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1.
Under a variation d¢;(t) of the coordinate, the variation of the velocity is
. Since the Lagrangian L depends on ¢; and ¢; the full variation is
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The second term in the brackets is rewritten in terms of a total derivative
and a term proportional to dg;
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The total time derivative vanishes when we set the variations to vanish at
the initial and final times. The variation 4.5 is therefore
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If this variation is to vanish for all d¢;(¢) we must have
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These are the Euler-Lagrange equations of motion for the coordinates ¢;.

2.
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The action in terms of 7(7) is given by
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where 7(7) is an arbitrary parameter and éd7 is an invariant line element.
Hence, the following hold:
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Hence the integrand of the action transforms as
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and is invariant under reparametization 7 — 7. Invariance under Poincare
transformations follows from the fact that it is constructed from four vectors
and the fact ##, and m? are Lorentz and Poincare invariants. The fact that
the action contains only derivatives of x* also implies that it is invariant
under constant four vector shifts.

b.

We obtain the equations of motion from the Euler-Lagrange equations
with
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c. For m? > 0 (dx*/dT)* < 0



Substituting back into the action we get
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which is the action for a free massive particle.

d. The e equation of motion @2 + e?m? =0

) 1
e For m?>>0 impose e = —
m

The equation of motions become
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The equation of motions become
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Under reparameterization the measure of integration transforms as

gfﬂ,) |d5°d5" = |det M |d6°5"
g

do'do! = |det <
where M = [M;;] is the matrix defined by M;; = (95" /d57) . Similarly,
dg’det = |det (g ) |do’dot = |detM|do do!

where M = [M,;] is the matrix defined by M;; = (86%/907) . We note that
|det M ||det M| = 1.

From invariance of the infinitesimal line element under reparameterization
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or in matrix form
gZJ( ) - gPQ(5)MPiqu - (Mzi) gquqj . (6)

We consider a target space surface S described by the mappting X*(o?, 0%).
Given a vector dX* tangent to the surface, left |ds| denote its length. Then
we can write
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The induced matrix is given by
0X"0X,

999 = 397 Dt

whose determinant appears in the square root of the Nambu—Gotto action.
Taking the determinant of both sides of (6), and defining,

g = det(gy;)
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we have ) ) )
g = (detM™)g(det M) = G(det M)

or
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Combing the results we get
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b
Identifying ¢ = 7, the world-sheet ‘time’ parameter and o! = o, the
world—sheet internal parameter, we obtain from the Nambu—Gotto action:
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where L is given by
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