T^{-1}$, and $[\hbar]=M L^{2} T^{-1}$, we find

$$
\begin{equation*}
\frac{M L^{2}}{T^{2}}=L^{3 \alpha+\beta+2 \gamma} M^{-\alpha+\gamma-1} T^{-2 \alpha-\beta-\gamma} \tag{11}
\end{equation*}
$$

This gives three equations for three unknowns

$$
\begin{equation*}
3 \alpha+\beta+2 \gamma=2, \quad-\alpha+\gamma-1=1, \quad-2 \alpha-\beta-\gamma=-2 . \tag{12}
\end{equation*}
$$

The solution is $\alpha=-1, \beta=3$ and $\gamma=1$. As a result

$$
\begin{equation*}
k T=\frac{\hbar c^{3}}{8 \pi G M}=\left(\frac{\hbar c}{G}\right) \frac{c^{2}}{8 \pi M}=\frac{m_{P}^{2} c^{2}}{8 \pi M} \tag{13}
\end{equation*}
$$

where $m_{P}=2.17 \times 10^{-5} \mathrm{gr}$ is the Planck mass. For a mass with million solar masses $M=10^{6} M_{\text {sun }} \approx 2 \times 10^{39} \mathrm{gr}$,

$$
\begin{equation*}
k T=\frac{\left(2.17 \times 10^{-5}\right)^{2}\left(3 \times 10^{10}\right)^{2}}{8 \pi 2 \times 10^{39}}=8.43 \times 10^{-30} \mathrm{eV} \quad \Rightarrow \quad T \approx 6.1 \times 10^{-14} \mathrm{~K} \tag{14}
\end{equation*}
$$

For a room temperature black hole, $T \approx 300 \mathrm{~K}$, and we find $M=\frac{6.1 \times 10^{-14} \mathrm{~K}}{300 \mathrm{~K}} 2 \times$ $10^{39} \mathrm{gr} \approx 4.1 \times 10^{20} \mathrm{~kg}$, which is approximately $6.8 \times 10^{-5} M_{\text {earth }}$.
3.

$$
\begin{gathered}
\frac{d^{2} y_{1}}{d x^{2}}+\frac{\mu_{1}}{T_{0}} w^{2} y_{1}(x)=0 \quad \text { for } \quad 0 \leq x \leq a \\
\frac{d^{2} y_{2}}{d x^{2}}+\frac{\mu_{2}}{T_{0}} w^{2} y_{2}(x)=0 \quad \text { for } \quad a \leq x \leq 2 a
\end{gathered}
$$

Here $y_{1}(x)=y(x)$ for $x \in[0, a]$ and $y_{2}(x)=y(x)$ for $x \in[a, 2 a]$. We let

$$
\begin{equation*}
\lambda_{1}^{2}=\frac{\mu_{1}}{T_{0}} w^{2} \quad \text { and } \quad \lambda_{2}^{2}=\frac{\mu_{2}}{T_{0}} w^{2} \tag{15}
\end{equation*}
$$

with this notation, the two equations take similar form

$$
\begin{equation*}
\frac{d^{2} y_{i}}{d x^{2}}+\lambda_{i}^{2} y_{i}(x)=0, \quad \lambda_{i}=\sqrt{\frac{\mu_{i}}{T_{0}}} w, i=1,2 \tag{16}
\end{equation*}
$$

Since $y(x=0)=y(x=2 a)=0$ we write

$$
\begin{equation*}
y_{1}(x)=A \sin \left(\lambda_{1} x\right), \quad \text { and } \quad y_{2}(x)=B \sin \left(\lambda_{2}(2 a-x)\right), \tag{17}
\end{equation*}
$$

which satisfy the differential equation and the boundary conditions at $x=0$ and $x=2 a$.
a.

Since the string does not break at $x=a$, we must have $y_{1}(a)=y_{2}(a)$. Since there is no mass at the joining point the slopes must agree too: $y_{1}^{\prime}(a)=$ $y_{2}^{\prime}(a)$.
b.

Applying the boundary conditions in (a) we find

$$
\begin{aligned}
A \sin \lambda_{1} a & =B \sin \lambda_{2} a \\
A \lambda_{1} \cos \lambda_{1} a & =-B \lambda_{2} \cos \lambda_{2} a
\end{aligned}
$$

These two equations can be written as

$$
\left(\begin{array}{cc}
\sin \lambda_{1} a & -\sin \lambda_{2} a \tag{18}\\
\lambda_{1} \cos \lambda_{1} a & \lambda_{2} \cos \lambda_{2} a
\end{array}\right)\binom{A}{B}=0 .
$$

Since we need solutions where both A and B are not zero, the determinant of the above matrix must vanish:

$$
\begin{equation*}
\lambda_{2} \sin \lambda_{1} a \cos \lambda_{2} a+\lambda_{1} \cos \lambda_{1} a \sin \lambda_{2} a=0 \tag{19}
\end{equation*}
$$

This equation can be used to find the oscillations frequencies. As a check assume $\mu_{1}=\mu_{2}=\mu_{0}$, in which case $\lambda_{1}=\lambda_{2} \equiv \lambda$. The condition becomes $\sin (2 \lambda a)=0$, which gives $\lambda(2 a)=n \pi$. This gives the familiar frequencies
c.

