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Table 1: The weight lattice of the spinorial 16 representation of SO(10). Each
entry should be multiplied by the 1

2
. The ±1

2
entries are the charges with

respect to the five U(1) generators of the Cartan subalgebra. The product
of the five charges should be either positive or negative. If we choose to be
positive then we can have either, zero, two or four negative charges (or spins)
of the total five. Alternatively, if we choose the product to be negative we
can have either one, three or five of the charges (or spins) to have a minus
sign. In either case the total number of possibilities is 16. These are the two
spinorial representations of SO(10) being the chiral 16 and the anti–chiral
16. The table above shows the chiral 16 representation.

From the table above we see that there is one state with zero minus signs.
This is a singlet of SU(5). There are five states with four minus signs. This
is a 5 representation of SU(5). Finally there are 10 states with two minus
sighs. This is the 10 representation of SU(5). Hence, under SU(5) × U(1)X

the 16 representation of SO(10) decomposes as:
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16 = (1,
5

2
) + (5̄,−

3

2
) + (10,

1

2
)

where the U(1)X charges are obtained by taking the trace QX = Q1 +Q2 +
Q3+Q4+Q5, and theQi are the ±1

2
charges with respect to the five generators

of the Cartan subalgebra.
in our combinatorial notation we can write

16 =

(

5

0

)

+

(

5

2

)

+

(

5

4

)

where the combinatorial factor counts the number of − in a given state.
To find the decomposition under SO(6) × SO(4) ≡ SU(4) × SU(2)L ×

SU(2)R we split the five slots into the first three which correspond to SO(6)
and the last two which correspond to SO(4). We now split the 16 again
by counting how many minus signs there are under the first three times
how many there are under the last two. Note that here we have to take
the product of the signs with respect to the first three slots and last two
separately. So, for example, states with zero or two minus signs under the
first three slots belong to the same SO(6) representation. Hence, under
SO(6) × SO(4) ≡ SU(4) × SU(2)L × SU(2)R it decomposes as:

16 = (4, 2, 1) + (4̄, 1, 2)

In the combinatorial notation this decomposes as:

16 =

[(

3

0

)

+

(

3

2

)] [(

2

0

)

+

(

2

2

)]

+

[(

3

1

)

+

(

3

3

)] [(

2

1

)]

To find the decomposition under SU(3)×U(1)C×SU(2)×U(1)L we again
split the five slots into the first three, which correspond to SU(3) × U(1)C

and the last two that correspond to SU(2) × U(1)L. We again count how
many minus signs there are in each state under the first three and last two
slots to find the multiplicity. The charges under the U(1)s are given by the
sums under Q1 + Q2 + Q3 and Q4 + Q5 for U(1)C and U(1)L, respectively.
Hence, under SU(3) × U(1)C × SU(2) × U(1)L the 16 decomposes as:

16 = (1,
3

2
, 1,+1)+(3,

1

2
, 2, 0)+(3̄,−

1

2
, 1,+1)+(1,

3

2
, 1,−1)+(3̄,−

1

2
, 1,−1)+(1,−

3

2
, 1, 0)
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where QC and QL are defined as QC = Q1 +Q2 +Q3 and QL = Q4 +Q5. In
combinatorial notation these are:

16 =

[(

3

0

)(

2

0

)]

+

[(

3

2

)(

2

0

)]

+

[(

3

0

)(

2

2

)]

+

[(

3

1

)(

2

1

)]

+

[(

3

2

)(

2

2

)]

+

[(

3

3

)(

2

1

)]

From the last line we can read off the Standard Model states. These are
in order respectively

ec
L , dc

L ,N
c
L , Q , uc

L , L

where the subscript L indicates that these are all left–handed fields and the
upperscript c denotes charge conjugation (corresponding to antiparticles).
Therefore the states are: 1. the positron which is an SU(2) and SU(3) singlet;
2. down-type quark SU(2) singlet; 3. standard model singlet corresponding
to the right–handed neutrino; 4. quark SU(2) doublet; 5. up-type quark
SU(2) singlet; 6. lepton SU(2) doublet.

The weak hypercharge is given by

U(1)Y =
1

3
UC +

1

2
UL

and the electric charge by

U(1)e.m. = T3L
+ U(1)Y

where T3L
is the diagonal generator of the SU(2) subgroup.

