MATH423 - Introduction to String Theory Set Work: Sheet 1

- * **Reading**: Zwiebach chapters 1 and 2
- 1. Write down the weight lattice of the spinorial 16 representation of SO(10)and how it decomposes under the $SU(5) \times U(1)$, $SO(6) \times SO(4)$ and] $SU(3) \times SU(2) \times U(1)^2$ subgroups.

Indentify how the Standard Model states fit into the spinorial 16 of SO(10).

2. Consider the infinitesimal line element,

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = dt^{2} - dx^{2}.$$

- (a) Write the metric $g_{\mu\nu}$ and its inverse in an explicit in matrix form.
- (b) Find the set of independent transformations of the form

$$t \to t + \epsilon A(t, x)$$

 $x \to x + \epsilon B(t, x)$,

where ϵ is an infinitesimal constant and the functions A and B have to be determined by the requirement that ds^2 is invariant. State what each transformation represents in space time.

- **3.** Consider two Lorentz vectors a^{μ} and b^{μ} . Write the Lorentz transformations $a^{\mu} \rightarrow a'^{\mu}$ and $b^{\mu} \rightarrow b'^{\mu}$. Verify that $a^{\mu}b_{\mu}$ is invariant under these transformations.
- 4. (a) Give the Lorentz transformations for the components a_{μ} of a vector under a boost along the x^1 axis.

(b) Show that the object $\frac{\partial}{\partial x^{\mu}}$ transforms under a boost along the x^1 axis as the a_{μ} vector considered in (a) do. This checks, in a particular case, that partial derivatives with respect to upper-index coordinates x^{μ} behave as a four-vector with lower indices, which is why they are written as ∂_{μ} .

(c) Show that, in quantum mechanics, the expression for the energy and momentum in terms of derivatives can be written compactly as $p_{\mu} = \frac{\hbar}{i} \frac{\partial}{\partial x^{\mu}}$.

5. Consider the infinitesimal line element on a two dimensional surface

$$ds^2 = g_{\mu\nu}d\theta^{\mu}d\theta^{\nu} = d\theta^2 + \sin^2\theta d\phi^2$$

(a convenient notation is $\theta^{\mu} \equiv (\theta, \phi) \ (\mu = 1, 2))$

(a) Write the metric $g_{\mu\nu}$ in an explicit matrix form. Write $g^{\mu\nu}$ in matrix form.

(b) Consider the set of infinitesimal transformations of the form

$$\theta^{\mu} \rightarrow \theta^{\mu} + \epsilon \zeta^{\mu}(\theta, \phi)$$
,

for which the line element ds^2 is invariant and where ϵ is an infinitesimal constant. Derive the conditions that the functions ζ^1 and ζ^2 must satisfy for ds^2 to remain invariant.