With $\mu_{1}=\mu_{0}$ and $\mu_{2}=2 \mu_{0}$ we write

$$
\lambda_{1}=\sqrt{\frac{\mu_{0}}{T_{0}}} w \equiv \lambda \quad \text { and } \quad \lambda_{2}=\sqrt{\frac{2 \mu_{0}}{T_{0}}} w=\sqrt{2} \lambda
$$

Eq (19) then gives

$$
\sqrt{2} \sin \lambda a \cos \sqrt{2} \lambda a+\cos \lambda a \sin \sqrt{2} \lambda a=0
$$

Solving this equation numerically we find that to the lowest root is $\lambda a \approx$ 1.26567. This gives the lowest frequency

$$
w_{L}=\sqrt{\frac{T_{0}}{\mu_{0}}} \frac{1.26567}{a}=\sqrt{\frac{T_{0}}{\mu_{0}}} \frac{2.53134}{2 a} .
$$

Note that w_{L} is bounded as

$$
\sqrt{\frac{T_{0}}{\mu_{0}}} \frac{\pi / \sqrt{2}}{(2 a)}<w_{L}<\sqrt{\frac{T_{0}}{\mu_{0}}} \frac{\pi}{(2 a)}
$$

The lower and upper bounds are the lowest frequencies of strings of contant mass density $2 \mu_{0}$ and μ_{0} respectively ($\pi / \sqrt{2} \approx 2.22144$).
4.
a.

The Planck mass is given by

$$
\begin{equation*}
m_{P}=G^{\alpha} c^{\beta} \hbar^{\gamma} \tag{20}
\end{equation*}
$$

where G is Newton's gravitational constant; c is the speed of light; and \hbar is Planck constant. The dimensions of G, c and \hbar are

$$
\begin{aligned}
{[G] } & =\frac{[L]^{3}}{[M][T]^{2}} \\
{[c] } & =\frac{[L]}{[T]} \\
{[\hbar] } & =\frac{[M][L]^{2}}{[T]}
\end{aligned}
$$

where $[L],[M]$ and $[T]$ are the dimensions of length, time and mass, respectively. Since m_{P} has the dimension of mass we have

$$
\begin{equation*}
\left[m_{P}\right]=[M]^{1}=\left(\frac{[L]^{3}}{[M][T]^{2}}\right)^{\alpha}\left(\frac{[L]}{[T]}\right)^{\beta}\left(\frac{[M][L]^{2}}{[T]}\right)^{\gamma} \tag{21}
\end{equation*}
$$

Hence we obtain the equations

$$
\begin{aligned}
3 \alpha+\beta+2 \gamma & =0 \\
-\alpha+\gamma & =1 \\
-2 \alpha-\beta-\gamma & =0
\end{aligned}
$$

which are solved with $\beta=\gamma=1 / 2$ and $\alpha=-1 / 2$. Hence

$$
\begin{equation*}
m_{P}=\sqrt{\frac{c \hbar}{G}} \tag{22}
\end{equation*}
$$

The numerical values of G, c and \hbar are

$$
\begin{aligned}
G & =6.674 \times 10^{-8} \frac{\mathrm{~cm}^{3}}{\mathrm{~g} \cdot \mathrm{~s}^{2}} \\
c & =3 \times 10^{10} \frac{\mathrm{~cm}}{\mathrm{~s}} \\
\hbar & =1.054 \times 10^{-27} \mathrm{erg} \cdot \mathrm{~s}
\end{aligned}
$$

hence we get

$$
\begin{equation*}
m_{P}=2.17 \times 10^{-5} \mathrm{~g} \tag{23}
\end{equation*}
$$

b.