2.
a.

gµν =
(

1 0
0 −1

)

, gµν =
(

1 0
0 −1

)

b.

t → t+ ǫA(t, x)

x → x+ ǫB(t, x)

dt → dt+ ǫ(∂A
∂t
dt+ ∂A

∂x
dx)

dx → dx+ ǫ(∂B
∂t
dt+ ∂B

∂x
dx)

3



ds2
→ [(1 + ǫ

∂A

∂t
)dt+ ǫ

∂A

∂x
dx]2 − [(1 + ǫ

∂B

∂x
)dx+ ǫ

∂B

∂t
dt]2

we require invariance of ds2. Expanding to first order in ǫ we impose that
the coefficients of the addtional terms vanish. These yield the constraints on
the functions A and B.

dt2 : ∂A
∂t

= 0 ⇒ A = A(x)

dx2 : ∂B
∂x

= 0 ⇒ B = B(t)

dxdt : ∂A
∂x

− ∂B
∂t

= 0 ⇒ dA
dx

= dB
dt

= constant = c

⇒ A(x) = cx + a

B(t) = ct+ b

we obtained three constants of integration a, b and c. These correspond
to a shift in time a, a shift in space b, and a boost c.

3.

a′
0

= γ(a0
− βa1)

a′
1

= γ(−βa0 + a1)

a′
2

= a2

a′
3

= a3

b′
0

= γ(b0 − βb1)

b′
1

= γ(−βb0 + b1)

b′
2

= b2

b′
3

= b3

b′0 = −γ(b0 − βb1)

b′1 = γ(−βb0 + b1)

b′2 = b2

b′3 = b3
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Then

a′µb′µ = −γ(a0
− βa1)γ(b0 − βb1) + γ(−βa0 + a1)γ(−βb0 + b1) + a2b2 + a3b3

= γ2
[

a0b0(−1 + β2) + a1b1(1 − β2)
]

+ a2b2 + a3b3

= −a0b0 + a1b1 + a2b2 + a3b3 = a0b0 + a1b1 + a2b2 + a3b3

= aµbµ

4.
Lorentz transformations, derivatives and quantum operators

a.

a0 = −a0, a1 = a1, a2 = a2, a3 = a3

a′0 = −a′0 = −γ(a0
− βa1) = γ(a0 + βa1)

a′1 = a′1 = γ(−βa0 + a1) = γ(βa0 + a1) (1)

and a′2 = a2, a
′

3 = a3

b.
Suppose we have a function f(x0, x1, x2, x3) which we express as a function

of x′0, x′1, x′2, x′3 by expressing xµ as a function of x′µ. The standard chain
rule for partial differentiation says that

∂f

∂x′µ
=

3∑

ν=0

∂f

∂xν

∂xν

∂x′µ
for µ = 0, 1, 2, 3 (2)

Using the summation convention and writing as an operator equation we get

∂

∂x′µ
=
∂xν

∂x′µ
∂

∂xν
(3)

We need x as a function of x′, the inverse of the Lorentz transformation that
gives x′ as a function of x. For a boost along the x′ axis, the inverse is a
boost with the opposite speed, so

x0 = γ(x′0 + βx′1), x1 = γ(βx′0 + x′1) (4)

Hence
∂

∂x′0
= γ(

∂

∂x0
+ β

∂

∂x1
),

∂

∂x′1
= γ(β

∂

∂x0
+
∂

∂x1
) (5)
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which is the same as as (1) with aµ = ∂
∂xµ

c.
The operator for momentum ~p is h̄

i
~∇, i.e.

p1 =
h̄

i

∂

∂x1
, p2 =

h̄

i

∂

∂x2
, p3 =

h̄

i

∂

∂x3
(6)

The Schrödinger equation says

ih̄
∂ψ

∂t
= Hψ

where H is the energy operator. Since p0 = E
c

and x0 = ct, this can be
written as

p0 = ih̄
∂

∂x0
= −

h̄

i

∂

∂x0
(7)

If we write (6) and (7) in terms of pµ, we remove the sign difference between
the 0 component and the others.

pµ =
h̄

i

∂

∂xµ
. (8)

This is Lorentz invariant since we proved in (b) that ∂
∂xµ tranforms like pµ.

+ + + + + + + + + + + + + + + + + + + + + + + + + + +

5.

ds2 = dθ2 + sin2 θdφ2

a.

gµν =
(

1 0
0 sin2 θ

)

, gµν =
(

1 0
0 1

sin2 θ

)

b.

θµ
→ θµ + ǫζµ(θ, φ)

We want to find functions

A(θ, φ) = ζ1(θ, φ)
and B(θ, φ) = ζ2(θ, φ) (9)
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such that ds2 remains invariant under the transformations.