Since t_{P} has the dimension of time we have

$$
\begin{equation*}
\left[t_{P}\right]=[T]^{1}=\left(\frac{[L]^{3}}{[M][T]^{2}}\right)^{\alpha}\left(\frac{[L]}{[T]}\right)^{\beta}\left(\frac{[M][L]^{2}}{[T]}\right)^{\gamma} \tag{24}
\end{equation*}
$$

Hence we obtain the equations

$$
\begin{array}{r}
3 \alpha+\beta+2 \gamma=0 \\
-2 \alpha-\beta-\gamma=1 \\
-\alpha+\gamma=0
\end{array}
$$

which are solved with $\alpha=\gamma=1 / 2$ and $\beta=-5 / 2$. Hence

$$
\begin{equation*}
t_{P}=\sqrt{\frac{G \hbar}{c^{5}}} \tag{25}
\end{equation*}
$$

Inserting the numerical values of G, c and \hbar we get

$$
\begin{equation*}
t_{P}=5.38 \times 10^{-44} s \tag{26}
\end{equation*}
$$

c.

In the formula

$$
\begin{equation*}
\ell_{\mathrm{vac}}=\rho_{\mathrm{vac}}^{\alpha} \hbar^{\beta} c^{\gamma} \tag{27}
\end{equation*}
$$

The units on both sides must agree:

$$
\begin{equation*}
L=\left(\frac{M}{L^{3}}\right)^{\alpha}\left(\frac{M L^{2}}{T}\right)^{\beta}\left(\frac{L}{T}\right)^{\gamma} \tag{28}
\end{equation*}
$$

This gives three equations for matching powers of M, L and T :

$$
\begin{equation*}
\alpha+\beta=0, \quad-3 \alpha+2 \beta+\gamma=1, \quad-\beta-\gamma=0 \tag{29}
\end{equation*}
$$

The solution is $\alpha=-1 / 4, \beta=1 / 4$ and $\gamma=-1 / 4$. This means that (27) gives

$$
\begin{equation*}
\ell_{\mathrm{vac}}=\left(\frac{\hbar}{c \rho_{\mathrm{vac}}}\right)^{\frac{1}{4}} \tag{30}
\end{equation*}
$$

Taking $\rho_{\text {vac }}=7.7 \times 10^{-27} \mathrm{~kg} / \mathrm{m}^{3}$ gives

$$
\ell_{\mathrm{vac}}=8.22 \times 10^{-5} \mathrm{~m}=82.2 \mu \mathrm{~m}
$$

5a.
Under a variation $\delta q_{i}(t)$ of the coordinate, the variation of the velocity is $\frac{d \delta q_{i}}{d t}$. Since the Lagrangian L depends on q_{i} and \dot{q}_{i} the full variation is

$$
\begin{equation*}
\delta S=\int d t\left\{\frac{\partial L}{\partial q_{i}} \delta q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} \frac{d \delta q_{i}}{d t}\right\} \tag{31}
\end{equation*}
$$

The second term in the brackets is rewritten in terms of a total derivative and a term proportional to δq_{i}

$$
\begin{equation*}
\delta S=\int d t\left\{\frac{\partial L}{\partial q_{i}} \delta q_{i}+\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}} \delta q_{i}\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right) \delta q_{i}\right\} . \tag{32}
\end{equation*}
$$

The total time derivative vanishes when we set the variations to vanish at the initial and final times. The variation δS is therefore

$$
\begin{equation*}
\delta S=\int d t \delta q_{i}(t)\left\{\frac{\partial L}{\partial q_{i}}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)\right\} \tag{33}
\end{equation*}
$$

If this variation is to vanish for all $\delta q_{i}(t)$ we must have

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)-\frac{\partial L}{\partial q_{i}}=0 \tag{34}
\end{equation*}
$$

These are the Euler-Lagrange equations of motion for the coordinates q_{i}.
5 b.
Considering the Lagrangian

$$
L(q(t), \dot{q}(t), t)
$$

and the variation

$$
\begin{aligned}
q(t) & \rightarrow q(t)+\delta(q(t))=q(t)+\epsilon h(q(t), t) \\
\dot{q}(t) & \rightarrow \dot{q}(t)+\frac{d}{d t}(\delta(q(t)))
\end{aligned}
$$

Variation of the action gives rise to the Euler-Lagrange equation of motion

$$
S(t)=\int d t L(q(t), \dot{q}(t), t) \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0
$$

since L is invariant under the variation

$$
\begin{gathered}
L\left(q+\delta q, \dot{q}+\frac{d}{d t} \delta q, t\right)=L+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d}{d t} \delta q+\cdots=L \\
\Longrightarrow \quad \frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d}{d t} \delta q=0
\end{gathered}
$$

Now take

$$
\begin{gathered}
\epsilon \frac{d Q}{d t}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d \delta q}{d t}=\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \frac{d}{d t} \delta q=0 \\
\Longrightarrow \frac{d Q}{d t} \quad=0,
\end{gathered}
$$

where we have used the Euler-Lagrange equation to go from the second to third equality. Therefore, we have that

$$
Q(t)=\frac{\partial L}{\partial \dot{q}} h(q(t), t)
$$

is conserved.