θ → θ + ǫA(θ, φ)
φ → φ+ ǫB(θ, φ)

sin θ → sin(θ + ǫA) ≈ sin θ + ǫA cos θ
sin2 θ → sin2 θ + 2ǫA sin θ cos θ +O(ǫ2) (10)

Keeping terms to first order in ǫ

dθ → (1 + ǫ∂A
∂θ

)dθ + ǫ∂A
∂φ
dφ

dφ → ǫ∂B
∂θ
dθ + (1 + ǫ∂B

∂φ
)dφ

dθ2
→ (1 + 2ǫ∂A

∂θ
)dθ2 + 2ǫ∂A

∂φ
dθdφ

dφ2
→ (1 + 2ǫ∂B

∂φ
)dφ2 + 2ǫ∂B

∂θ
dθdφ

sin2 θdφ2
→ sin2 θ(1 + 2ǫ∂B

∂φ
)dφ2 + sin2 θ2ǫ∂B

∂θ
dθdφ+ 2ǫA sin θ cos θdφ2(11)

we demand that ds2 remains invariant.

dθ2 + sin θdφ2
→ dθ2 + sin θdφ2 + · · · · · · · · · · · · · · ·

︸ ︷︷ ︸

terms that vanish

demanding that the additional terms vanish we obtain the following con-
straints

dθ2 : ∂A
∂θ

= 0 ⇒ A = A(φ) = f ′(φ) = df
dφ

dφ2 : sin2 θ ∂B
∂φ

+ A sin θ cos θ = 0 ⇒ ∂B
∂φ

= −
df
dφ

cos θ
sin θ

⇒ B = −f(φ) cos θ
sin θ

+ g(θ)

dθdφ : ∂A
∂φ

+ sin2 θ ∂B
∂θ

= 0 ⇒ f ′′ + sin2 θ
(

f(φ)
sin2 θ

+ g′(θ)
)

= 0 (12)

+ + + + + + + + + + + + + + + + + + + + + + + + + + +

6a.To show that Lorentz transformations form a group we have to show
that they satify three properties:

• a product of two Lorentz transformations is a Lorentz transformation
(LT).

• the inverse of a Lorentz transformation is a Lorentz transformation.

• the identity transformation is a Lorentz transformations.
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In matrix form the Lorentz transformations satisfy the property that

LTηL = η,

where L is a general LT in matrix form and η is the Minkowski metric. Given
two LTs we have

LT
1 η L1 = η , LT

2 η L2 = η

then for the product of the two LT we have

(L1L2)Tη(L1L2) = LT
2L

T
1 ηL1L2 = LT

2 ηL2 = η

Hence, the product of LT satisfies the defining property of LTs and is there-
fore a LT.

Given a LT L its inverse satifies L−1L = I where I is the identity matrix.
Hence we can check that

(L−1)TηL−1 = (L−1)TLTηLL−1 = (LL−1)TηLL−1 = η

Hence, the inverse transformation satisfies the defining property of LT.
Finally, it is obvious that the identity transformation is a LT, i.e. ITηI =

η, and the identity matrix satisfies the definig property of LT.
b. In this case we have to show that LT satifies the defining property of

LT, i.e.

(LT )TηLT = Lη LT = η

Starting with the defining property of LT LTηL = η and multiplying from
the left both side of the equation by Lη we get

LηLTηL = Lηη = L

where we used the fact that η2 = 1. Multiplying both sides of the equation
from the right by L−1η we get

(LηLT )ηLL−1η = L(L−1η) ⇒ LηLT = η

Hence the transpose matrix is a LT.
c. These are the proper orthochronos Lorentz transformations that satisfy

the considitions that Det(L) = +1 and L00 ≥ +1.
d. in five space time dimension there are 10 proper orthochronos LT corre-

sponding to 4 boosts (dtdx, dtdy, dtdz, dtdw) and 6 rotations (dxdy, dxdz, dxdw, dydz, dydw, dzdw).
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e. The dimensionality of the Poincare group in 5 space time dimensions
if 15 corresponding to 10 boosts and rotations transformations and 5 trans-
lations.

f. In d + 1 dimensions the infinitesimal line element is invariant under
d+ 1 translations. In addition the set of LT in d+ 1 dimensions correspond
to independent parameters in a d+ 1 asymmetric matrix, i.e.

(d+ 1 − 1)(d+ 1)

2
=
d(d+ 1)

2

Of these d correspond to boosts and

d(d+ 1)

2
− d =

d(d− 1)

2

correspond to rotations. The dimensionality of the Poincare group in d + 1
dimensions is therefore

d+ 1 + d +
d(d− 1)

2
=

(d+ 2)(d+ 1)

2
,

corresponding to translations, boosts and rotations in d + 1 spacetime di-
mensions.
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